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Abstract 

The plastic properties of anisotropic polycrystalline aggregates and polyphase materials are in general non-homogeneous 
and, as a consequence, so is the local plastic deformation. We present in this work a model that describes the plastic 
behaviour of non-homogeneous materials composed of anisotropic regions (grains or phases). Our model is based on 
describing each region as a viscoplastic inclusion embedded in the effective medium represented by the other grains, and 
incorporates explicitly the grain interaction with its surroundings and the plastic anisotropy of grain and matrix. Within 
the model the grain response is coupled to the overall response of the polycrystal and the grain deformation may differ 
from the polycrystars. A characteristic of our approach is that those deformation systems with lower critical resolved 
shear stress tend to be more active, and less than five systems per grain are sufficient to accommodate the imposed overall 
deformation. 

In this work we explore the consequences and the limits of the model, and its dependence on the assumed rate sensitiv- 
ity as well. We combine the self-consistent formulation with a volume fraction transfer scheme for treating the reorienta- 
tion due to twinning, and simulate rolling textures of brass (f.c.c.), Zircaloy (h.c.p.), calcite (trigonal) and uranium 
(orthorhombic). We compare the results with experimental measurements and Taylor-type predictions, infer information 
concerning the microscopic deformation mechanisms and discuss the limits of applicability of the approach. 

1. Introduction 

Plastic deformation of non-cubic materials is often 
characterized by a highly anisotropic behaviour of the 
constituent grains and by non-negligible twinning activ- 
ity. The interaction of each grain with the surroundings 
is controlled by their relative anisotropies and dictates 
the amount of deformation that each one is going to 
accommodate. These features play an important role in 
the plastic response and have to be accounted for when 
modelling plastic deformation and texture develop- 
ment of polycrystals. 

The classical Taylor-Bishop-Hill [1, 2] assumption 
of equal strain in every grain fulfils the compatibility 
condition but amounts to an extremely rigid inter- 
action. The relaxed constraints (RC) [3] approach 
forces some of the stress components to be in equilib- 
rium and relaxes the corresponding strain components. 
Its application, however, is restricted to materials with 
highly distorted grains. It seems logical that a more 
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realistic formulation of texture development in plasti- 
cally anisotropic materials must account for the fact 
that the grain-matrix interaction is neither completely 
rigid nor fully compliant. An important contribution in 
this respect is the viscoplastic self-consistent (VPSC) 
model proposed by Molinari et al. [4], which contem- 
plates an interacting cluster of grains surrounded by a 
homogeneous anisotropic matrix. 

As for twinning, it is a highly directional mechanism, 
which reorients whole fractions of the grain and is 
accompanied by a marked stress relaxation. A rigorous 
treatment of twinning should account for: twin nuclea- 
tion and propagation; the associated stress relaxation; 
the twin morphology and its correlation with the parent 
lattice; and the reoriented twinning fractions. A treat- 
ment including all the afore-mentioned aspects is 
presently beyond our grasp and will require details of 
the grain microstructure to be incorporated. In any 
case, it can be safely stated that twinning complicates 
very much the modelling and the understanding of the 
polycrystal response. Even the relatively simple aspect 
of the twinning contribution to texture, which has been 
modelled in texture codes using approximate schemes 
that keep constant the number of orientations [5, 6], is 
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not properly accounted for when twinning makes a 
substantial contribution to texture development. 

In order to overcome some of the difficulties 
described above, we have proposed [7-9] a method for 
the exact treatment of twinning reorientation called the 
volume fraction transfer (VFT) scheme. We have also 
developed an anisotropic VPSC formulation [10] for 
dealing with grain interactions which is equivalent to 
the one-site case of Molinari et al. [4], though it 
improves upon the latter by making it easier to account 
for the matrix anisotropy in the calculations. Both the 
VFT scheme and the VPSC formulation have been 
successfully applied to the calculation of texture devel- 
opment in zirconium and zirconium alloys [7-10]. The 
aim of this paper is to extend such analysis to other 
anisotropic materials where twinning is a non-negli- 
gible deformation mode, and to discuss in some detail 
the assumptions inherent in the VFT and the VPSC 
methods. 

