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Abstract—The present work is concerned with the modelling of damage initiation and growth in Al-Zn-Mg
alloys, and also with an estimation of the ductility in uniaxial tension. An elastoplastic self-consistent model
is developed accounting for crystallographic texture and grain shape effects, which also integrates the voids
formed by the damage process. The damage evolution is followed within this framework, aliowing the
prediction of the macroscopic mechanical behavior, and particularly the stress—strain curves for different
tensile directions. A bifurcation analysis adapted for this anisotropic compressible case was developed and
used to estimate the ductility. Effects of texture, grain shape and critical parameters for damage nucleation
are investigated on a theoretical basis. The observed yield stress and fracture strain vs tensile angle profiles
observed experimentally can be predicted for certain cases.

On présente, dans ce travail, une modélisation de la nucléation et croissance de 'endommagement dans les
alliages Al-Zn-Mg, avec une estimation de la ductilité en traction. Un modéle autocohérent élastoplastique
est développé, qui prend en compte les effets de texture et de forme des grains, et qui aussi intégre les cavités
formées pendant le processus d’endommagement. L’evolution de I'endommagement est suivi dans ce
contexte, permettant la prédiction du comportement mécanique, et particuliérement les courbes
contrainte/déformation dans différentes directions. Une analyse de bifurcation adaptée pour ce cas
anisotrope compressible a été développée et utilisée pour estimer la ductilité. Les effets de texture, forme
des grains et des parametres critiques de nucléation sont étudiés sur une base théorique. Les profils de limites
élastiques et de déformation a rupture en fonction de I’angle de sollicitation peuvent étre prédits dans certains

cas.

1. INTRODUCTION

Modelling anisotropy of mechanical properties is a
long standing problem of mechanical metallurgy. It is
of special practical importance for alloys with high
performances such as the 7000 series used in the
aeronautical industry. If anisotropy of yield stress has
been extensively studied [1], the problem of damage
has been comparatively less investigated. Indeed, most
of the studies concerning the micromechanisms of
damage and their relation with fracture properties
have overlooked the question of anisotropy [2, 3]. The
purpose of this paper is to show, on the special case of
Al-Zn-Mg alloys for which the fracture mechanisms
have been well identified, a method which allows
damage growth in a polycrystalline plasticity scheme
in order to describe the anisotropy of mechanical
properties, including the ductility.

The Al-Zn-Mg alloys form the basis of the 7000
series and can be used as model alloys for a study of
damage anisotropy. The damage mechanisms have
been thoroughly studied and the resulting fracture
morphologies are well understood [4]. The aspects of
microstructure relevant to damage properties are well
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known. This alloy is the prototype alloy associated
with the phenomenon of ductile intergranular failure
{5]. Therefore most of the damage events take place at
the grain boundaries, either by shear failure or by
decohesion. This relative simplicity of the system
allows us to derive a model including texture and
damage. Furthermore, measurements of yield stress
and ductility of tensile samples cut at different angles
from an Al-Zn-Mg sheet are available [4]. Figure 1
shows typical profiles of yield stress and ductility (i.e.
maximum tensile strain) as a function of the angle
formed by the tensile axis and the rolling direction
(RD) of the sheet. All the samples were cut normal to
the transverse direction (TD) of the sheet. The
orientations of the samples in the RD-ND plane (ND:
normal direction) are designed as: “L” (along RD),
“TB45” and “TB60” (at 45° and 60° from RD,
respectively) and “TC” (along ND). The mean
features in these profiles are:

(a) the yield stress for the L sample is higher than for
the other orientations;

(b) the ductility profile shows a minimum for the TB
orientations.

In this contribution, we do not attempt to fill the
gap between the microstructure characteristics (such
as the width of the precipitate free zones at the grain
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Fig. 1. Yield stress and ductility of tensile samples cut from an Al-Zn-Mg sheet for different orientations
of the tensile axis in the RD-ND plane (after Solas ez al. [4]).

boundary) and the macroscopic properties (as
ductility). We rather make use of our knowledge of the
damage mechanisms to implement local phenomeno-
logical damage criteria at the mesoscopic level into a
self-consistent elastoplastic model.

The paper is structured as follows: in Section 2 we
summarize the experimental observations at the
mesoscopic level which allows one to identify the
dominant damage mechanisms and the relevant
criteria for nucleation of damage. In Section 3 the
elastoplastic model including the above damage
criteria is presented and a condition for general failure
based on a bifurcation analysis is given. The influence
of the various input parameters is investigated and
discussed in Sections 4 and 5, respectively.