The plan of the paper is as follows. In Section 2 we 
briefly review the main characteristics of the VFT 
scheme and the VPSC formulation. In Section 3 we 
present calculations of rolling textures for zirconium 
(hexagonal), brass (cubic), calcite (trigonal) and a -U 
(orthorhombic), compare the predictions with the 
corresponding experimental textures and put forward a 
critical discussion of the results. Finally, in Section 4 
we draw some general conclusions about the advan- 
tages and limitations of the models presented here. 

2. Modelling twinning and grain interaction in 
polycrystai codes 

2.1. Twinning 
As we have shown [8, 9], treating the twin- 

reoriented fractions with the VFT scheme leads to 
improved predictions of experimental texture features. 
Within the VFT scheme the polycrystal is represented 
by means of a discrete set of orientatins which are kept 
fixed while the associated volume fractions are allowed 
to evolve during deformation. The Euler space (Bunge 
angles convention) is partitioned regularly into equi- 
axed cells of 10 ° by side. The orientations are made to 
coincide with the centre of the cells and a certain 
volume fraction of material is assigned to each cell 
corresponding to the initial texture. When plastic 
deformation is imposed on these representative grains, 
the resulting reorientation can be visualized as a dis- 
placement in Euler space of the point that represents 
the orientation. We assume that the cell as a whole 
displaces rigidly by the same amount and that the 
material is uniformly distributed within it. When dis- 
placed, the cell partially overlaps with the neighbouring 
cells and the volume fraction of material contained in 

the overlapped portions is subtracted from it and 
transferred to the neighbouring cells. This process of 
transference, repeated after every strain increment, 
leads to a gradual variation of the volume fraction in 
each cell and so to texture development. When twin- 
ning is active, the fraction of the grain that reorients is 
transferred to the corresponding non-neighbouring cell 
in Euler space and added to the fraction already 
assigned to the cell. 

The VFT scheme described above is applicable to 
slip and twin reorientation. It permits us to account 
exactly for every twinned fraction in every twin system 
of every grain after each strain increment, without 
having to increase the initial number of orientations. 
Within the VFT scheme a grid orientation cannot be 
regarded as an individual grain, but is representative of 
all grains having similar orientations though not the 
same deformation history. 

An aspect of twinning that is relevant to modelling 
refers to the notion of a critical resolved shear stress 
(CRSS) associated with twin activation. We analysed 
such an assumption in a recent paper [11] and con- 
cluded that a CRSS is a necessary requirement for 
twinning, although the activation may also depend 
upon other stress components in a manner that seems 
to be strongly related to the atomistic characteristics of 
the twin boundary. As a consequence, the CRSS has to 
be regarded as an effective value. Another aspect refers 
to the distinction between twin nucleation and twin 
propagation. The high stress concentrations that drive 
twin nucleation arise because of a lack of favourably 
oriented slip systems in the grain. Since these stresses 
are most probably different from the uniform stress 
that we associate with each grain in our simulations, it 
is an implicit assumption that twins have somehow 
nucleated and that the CRSS is required to induce 
propagation. This interpretation helps to explain why 
the values of CRSS for twinning which are consistent 
with the observed plastic response are not much differ- 
ent from those associated with slip. 

2.2. VPSC formulation 
Accounting properly for the interaction of the grains 

with their surroundings is of utmost importance in any 
polycrystal model. The strength of such interaction 
dictates how much plastic deformation will accom- 
modate the grain and how much the surroundings. It is 
evident that both the grain and the matrix plastic aniso- 
tropies will be directly responsible for such response 
and, as a consequence, both have to enter explicitly in 
the formulation. As discussed in the Introduction both 
the full constraints (FC) [1, 2] and the RC [3] formu- 
lations do not formally account for grain interaction. 
However, the self-consistent approach that we use in 
this work is based on the assumption that each grain 
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can be treated as an inhomogeneous inclusion 
embedded in the homogeneous effective medium 
(HEM) represented by the polycrystal. Such a formu- 
lation leads to an interaction equation that linearly 
relates stress and strain rate in the grain with the 
overall stress and strain rate of the effective medium. 
The condition that the average of stress and strain rate 
over all the grains has to be consistent with the equiva- 
lent macroscopic magnitudes makes for the self- 
consistent resolution of the problem. 

In what follows we present only the main equations 
of the formulation, which is described in detail by 
Lebensohn and Tom~ [10]. The constitutive law for the 
grain is based on a rate-sensitive criterion which 
expresses the shear rate in each deformation system as 
a power of the resolved shear stress in such a system. 
Following Hutchinson [12], we write the strain rate in 
the grain as the kinematic sum of all potentially active 
systems 

= ( 1 )  

where ~0 is a reference rate, rc" is a threshold stress and 
n is the inverse of the rate sensitivity. The constitutive 
law eqn. (1) has already been expressed in a pseudo- 
linear form where M ~!~) is the secant viscoplastic com- 
pliance of the grain, giving the instantaneous relation 
between stress and strain rate. Except for n = 1, M ~ 
depends on the applied stress, and the validity of the 
linear relation between stress and strain rate is limited 
to the precise point a ' -  t that describes the grain state. 
The tangent compliance M citg) and the backextrapo- 
lated term e0 are defined by 

()gi o' , gl}=..c.i,~;., ,, , + . ,  <=0o , '  ¢ + " (2) 

At  the macroscopic level, the polycrystal response is 
assumed to be described by a pseudolinear constitutive 
equation similar to eqns. (1) and (2). If/~ and E' are the 
polycrystal strain rate and deviatoric stress respec- 
tively, the secant and tangent relations can be written as 

E~ = M~/~c"(X')X, ' (3) 

£i = M i / ' t g ! ( ~ ' ) Z :  ' + £/J (4) 

When n is the same for all the systems, then the overall 
secant and tangent compliances are linearly related [ 12] 

M (tg' = n M  !~c '  (5) 

and the same relation holds for the single-crystal com- 
pliances M< 

Equation (4) amounts to regarding the aggregate as 
an HEM with a viscoplastic compliance M 'g and a 

backextrapolated reference strain rate /~0, whose 
behaviour is identical to the overall behaviour of the 
polycrystal. Each grain, characterized by the visco- 
plastic compliance M c(tg) and a backextrapolated strain 
rate g0 is in turn regarded as an inhomogeneous inclu- 
sion embedded in such an HEM. The problem of a 
viscoplastic inhomogeneity embedded in a homogene- 
ous viscoplastic matrix being acted upon by a uniform 
stress N' at infinity can be solved using the inclusion 
problem formalism [10, 13]. Define the deviations of 
stress and strain rate in the inclusion with respect to the 
polycrystal averages as 

ga = gk -/~k (6) 

61'=: o l ' -  ZI ' (7) 

The solution of the viscoplastic inclusion problem 
leads to the interaction equation 

i = -~t:  O' (8) 

where the colon indicates tensor contraction and the 
interaction tensor ]~/is defined as 

] ; / = ( I - S )  l : S : M ( t g ) = n ( l - S ) l : S : M ( ~ e c }  (9) 

Here S is the viscoplastic Eshelby tensor, a function of 
the shape of the inclusion and the tangent viscoplastic 
moduli, and the relation eqn. (5) was used to write the 
interaction tensor in terms of the secant compliance. 
The constitutive law eqn. (1) and the interaction 
equation (8) give ten non-linear equations for each 
grain, from which ~ and e'  can be derived. 

So far, we have related the stress and the strain rate 
in each grain with the corresponding magnitudes in the 
HEM. In doing so we assume that the viscoplastic 
moduli of the grain and of the HEM are known in 
advance, which is not the case. Therefore a self- 
consistent expression must be found from which the 
macroscopic modulus M !~c (and so the corresponding 
interaction matrix 1}~/) can be calculated. Substituting 
eqns. ( 1 ) and ( 3 ) in eqn. (8) and using the condition that 
(g} = k (where ( } indicates the weighted average over 
all the grains) leads to 

M ' ~ < = < M  c . . . .  >:(M~'~+M) ':(M'~+.bz/)} (10) 

The transcendental equation (1 O) gives the polycrystal 
compliance M and has to be added to the previous 
system in order to obtain an explicit solution of the 
problem. In practice, eqns. (1), (8) and (10) are not 
solved simultaneously for all the grains, but an iterative 
procedure is used, which is described in ref. 10. The 
procedure allows us to determine the stress in each 
grain, the grain's compliance tensor and the polycrystal 
compliance consistent with the latter and with the 
imposed strain rate/~. The deformation of each grain is 
calculated assuming that such a strain rate acts during a 
time interval At. The grain reorientation as a conse- 
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quence of such strain is calculated and the procedure is 
repeated until the final accumulated deformation is 
achieved. 