2. MICROSTRUCTURAL ASPECTS OF DAMAGE

The purpose of this section is not to give an
exhaustive description of the microstructure of the
Al-Zn-Mg alloy we consider, which can be found
elsewhere [4]. It is just intended to describe the salient
features which justify the form of the damage criteria
that has been used in the model presented in Section 3.

A general feature of the 7000 series is the existence
of a precipitate free zone near grain boundaries. The
precipitates being responsible for the high yield stress
of those alloys, there exists therefore close to the grain
boundary a “soft zone” in which plastic flow tends to
localize. As the grain boundaries are decorated by
coarse precipitates, this intense plastic flow leads to
void nucleation at the particles, and then to void
growth and ultimately to the failure of the grain
boundary. This failure can occur either in shear or in
tension depending on the dominant solicitation of the
grain boundary. As a consequence, the main damage
process in this type of alloy is ductile intergranular
failure [S]. The resulting fracture morphology is

mainly intergranular, except for some intragranular
shear failure probably associated with the final
fracture event. The overall fracture surface for a given
straining direction reflects the competition between
the imposed maximum shear direction and the
microstructural anisotropy.

The salient features from those observations,
relevant to our purpose, are summarized as follows:

(a) the damage events nucleate at grain boundaries;

(b) grain boundaries can fail either in shear or
tension. They are weaker in shear due to the
presence of precipitate free zones of limited
width [4];

(c) the final brutal failure can follow paths either
inside the grains or along grain boundaries.

In order to implement this information in the
model presented in the next section, the various scales
involved in the description must be clearly identified.
At the mesoscopic scale, the damage mechanisms are
nucleation and growth of voids at the particles along
the grain boundary surrounded by a precipitate free
zone. This mechanism has been successfully modelled
for shear failure by Embury and Nes [3]: it leads to a
criterion for the shear failure of the grain boundary
expressed by a critical strain. For the tensile failure of
the grain boundary with precipitates and a precipitate
free zone, no model is presently available, but the
classical work on ductile failure [3] can be adapted. It
would lead to a critical normal strain, which for the
tensile geometry corresponds to a critical normal
stress. At the mesoscopic scale, a grain boundary
will fail under tension when a critical normal stress
is reached, and in shear when the critical shear
strain is attained. Those are the criteria for damage
at the mesoscopic scale which have to be introduced
in an elastoplastic self-consistent scheme in order
to incorporate damage. As the final failure is both
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inter- and transgranular whereas the main damage
mechanisms were intergranular damage, it is likely
that the final ruin will occur by an overall mechanical
instability of the system. This suggests that the
macroscopic criterion for final fracture has to be an
instability criterion at the continuum level.

From those qualitative observations on the failure
mechanisms, we can therefore deduce the appropriate
form of the mesoscopic damage nucleation (failure of
a grain boundary) either in shear or in tension. The
numerical values of those phenomenological criteria
are not derived here from the underlying micro-
structure (width of a preciptate free zone, size and
spacing of the coarse precipitates, yield stress of the
grain interior). They are introduced in the model as the
reasonable form of criteria for mesoscopic damage for
this kind of alloy.

3. MODELLING

Different approaches are required to have a reliable
description of the mechanical behavior of a poly-
crystalline aggregate containing cavities. To start with,
the elastoplastic response of a polycrystal in its initial,
undamaged state is obtained by means of the
elastoplastic self-consistent (EPSC) model [6, 7]. If the
single crystal constitutive equation, the orientations
distribution and the grain morphology are known, the
EPSC model gives the instantaneous micro and macro
relationships between stress rates and strain rates.
Therefore, using EPSC along incremental time steps,
it is possible to compute whether certain critical
conditions for nucleation of intergranular cavities are
reached. When some cavities appear inside the
material, the polycrystal becomes a “composite’ with
two populations of ““particles’: grains and voids (voids
are considered particles having zero stiffness). Hence,
the EPSC model must be extended to consider the case
of such a composite material. Since voids are ““soft”
particles compared to grains, the local strain rate
is greater for voids than for grains and a gradual
increase of the relative volume of voids is expected.
Furthermore, the appearance of voids modifies
the instantaneous macroscopic behavior of the
polycrystal.

This micro-macro description of the mechanical
behavior of a damaged elastoplastic polycrystal can
be linked to a pure macroscopic criterion to estimate
the ductility of the material. Assuming that the
final stage of damage leading to fracture occurs soon
after the initiation of the unstable plastic flow,
we can use the instantaneous macroscopic state
(calculated with the EPSC model) to determine
whether the plastic instability condition is reached.
The instability analysis is performed applying the
bifurcation theory [8-11] to the case of a compressible
anisotropic material under plane-strain conditions.