Grain shape effects modify the grain-matrix inter- 
action through the dependence of the Eshelby tensor 
upon the ellipsoid aspect ratios. They also induce a 
local rigid rotation of the ellipsoid and, as a conse- 
quence, affect the texture evolution. Both effects are 
important at high deformations, when the grains 
become more distorted [10]. Here we assume that all 
the grains undergo the same shape evolution, instead of 
keeping track of the individual grain shapes. The 
rationale behind this procedure is that the grain iden- 
tity is not preserved within the VFT scheme: the 
volume fraction associated with each cell in Euler 
space results from adding up contributions from neigh- 
bour and twinning-related orientations that have 
undergone different deformation histories. 

In what follows we discuss some interesting limit 
cases of the interaction eqn. (8) when the rate sensi- 
tivity exponent n is increased. It is important, in this 
respect, to bear in mind that the secant compliances 
defined by eqns. ( 1 ) and (3) relate strain rate with stress 
in the grain and matrix and, as a consequence, they 
have to adopt finite values. Since the tangent tensor 
M (tg) and the interaction tensor ,g/depend linearly on n 
(eqns. (5) and (9)), the stress deviations 0 must de- 
crease when n increases if the strain rate deviations 
given by eqn. (8) are to remain bounded. This amounts 
to saying that when n increases the matrix becomes 
more compliant, the grain-matrix interaction de- 
creases, and the VPSC formulation predicts less devia- 
tion in stress from the average. This tendency starts to 
be appreciable for n >20 and seems to be an intrinsic 
limitation of the tangent assumption, which seems to be 
unsuitable to represent the highly non-linear response 
of the medium in the vicinity of the inclusion. This 
dependence of the interaction equation upon n may 
also be regarded as an adjustable degree of freedom in 
the formulation (much the same as the empirical factor 
used by Berveiller and Zaoui [14] to "soften" the 
Kroner-Budiansky-Wu [15, 16] elastic interaction 
equation). In some cases (e.g. the brass deformation 
described later) one may want to take advantage of the 
previous feature and, based on physical considerations, 
increase the compliance of the matrix by using a high 
value of n. However, even for values of n as large as 60, 
such a procedure does not amount to a lower bound 
calculation: the stress deviation in the grains with 
respect to the average is about 6%, an average of two 
systems are active in each grain, and the matrix still 
accommodates the relatively large strain misfit in an 
average sense. 

Another interesting limit of the interaction equation 
is obtained when n is eliminated from eqn. (9), which 

amounts to using the secant (instead of the tangent) 
compliance to calculate the interaction tensor/lit. Since 
the secant compliance is n times smaller than the 
tangent compliance, this approximation amounts to 
considering a matrix n times stiffer than what the 
formulation would require. As a consequence of such 
empirical modification the interaction tensor ,g/ 
remains small and "scales down" stress deviations in 
eqn. (8) to give very small strain rate deviations from 
the average. The latter result is akin to what would be 
obtained under FC conditions, with the difference that 
the deformation is not exactly the same for every grain. 

As a conclusion, the VPSC formulation offers the 
possibility of tuning the compliance of the matrix by 
changing n and by using either the tangent or the secant 
moduli to calculate the interaction tensor M. This 
procedure amounts to "creating" a material with 
certain overall characteristics, and provides a powerful 
tool for relaxing the rather stringent Taylor or Sachs 
conditions, while still fulfilling equilibrium and com- 
patibility in an average sense. 

3. Simulation of polycrystai rolling 

3.1. Zircaloy-4 (hexagonal) 
Both the VFT scheme and the VPSC model were 

originally proposed to model the plastic response of 
zirconium alloys during rolling, swagging (uniaxial 
tension) and compression [8-10]. Here we present new 
predictions of texture development in cold-rolled 
Zircaloy-4 which provide further insight into the crys- 
tallographic deformation mechanisms of this material. 
Charquet et al. [17] cold-rolled thin strips of Zircaloy-4 
and obained two different textures, which they attrib- 
ute to differences in the processing conditions of each 
batch of material. They label these textures as T and L, 
depending on whether the predominant basal com- 
ponent is tilted (away from the normal direction (ND) 
of the sheet) towards the transverse direction (TD) or 
towards the rolling direction (RD)("Laminage")  
respectively. However, they do not report the process- 
ing conditions and do not attempt to explain the differ- 
ence in the resulting textures. In what follows, we 
investigate which combination of deformation modes 
leads to the observed textures. 