The present modelling is formulated in a small strain
framework for different reasons. Firstly, the material
to be analyzed has, in general, a very sharp texture,
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that can be assumed to remain invariant after
subsequent testing. Next, the ductility of such
materials is sufficiently small after heavy cold rolling
to justify the use of small strain formalism.

3.1. The elastoplastic self-consistent formulation

The initial polycrystal is described by means
of a set of orientations with associated weights.
Each orientation represents a grain and its weight
corresponds to the relative volume of the grain
with respect to the entire polycrystal. The actual
distribution of orientations and weights depends on
the polycrystal’s crystallographic texture. A given
shape is assigned to each grain (for simplicity, an
ellipsoidal shape for every grain can be assumed).
When a stress or strain increment is imposed to the
polycrystal in a given time step, the strain-stress
increment in each grain as well as the macroscopic
behavior is calculated using the Hill-Hutchinson
elastoplastic self-consistent (EPSC) formulation [6, 7].
The EPSC model is a one-site formulation based on
Eshelby’s solution of the inclusion problem [12].
Within EPSC, each grain is considered as an
elastoplastic inclusion deforming inside an elastoplas-
tic homogeneous equivalent medium (HEM). This
HEM has the average (macroscopic) properties of the
polycrystal. At the microscopic level, the grain
behaves according to the following constitutive
relation

G = Ce(¢ — im“‘?") e))

where ¢ is the Cauchy stress rate, ¢ is the total strain
rate, C¢ is the local elastic stiffness, m* is the Schmid
tensor of the slip system s defined as

my = 3(nibj 4 nby) 2)

(n and b are the normal to the slip plane and Burgers
vector of the slip system, respectively) and y* is the
shear rate of the slip system s. The sum on s in
equation (1) runs over all the active slip systems.
Following Hutchinson [7], a given slip system s is
considered as potentially active if

me = 7° 3)
where t' is the yield stress of the system s, but it will
be considered as actually active only if the following
relation between rates holds

m’:é = 7. 4

The rate of change of the yield stress 7* is related
to the shear rate through the microscopic hardening
law

75 = Z hxx’,y',s' (5)

where s and s’ run over all the slip systems. Projecting
both sides of equation (1) on the Schmid tensor and
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using equations (4) and (35) the following relation can
be obtained

Y (Y 4+ mrCEm)y = mtCEé. (6)

5

If for given set of S active systems, it is possible to
invert the S x S matrix X defined as

X =k + mCame (7
then, the following relation holds
W= fré (8)

where
=3 X)) 'm:C 9

is a second-rank tensor associated with each active
system s. Using equations (8) and (9) in equation (1)
we obtain the microscopic tangent elastoplastic
stiffness L#

G=[Cx— Ym @i =L (10)

At the macroscopic level, the polycrystal’s stress
rate X and strain rate E are linearly related through the
macroscopic tangent elastoplastic stiffness L

¥ =LE. (11)

The interaction equation relates the deviations of
the local magnitudes with respect to the macroscopic
ones

6—X= —Li— K. (12)

The interaction tensor L is given by the expression
L=L(S'-1 (13)
where the elastoplastic Eshelby tensor S is a function
of the macroscopic elastoplastic stiffness L and the
shape of the ellipsoid (the algorithm for the calculation
of Eshelby tensor for a general ellipsoid and an
arbitrary anisotropic medium can be found elsewhere
[13]). Using equations (10)—(12). the microscopic and
macroscopic strain rate can be related through the

localization tensor A®
é= L+ L) “(L+L)E=AzE (14)

Local and macroscopic magnitudes are linked through
the following micro-macro relations

& =E
Gy =%

(15)
(16)

where { ) denotes volume average. Taking the volume
average of equation (14) and using equation (15) leads
to

(A =L (17)
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Furthermore, using equations (10), (16) and (11), we
obtain the following self-consistent equation

L = (LxA®). (18)
Let us assume that the grain morphology and the
texture of an elastoplastic polycrystal are known
(e.g. C* and mr can be determined for each grain).
Furthermore, the current local stresses ¢ (e.g. the
potentially active systems) of every grain and the
current macroscopic modulus L are known, as well. If
a macroscopic stress rate ¥ is imposed on the
polycrystal in a given time step At, the values of the
microscopic and macroscopic moduli can be updated
using the following scheme. Making a guess for the
macroscopic modulus L, we calculate the Eshelby
tensor S, the interaction tensor L and the macroscopic
strain rate E. With another guess—made on the set of
actually active systems—and using equations (7), (9)
and (10), we calculate the tensors f* and the
microscopic moduli Le for each grain. Using equation
(14), with Lt, S and L we get A®, and knowing E, we
obtain the local strain rate &. Next, the microscopic
shear rates y* [equation (8)] and the local stress rate ¢
[equation (10)] are calculated. With 4, and getting the
rate of change of the critical stress 7' through the
microscopic hardening law [equation (5)] we can check
if the condition (4) is satisfied (if this is not the case,
a new guess for the set of actually active systems
must be made). Next, the self-consistent relation
equation (18) is used for improving the guess for the
macroscopic modulus L. Convergence is reached if the
average (L&:At) coincides with the input value of L
within a certain tolerance. Finally, assuming that rates
are constant along Az, the current micro and macro
stress and strain are updated and a new time step is
applied to the polycrystal.

It must be mentioned (as stated by Hutchinson [7])
that the microscopic modulus Le is unique, even if the
set of shear rates is not. This non-uniqueness of 7* is
irrelevant whereas our approach remains within small
strain formulation (e.g. crystal rotation due to slip
activity is not taken into account). It means, in
particular, that, assuming isotropic hardening of the
slip systems, the sum of the shear rates over the active
systems is also unique, which induces a uniquely
defined variation of the critical stresses. The ambiguity
in the slip systems choice would lead to non-uniquity
concerning the grain reorientation, which is not
considered here. It is therefore necessary to find out
only one possible set of actually active systems to
determine the instantaneous response of the grain.

If some (ellipsoidal) voids appear inside the
polycrystal, they get into the same scheme as new
“particles” having L# = 0. The localization tensor for
voids is

At =14 L "L. (19)

If the shape of the voids (e.g. aspect ratio and
orientation of principal axes of the ellipsoid) differs
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from the grain shape, both the Eshelby tensor S and
the interaction tensor L are going to be different for
both population of “’particles”. Therefore, it is evident
from equation (12) that the simultaneous fulfillment of
the micro—macro relations of equations (15) and (16)
is not guaranteed in advance. Different numerical
procedures were proposed to overcome this problem
[14, 15]. Accordingly, we assume that the local strain
rate is localized with respect to an a priori unknown
reference strain rate E*

¢ = AsE*, (20)
Hence
E = (A*):E*. (21

Using equation (20) [instead of equations (14) and
(21)] within the same scheme described earlier, we
obtain an extended self-consistent relation [14]

L = (LEA®): (A . (22)

It is evident that when all the particles inside the
polycrystal have the same shape [e.g. equation (17)
holds], equation (22) reduces to the original
self-consistent equation (18).

Unlike grains, and provided the distortion of voids
can be very high, rotations of cavities must be
considered. The expression for local rotation rates is

o =11S""¢ (23)
where IT is the antisymmetric Eshelby rotation tensor
[16]. After each time step, the relative weights w¢ of

grains and voids are updated taking into account the
local volume change

W) = [1 4 tr(¢)At]wee, (24)

In this way, the total volume fraction of voids increases
after each time step.

3.2. Bifurcation theory

In this analysis, it 1s assumed that the tensile
specimen exhibits a homogeneous state of stress and
strain rates. At a given moment, the material has
reached a given state characterized by a homogeneous
macroscopic tangent tensor L. It is assumed that an
instability, if any, will occur in the form of a band,
inclined at a certain angle with respect to the tensile
direction. A perturbation in the stress rate/strain rate
fields is introduced that must fulfill both equilibrium
and compatibility relations of the band with the bulk.
The question is to know whether the perturbation can
survive or not, i.e. be non-zero. If such is the case, the
instability will be considered to lead to fracture in a
short amount of time, so that the bifurcation strain will
be identified to the ductility.