According to the experimental evidence [18-20], 
the following modes are found to be active at low tem- 
peratures in zirconium alloys: (a){10il}(1210) pris- 
matic slip (to be denoted pr(a)) is the most active one; 
(b) { 10 ] 2 } ( 10 i 1 ) tensile twinning (ttw) plays an impor- 
tant role; and (c) {21i2}(2113) compressive twinning 
(ctw) and/or {1011}(1123) pyramidal slip (pyr(c+a)) 
play a secondary role at low temperatures. In a pre- 
vious work we were able to explain several deforma- 
tion textures assuming the validity of the following set 
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of CRSSs: (1) rv~:~! = 1.0, r"w=l.25,  T~'"=2.5 [10]. 
Here, we are also going to consider the set (2) 
T pr~t~': = 1.0, r tt~ = 1.5, T pyr~'c+a = 4.0. In both cases, pr{a) 
and ttw are the "soft" deformation modes while either 
ctw or pyr{c + a) is the "hard" complementary mode. A 
rate sensitivity exponent n = 19 was used for the calcu- 
lations that follow. 

Deformation up to 1.0 true strain in rolling (63°/,, 
thickness reduction) was simulated using set 1 of 
CRSSs, while 0.6 true strain (45% thickness reduction) 
was simulated using set 2. The corresponding basal and 
prismatic pole figures are reported in Fig. 1, where 
they are labelled T texture and L texture. The intensity 
of the basal poles along the ND-TD and the ND-RD 
directions are plotted in Fig. 2, superimposed on the 
experimental data of Charquet et aL [17]. From the 
comparison between experimental and calculated 
textures it seems evident that the T texture can be 
explained in terms of set 1, although the calculated 
prism poles intensity in the RD is lower than the 
experimental value. The texture corresponding to set 2, 
on the other hand, resembles the L texture, although 
the predicted maximum in the ND-RD plane is slightly 
shifted with respect to the experimental one. The 
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Fig. 1. (a) (0002) and (b)(1010) pole figures calculated with the 
VPSC formulation for 1.0 true strain using rp~_~a;=l.0, 
r "~= 1.25, fete= 2.5 (T texture). (c)(0002) and (d)(1010) pole 
figures calculated with the VPSC formulation for 0.6 true strain 
using r pr<~> = 1.0 r =~w = 1.5, T p y r ( c + a )  = 4.0 (L texture). Equal-area 
projections are shown: - - ,  multiples of random orientations; 
•, intensities lower than 1. 

agreement between predicted and experimental 
textures seems to indicate that tensile twinning was 
replaced by (c +a) slip in the L-type material. We 
speculate that the different thermomechanical treat-. 
ment may have produced a smaller grain size in the 
L-type material, with the consequent suppression of 
twinning. 

At this point, it is interesting to discuss the formation 
of the maxima in the basal pole figures, in terms of the 
slip and twinning activity. In Fig. 3 we plot the relative 
contribution of each mode to the total deformation. 
First, it is evident that most of the deformation is 
accommodated through the easy prismatic slip, which 
is a characteristic of the self-consistent approach• 
Ho~ever, prismatic slip does not reorient the basal 
poles and the final texture has to be explained in terms 
of the other deformation modes. The maximum in the 
ND-.TD plane predicted for the T texture can be 
attributed to a combination of compressive twinning 
activity, which reorients the c axes which are close to 
the ND towards the TD, followed by the activation of 
tensile twins, which tilts the c axes towards their final 
stable position at 35 ° from the ND, in the ND-TD 
plane. The observed maximum in the ND-RD plane 
for the L texture can be explained in analogous terms: 
pyramidal slip tends to reorient the c axis towards the 
RD [9], and tensile twinning provides the final reorien- 
tation, placing the c axis on the ND-RD plane, close to 
the ND direction. 

Figure 3 also shows the average number of active 
systems (AVACS) per grain as a function of the defor- 
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Fig. 2. C'alculated intensities ( 
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) of (0002) poles vs. tilt angle in 
the N D - T D  and the N D - R D  planes for (a) the T texture and (b) 
the L texture• Experimental intensities reported in ref. 17 for 
Zircaloy-2 are also plotted (- - -). 
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Fig. 3. Relative contribution of each mode to the total deforma- 
tion and AVACS per grain ( - - - )  as a function of strain for (a) T 
texture and (b) L texture. 

mation. Here a system is considered to be active if the 
shear rate in it is at least 5% of the maximum shear rate 
in the grain. It can be seen that for both sets of CRSSs 
an average of about three active systems is required in 
each grain to accommodate the imposed deformation, 
with the largest contribution coming from the easy 
prismatc slip. 