The next development follows the guidelines due to
Storen and Rice [10], Hutchinson and Neale [11], and
Canova et al. [17]. If n defines the unit vector
orthogonal to the groove, the jumps in the velocity
field are expected of the form

Av; = fi(X, = X'n) (25)

where the vector X represents the position of a point
of the sample in tensile axes (X3 being along the tensile
direction) and X, its component along n. A jump in the
velocity gradient will be written as

6AU,‘

Avy; = X, =gn (26)
where
_ 9
&= Gx. 27N

The equilibrium condition can be expressed by the
equation

AT, = ndi; =0 (28)

where T is the nominal force rate and #; the nominal
stress rate defined by

iy = 6y — VulGiy + 0y tT(€) 29)

in which the rate of Cauchy stress ¢ is obtained by
means of the self-consistent procedure. Equations (28)
and (29) lead to the following system

Axg+Bxg=0

(30)
Cxg+Dxgi=0

where the 2 x 2 matrix built up with 4, B, C and D
depends on the state of the material, i.e. its stress & and
its tangent properties expressed in the tensor L, and on
the groove angle, known through n. The detailed way
of calculating 4, B, C and D is exposed in the
Appendix. It is enough to test, for each iterative state
of the material, and for each groove angle, if the matrix
has a zero determinant for bifurcation to occur, giving
therefore an estimate of the material ductility.

4. RESULTS

The influence of texture, grain shape and micro-
structure (the latter, through the critical conditions for
void nucleation) on the elastoplastic behavior of a
damaged polycrystal was investigated using the EPSC
model plus the corresponding bifurcation analysis.
Tensile tests on samples cut out from a sheet along
different directions in the RD-ND (rolling direction—
normal direction) plane were simulated setting
different input parameters. We keep here the same
notation used in Section 1 for identifying the sample
orientation in the RD-ND (i.e. L, TB45, TB60 and
TC). Henceforth, we will use the reference frame fixed
to the sheet principal axes (x; =RD, x,=TD,
x; = ND).

The first two examples show the influence of grain
morphology: random aggregate with spherical and flat
grains. Next three cases show the effect of the different
texture components: {112}<{117) copper component,
{110}<112) brass component and {001}<010) cube
component. Finally, we show a brass-type rolling
texture with flat grains and recrystallization texture
with spherical grains. The effect of each texture
component is analyzed using a set of orientations



320 LEBENSOHN et a/.:

500 ————————1———— 71—

(a)

all cases,
no damage

450 -

TB45 & TB60, damage

stress [MPa]

350 |-

RANDOM TEXTURE
SPHERICAL GRAINS

300 L s 1 " 1 1 .
0.00 0.02 0.04 0.06 0.08 0.10

strain

MODELLING DAMAGE OF Al-Zn-Mg ALLOYS

500 ——— —

TB60, no damage
TB60, damage

450

@
o L
g.- 400 + TB45, no damage 1
% TB45, damage
2
7]
350 |- <
RANDOM TEXTURE
FLAT GRAINS
300 L 1 i 1 2 L e
0.00 0.02 0.04 0.06 0.08 0.10
strain

Fig. 2. Predicted stress-strain curves for random texture assuming: (a) spherical grains, (b) flat grains.

generated around each ideal orientation. On the other
hand, the “rolling” texture consists of 50% of brass
component, 25% of copper component and 25% of a
random background, while the “recrystallization” tex-
ture consists of 60% of cube component and 40% of
random background. The “rolling” texture is in good
qualitative agreement with the one corresponding to
the Al-Zn—-Mg sample from where the experimental
data displayed in Fig. 1 were obtained [4].

Some input data are kept fixed for all the cases,
namely: the material is elastically isotropic
(1 =25 GPaand v=0.4), {111}<110) is the active slip
mode with an initial ¢ = 150 MPa. The microscopic
hardening is assumed to be isotropic: each element of
the hardening matrix A" [see equation (5)] is set to
30 MPa (0.27°). In the case of flat grains, the principal
axes of the grain are aligned with the principal
directions of the sheet. The relation between them is
1:0.75:0.1 (RD:TD:ND).

In what concerns modelling of damage, we adopt
the following criteria based on the microstructural
observations discussed in Section 2: a set of voids is
“created” inside the material when either one of the
following critical conditions are fulfilled

2]3 =X (31)

Ey,= + E¥ (32)
where X;; and Ej; are components of the current
macroscopic Cauchy stress and strain tensors in sheet
principal axes, respectively, while X and E* are critical
shear strain and opening stress for void nucleation. The
assumed values for these critical parameters are
Zo = 480 MPa and EF~=1%. The principal axes of the
voids are initially aligned with the principal directions
of the sheet but they are flatter than the grains: the
aspect ratio is 1:0.75:0.01. The initial volume fraction
of cavities amounts to 1% of the whole aggregate.
Finally, it must be emphasized that all simulations were

carried out switching on (label “damage”) and off
(label “no damage™) the void creation criteria.

To start with, we discuss each case showing the
calculated stress—strain curves and/or some statistical
output of the simulations. Next, we compare the
dependence of yield stress and bifurcation strain with
the sample orientation predicted by the model with the
experimental data displayed in Section 1. Finally, we
investigate the sensitivity of the model to changes in
the critical parameters for void nucleation.