Another  application of the VPSC scheme concerns 
the simulation of cross-rolling. Using set 1 of CRSSs, 
we simulated rolling up to 0.75 true strain, followed by 
a cross-rolling pass of 0.15 strain. The basal pole dis- 
tribution that results is more symmetrically distributed 
around the ND of the sheet (see Fig. 4) and resembles 
the experimental texture reported by Ballinger for 
Zircaloy-2 [21]. The latter is also depicted in Fig. 4 for 
comparison purposes. 

3.2. Brass (cubic) 
Extensive work has been done to understand the 

microscopic mechanisms that dominate texture devel- 
opment of f.c.c, materials. The existence of two types of 
f.c.c, rolling texture is well established, each one corre- 
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Fig. 4. (a) (0002) pole figure measured in cross-rolled Zircaloy-2 
[21]. (b) Predicted (0002) pole figure after 0.75 rolling followed 
by 0.15 cross-rolling, using r pr<">= 1.0, "t -tTw= 1.25, rCtW=2.5. 
Stereographic projections are shown: - - ,  multiples of random 
orientations;-, intensities lower than 1. 

sponding to materials with high or low stacking fault 
energy, known as copper texture and brass texture 
respectively. Here we will show how the VPSC scheme 
can be adapted to reproduce some of the observed 
microstructural features that are responsible for the 
brass texture. 

The correlation between texture development and 
microstructure in rolled f.c.c, materials has recently 
been reviewed by Leffers and Jensen [22]. They point 
out that, in brass, {111}(112) twins form as very thin 
lamellae which are not homogeneously distributed but 
cluster to form bundles, the bundles exhibit a unique 
orientation in a given grain, parallel to one plane of the 
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[111} family. While the lamellae do not contribute 
appreciably to texture because they involve a small 
volume fraction of the grain, from the microstructural 
point of view they seem to play a major role in texture 
development. Grains containing this kind of cluster 
deform predominantly by {111}{1 ]0) slip on only one 
slip plane, namely the {111} plane parallel to the 
clusters. A possible explanation is that the bundles are 
generated at the beginning of deformation, and that 
they influence the subsequent response of the grain. 
Within the framework of our model we assume 
uniform stress across the grains and we can only 
account for the microstructure in an "effective" way, 
through the parameters upon which the scheme 
depends. In this particular case the experimental 
evidence indicates that the tendency is for the grains to 
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Fig. 5. ( a ) (111)  and (b ) (200 )  pole  figures measu red  in rolled 
(70-30)  brass  I23]. (c) (111) and (d) (200) pole  figures p red ic ted  
after 2.0 t rue strain using r ~p = 1.0, r twin = 1.0 and n = 19. (e), (f) 
Same using n = 47. S te reographic  pro jec t ions  are shown: - -  
mult iples of  r andom o r i en t a t i ons ; . ,  intensit ies lower  than 1. 

accommodate deformation mainly through a conju- 
gated slip-twin pair. This suggests, according to the 
discussion in Section 2, that we should use a high value 
of the rate sensitivity exponent n in our calculations, in 
order to reduce the average number of systems 
required to accommodate the imposed deformation. 

We simulated rolling of brass up to 2.0 true strain 
(86% thickness reduction) assuming / l l l } ~ l i 0 )  slip 
and 1111} (112) twinning as active deformation modes. 
The CRSSs were taken to be the same for both modes 
and exponents n = 19 and n = 47 were used. Figure 5 
shows the corresponding {111] and {200} pole figures, 
together with typical brass experimental pole figures 
[23]. The texture obtained using n = 47 shows a better 
agreement with the features of the experimental 
texture, but the main difference between the two cases 
is in the mode activity leading to such textures (Fig. 6). 
The AVACS is 3.2 for n=  19, while for n = 4 7  an 
average 2.1 systems per grain suffice to accommodate 
deformation. Besides, it is important to remark that in 
both cases the volumetric effect of twinning reorienta- 
tion is not important: for n = 47 and a strain increment 
of 1%, the twinned volume fraction is 0.7% of the total 
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volume in the first step, and decreases to 0.25% for the 
last deformation step. 

A more revealing statistic is obtained for the case 
n = 47 if one discriminates between the combinations 
of active systems per grain, where a system is consid- 
ered to be active if its shear strain is at least 5% of the 
maximum shear strain in the grain. Over a total of 2916 
orientations, in about 60% of them there is either one 
slip, or one twin, or two slip, or two twinning systems 
active, throughout deformation. In the remaining 40% 
of orientations, one slip and one twinning system are 
active simultaneously. Of those, 60% are conjugated 
pairs in the same shear plane, although only 25% 
should be found if all the slip-twin combinations were 
equally probable. Such correlation seems to be in 
qualitative agreement with the experimental observa- 
tion, and suggests that the lower matrix stiffness asso- 
ciated with the VPSC method when n is large provides 
a valid representation of the plastic response of 
materials with low stacking fault energy. Similar results 

were obtained by Leffers and Jensen using a modified 
Sachs model [22]. 

3.3. Calcite (trigonal) 
Calcite is a material with trigonal crystal structure, 

and whose plastic behaviour is relevant to geological 
applications. Calcite is an appropriate material for 
testing both the VFT scheme and the VPSC formula- 
tion, because of its high plastic anisotropy and because 
it twins profusely at room temperature. The active 
deformation modes in calcite are: {0118}(0441) twin- 
ning (to be denoted as e ÷ ), {10 ] 4} (202 ]) slip (r- ,  while 
the opposite systems are denoted r ÷) and 
{01i2}(202i) slip (f-). Figures 7(a) and 7(b) show two 
experimental textures of calcite deformed in plane 
strain compression up to 0.5 true strain (40% finite 
shortening), measured at 100°C and 400°C respec- 
tively [24]. Calcite presents a non-negligible strain rate 
sensitivity and for the purpose of the calculation we 
assumed an exponent n = 9 and two sets of CRSSs: (1) 

t t 

(a) (b) 

r 

(c) 

Ji  

• . . - . j . ~ - ~ . ~ . - -  . . 

Fig. 7. (0002) experimental pole figures for calcite deformed in pure shear [24] at (a) 100 °C and (b) 400 °C. (c) (0002) pole figures 
• • • r -  r e • r -  r + f -  predicted after 0.5 true strata usmg CRSSs 1: r = 1.5, r = 1.0, r =0.2. (d) Same using CRSSs 2: r = 1.5, r = 1.0, r = 1.0, 

¢ +  . . . . . . . .  

r = 0.2. Equal-area projecuons are shown: , mulUples of random orientations; •, mtensmes lower than 1. 



R. A. Lebensohn, C. N. Tom# / A self-consistent viseoplastic model 79 

1.0 ike+twin 

0.8]  r+,r-slip - 

0 . 6 @ ~  

_ 0.4 ........ -- 

uJ~ 0.2 rY 

0 . 0  T . . . .  I 0.00 0.25 
(a) TRUE STRAIN 

4 
) 

3<> 
>o 2 60 

1 

0 
0.50 

> 
I--- 
O 
. <  

I-- 

5 
Ld 
Or" 

1.0 5 

0.8 t 4 

0.6 . . . . . . . . . . . . . . . . . .  3 > 

0"42 r+,r-slip f-slip "2 ~U3 

0.2- 1 
e+twin 

. . . .  ~__a---s--e-- c l 0 
0.0 

0.00 0.25 0.50 
(b) TRUE STRAIN 

Fig. 8. Relative contribution of each mode to the total deforma- 
tion and AVACS (---)  as a function of strain, for the calcite 
case: (a) CRSSs l; (b) CRSSs 2. 

r -  = e + T r  = ~ r  ~ r 1.0, r r -=l .5 ,  r =0.2; (2) - 1.0, 1.5, 
f -  e + r = 1.0, r = 3.0. The predicted textures are plotted 

in Figs. 7(c) and 7(d), while the relative system activity 
and the AVACS are depicted in Fig. 8. It can be seen 
that the substantial differences in the experimental 
textures at different temperatures can be explained in 
terms of a hardening of the e + twinning and its replace- 
ment by f -  slip at high temperatures. These results are 
similar to those predicted using a Taylor approach [24] 
and an "isotropic" self-consistent approach [6]. We 
attribute the similarity between the predictions of 
different models to the scarcity of deformation modes 
present in each grain which, by reducing the choice of 
active systems, leads to similar reorientations in all the 
cases. However, the difference between the VPSC and 
the FC approaches is the system activity leading to 
those textures. Within the VPSC formulation fewer 
systems are required and the softer systems contribute 
more to deformation (see Fig. 8). 