Figure 2 shows the stress—strain curves (up to 10%
true strain) corresponding to random texture with
spherical and flat grains. Due to isotropy of texture
and grain morphology, the “no damage” curves
[Fig. 2(a)] for all orientations almost coincide. On the
other hand, it is clear that the appearance of damage
contributes to lowering the macroscopic hardening
(this effect is observed for any kind of texture and grain
shape considered). Concerning the “damage” cases,
the critical condition equation (32) is reached in the
TB45 and TB60 simulations but—due to the tensile
sample orientation with respect to the sheet—this
shearing condition will be never fulfilled in the TC
and L cases. On the other hand, when pulling in
the normal direction (TC orientation), the critical
opening condition [equation (31)] is reached when the
accumulated strain is greater than 10% so the effect of
damage cannot be appreciated in the TC curve.

Figure 2(b) shows the case of a random aggregate
with flat grains. If we compare the “no damage” curves
with those in Fig. 2(a), it is evident that the grain shape
anisotropy is responsible for some spread in the curves
whence the predicted yield stresses and macroscopic
hardening are slightly different from one sample
orientation to another. This spread makes evident
some differences in the microscopic states. In fact, all
the different configurations of microscopic stress rates
and strain rates are linked with the corresponding
macroscopic state through equations (15) and (16) but
the orientation of the tensile axis with respect to the
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grain principal axes determines how much the local
magnitudes deviate with respect to the average
macroscopic magnitudes. Figure 3 shows the
comparison between standard deviations (SD) in some
stress rates and strain rates components (as a function
of strain) for spherical and flat grains in the TC
orientation. Some general features of these curves are:
(1) As elastic isotropy is assumed, all stress and strain
components are homogeneous up to approx. 0.5%.
Heterogeneities start when the easiest slip system in the
best orientated grain is activated. (2) Standard
deviations increase during the elastoplastic transition
and up to approx. 2%. Henceforth, they decrease and
tend to stable values. When there is no grain shape
effect, the model predicts higher deviations in stress
than in strain, keeping close to the upper-bound limit.
This feature is completely altered when grain shape
effect is taken into account. In this case, shear strain
rate ¢; becomes severely heterogeneous while the
normal stress rate in the loading direction (d3;) remains
almost homogeneous, even during the elastoplastic
transition.

The appearance of voids has a strong influence
on the statistics. Figure 4 shows the SD of some
components of stress rate and strain rate obtained in
the ““damage” and “‘no damage” cases for a random
texture with spherical grains in the TB45 orientation.
When voids are created, SD in strain rate components
suddenly increases (especially for é;, the normal
componentin the “short” direction of the grains) while
SD in stress rate decrease. These drops in SD make
evident a high difference between the instantaneous
response of new and pre-existing ‘‘particles”: voids
deform faster than grains and the local stresses
associated with voids remain equal to zero throughout
the calculation. Nevertheless, as deformation pro-
ceeds, it can be seen that the strain rate deviations in
the “damage” case tend to decrease reaching stable
values similar to those calculated in the “no damage”
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Fig. 3. Standard deviations of normal and shear stress
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case. This tendency shows that the differences between
strain rates of voids and grains decrease when the
material reaches its stable fully plastic regime.

Figure 5 shows the strain-stress curves for the
copper, brass and cube components. Some interesting
features displayed in these curves are:

(a) Great differences in yield stresses and macro-
scopic hardening appear between each case and
each sample orientation. The predicted yield
stress depends on the relative orientation with
respect to the tensile direction of the available
slip systems of a single crystal located in the ideal
orientation. For example, in the “‘copper” case,
when pulling in the RD direction (L curve), the
tensile axis coincides with the (111 direction of
a crystal in the ideal orientation. For such a
crystal, the orientation factor (1/m) of the most
heavily loaded slip systems (there are six slip
systems in that condition) is very low (i.e.
1/m = 0.2725). Whereas the actual set of
orientations is built with a little spread around
the ideal orientation, the yield condition is
reached for a very high applied stress.

(b) The macroscopic hardening for the TB45 and
TB60 orientations is significantly higher in the
“brass” case than in the “copper” and “cube”
cases, even when the assumed microscopic
hardening is the same for the three cases.
Therefore, this difference in the macroscopic
behavior is a pure texture-induced effect.

(¢)In the “brass” case for the TC sample
orientation the macroscopic stress level is high
enough to fulfill the critical condition (31) for an
accumulated strain less that 10%. Hence, as for
the TB cases, for a certain strain the initial single
TC curve splits into the “damage” and “no
damage” curves.
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Fig. 5. Predicted stress—strain curves for different components: (a) copper, (b) brass, (c) cube.

(d) The L and TC curves for the “‘cube” case
coincide due to the invariance of this texture
component with respect to an interchange of the
RD and ND direction.

Figure 6 displays the strain—stress curves calculated
for rolling and recrystallization textures. The curves
resemble those from their predominant component,
namely: “rolling” and “recrystallization™ curves are
similar to “brass” and *“‘cube” curves, respectively.
However, as will be seen immediately, some differences
appear in the predicted yield stresses and bifurcation
strains due to the effect of the isotropic background of
these textures.

Figure 7(a) shows—for all the previous cases—how
the predicted yield stresses (0.2% plastic strain
criterion) depend on the sample orientation. Like-
wise, Fig. 7(b) displays the orientation dependence
of the bifurcation strains obtained in the “‘damage”
cases while Table 1 shows the same for the
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“no damage” calculations. Caution should be
taken in interpreting the ductility (>30) reported
for some cases in Table 1, since a small strain
theory is used to predict it. Those results should
then be understood qualitatively as large ductility.
Regarding the yield stress curves it can be seen
that:

(a) As it was stated previously, there is no
dependence of the yield stress with the sample
orientation in the fully isotropic case. The flat
grain shape determines that o(L) < ¢,(TC).
Due to high SD in stress rates in the L case some
grains reach the microyielding condition for
a lower macroscopic stress level than in the
TC case. Hence, in the former case, whereas
the accumulated plastic strain grows faster,
the 0.2% plastic strain (e.g. the macroyielding
condition) is reached earlier than in the latter
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Fig. 6. Predicted stress—strain curves for different textures: (a) rolling, (b) recrystallization.
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(b) One of the mean features of the yield stress
profile of the Al-Zn-Mg sheets reported by
Solas et al. [4], (i.e. a high yield stress for the L
sample compared with other orientations, see
Fig. 1) is well reproduced in the “rolling” case.
Therefore, this kind of orientation dependence
would be mainly a texture-induced effect.

(c) The highest and lowest yield stresses are
predicted in the “copper” case for the L
orientation and in the “cube’” case for TB60
orientation, respectively. Both extremes are
determined by the relative orientation of the
tensile direction and the available slip systems of
the crystalline ideal orientation.

Concerning the predicted bifurcation
[Fig. 7(b) and Table 1] we conclude that:

strains

(a) In general, when the damage mechanisms are
taken into account, lower bifurcation strains are
predicted. Evidently, this effect is linked with the
lowering of macroscopic hardening obtained in
the “*damage’ cases.

(b) Except in the “‘cube™ and ‘recrystallization”
cases the minimum in ductility predicted for the
TB orientations is an effect closely related with
damage modelling. Otherwise, for the *no
damage” simulations, the TB45 and TB60 are
more stable than the TC and L orientations.

(c) The “brass™ case is quite stable. Nevertheless,
due to the addition of the copper component and

Table !. Bifurcation strains obtained for the “no damage”
calculations

Case L TB45 TB60 TC
Random-spherical 9.7 9.6 10.2 8.5
Random-flat 10.5 13.6 10.3 5.6
Copper 8.5 >30 >30 13.4
Brass > 30 > 30 > 30 > 30
Cube 49 1.8 14.2 3.6
Rolling 13.2 =30 > 30 >30
Recrystallization 7.2 43 9.2 7.8

the isotropic background to give the rolling
texture, the predicted bifurcation strains are
severely lowered.

(d) The predicted dependence of ductility with the
sample orientation for the “rolling” case is in
good qualitative agreement with the reported
Al-Zn-Mg sheet ductility profile (see Fig. 1).

(e) The “cube” component and, hence, the “re-
crystallization™ texture are quite instable cases
due to a low predicted macroscopic hardening
except for the TB60 simulation, where a low
macroscopic stress level determines a higher
ductility for this orientation.

Finally, we show how the selection of different
critical parameters for void nucleation affects the
results of our simulations. Figure 8 shows the way in
which the changes of the critical parameters affect the
predicted ductility profile for the random texture, flat
grains case. For different opening stresses, the only
point affected is the one corresponding to the TC
simulation. The bifurcation strain predicted for this
orientation diminishes as the critical opening stress
diminishes. On the other hand, whereas the nucleation
of voids by shearing needs higher level of shear strain,
the TB points are lifted. Therefore, when shearing
damage is not an available mechanism, the ductility
profile shows a maximum for the TB orientations.

5. CONCLUSIONS

The damage nucleation in Al-Zn—Mg alloys takes
place at grain boundaries, where hard particles act as
stress concentrators and cavity generators. Eventu-
ally, during testing these cavities will coalesce leading
to fracture. The yield stress and ductility profiles of
these alloys after large rolling deformations need to be
understood and predicted.

An elastoplastic self-consistent model has been
developed in which the constituent elements are the
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Fig. 8. Predicted ductility profiles for different critical parameters.

grains, with their crystalline orientation and mor-
phology, and the voids formed at the grain boundary.
Both grain and void shapes (and volume) are updated,
allowing the evolution of damage to be followed, and
enabling us to derive the macroscopic behavior. From
this approach the stress—strain curves and therefore
the yield stresses are obtained.

A bifurcation analysis for compressible anisotropic
solids has been developed leading to an estimation of
the duectility.

The model was applied for the cases of different well
known textures, and it is shown that the texture has a
dramatic influence on the predicted results.

It has also been applied for different grain shapes
showing a marked effect.

Typical yield stress and ductility profiles as a
function of the tensile angle could be predicted in good
qualitative agreement with the observed profiles. A
real comparison would necessitate a good knowledge
of the texture, grain shapes and the critical parameters
controlling the damage initiation.
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APPENDIX

For convenience, it has been chosen to use a “vector”
notation for tensors in the following way. Any second rank
symmetric tensor r, is transformed into the vector

(Al

The material has in its state prior to tensile testing, an
orthotropic symmetry, with respect to the sheet principal
axes, but looses at least partially this particular symmetry
during tension. The tensile samples have their flat surface
coincident with the transverse plane (i.e. normal to TD) and
the tensile axis X lies between ND and RD. Calling X: the
axis in TD, the remaining symmetry of the material, after
tensile testing, is so that the stress subspace {611,02,633,013} is
“closed”, as well as the subspaces {23} and {o12}. This means,
after Canova e al. [18], that any stress state lying inside the
first subspace will produce a strain rate not necessarily
colinear to it, but also included in that same subspace. In
particular, a pure tensile stress may induce tensile strain rate
together with shearing ¢i;. The same applies to the other
subspaces, and, in particular, a stress g2; will only induce a
shear rate éx. It can be simply deduced that in the (X1, X3, X3)
reference system the tangent tensor L must be of the form

I s /~
r = [ri ety 2,0 20/ 2]

Ly Lo Ls 0 Ls 0
Ly Ln Ln 0 Lx O
Ly Ln Ls 0 Lis O
0 0 0 Lu 0 0 (A2)
Lis Ls Ls 0 Lss 0
0 0 0 0 0 L
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where the necessary intrinsic symmetry of L has been
used.

The jumps in the rate of volume changes are expressed by
the equations

A = (1 — 2v) i‘(‘ll%) - K%—ﬁ (A3)
which can be written as
Atr(€) = 1 Ad + wAG + asAés (A4)
with the a; coefficients defined by
o= F(Ln+ Ly — Lz~ L)
oy = F(Lu+ L~ Lo~ L)
os = % F(Lis+ Las) (A5)
V2
with
F K (A6)

T (6p— K[Li+ L)

All the terms in equation (AS) are equal to zero for an
incompressible material.

The jumps in the useful components of the nominal stress
rate can be expressed as

At = HiAé + HiuAéG + HisAés
At = HaAé + Hs:Aéy + HssAés
Al = HyAl + HuAéG + HisAéds

Al = Al — gima: (A7)
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with the H coefficients defined by
Hy = Ln — L|2 + ol
Hiy=Lia— Lo+ ol
Hys= Ly + as
Hs = L/; (Lsi — Ls» + 21 Ls2)
4\/&

Hs = ‘l? (Lss — Ls; + a3Ls2)
\/’2
Hss = (Lss + a5Ls)
Hy = L3 — Ly + u[Ln + 03]
Hy =Ly — Ly — 03+ as[Lp + 03]
His = Ly + as[Ls: + 03] (A8)

Defining the quantity y = m/ns and using equation (A7) in
equation (28), the linear system expressed in equation (30) can
be written as

EalElhl W
where
A=Hu*+ y(His + Ha) + Hss
B = g*His + y(Hi; + Hss) + Hs
C = Hay® + y(Hss + Hy — 03) + His
D = y*Hss + y(Hss + His) + Hi . (A10)