3.4. a - U  (orthorhombic) 
Uranium is a low symmetry material (orthorhombic) 

with highly anisotropic thermomechanical properties. 

It deforms through a variety of slip and twinning sys- 
tems [25], which greatly complicates the interpretation 
of the experimental textures and the theoretical 
modelling. The analysis of the topological domains of 
CRSSs, which proved to be very useful in linking active 
systems with associated textures in hexagonal [9] and 
trigonal materials [24], is less effective in this case. We 
have tried several combinations of systems and CRSSs 
but a systematic study of the plastic characteristics of 
this material would be required which is still lacking. 
Besides the rolling simulations done by Morris [26], 
texture development of a-U along different strain 
paths has been calculated by Rollett using an FC code 
in combination with a VFT scheme for treating the 
twinning reorientation [27]. The set of deformation 
modes and CRSSs used in ref. 27 a r e :  r °~°ilm°isiip = 0 .5 ,  
T' 111))1110 slip = 1.0, T( I)01 '.1100[slip = 1 . 0 ,  T1130 1310twin = 0.2, 
T' 172i1312 t~,in = 1.0, r(J 12 13721twin = 1 . 0 ,  T ilt)71512ltwin = 2.5. 

Here we simulate rolling up to 2.0 true strain, using the 
same set of CRSSs and the VPSC formulation. We 
compare our results against experimentally measured 
textures [26] and the predictions of the FC scheme. 
The results are reported in Fig. 9 in the form of (001), 
(010) and (100) pole figures. It can be seen that both 
predicted textures reproduce some of the experimental 
features, but neither the FC nor the VPSC formulation 
predicts the maxima corresponding to the texture 
components (201)[010] and (263)[310]. 

As in the calcite case, the final FC and VPSC 
textures are not substantially different from each other, 
but the relative activity of the deformation modes is, as 
can be judged from Fig. 10. In the FC case, the three 
hardest twinning modes (specially (197)(512>, together 
with (112) (372) and ( 172) (312)) are more active than 
the soft twinning mode (130)(310). In the VPSC calcu- 
lation, in contrast, the higher activity corresponds to 
the slip systems, and the twinning modes play a less 
relevant role, with the exception of the soft (130)(310) 
at the early stages of deformation. 

4. Conclusions 

We present in this work a comprehensive aniso- 
tropic VPSC formulation and apply it to the calculation 
of rolling textures in materials with different sym- 
metries and plastic characteristics. Since all of the 
materials considered present twinning, we combine the 
self-consistent formulation with a VFT scheme. In all 
the cases the predicted textures compare well with the 
experimental ones. For Zircaloy, in particular, we are 
able to interpret qualitative differences in experimental 
textures in terms of different deformation systems 
being active. This shows how ths method can be used 
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to infer information about the microstructural 
parameters. 

We stress in this work the importance of comple- 
menting the pole figure analysis with an analysis of the 
deformation modes activity. A characteristic advantage 
of the VPSC formulation over the classical polycrystal 
models is that systems with lower CRSS tend to accom- 
modate more deformation than systems with high 
CRSS: this is achieved without sacrificing compati- 
bility, which is built in the model in an average sense. 
As a consequence, an average of three systems per 
grain suffice to accommodate deformation, the single- 
crystal yield surface does not have to be closed, and the 
resultant textures show more spread. 

The main feature of self-consistent models is the 
existence of an interaction equation which linearly 

links stress and strain rate in each grain with the equiv- 
alent magnitudes in the polycrystal. The coupling 
depends upon the relative anisotropies of grain and 
matrix, and also upon the rate sensitivity exponent 
assumed. Our formulation is based on a tangent visco- 
plastic approximation and in Section 2 we show that it 
gives a more compliant matrix when n increases, so 
resembling the result of a lower bound approach. We 
also show that if the secant (instead of the tangent) 
compliance is used, a stiffer matrix (and so an upper- 
bound-type result) is obtained for large n. Since both 
the tangent and the secant approaches are just a way 
around a highly non-linear problem, this work may be 
regarded in one of two ways: either as relevant to a 
fictitious material with well-defined properties similar 
to those of the real material, or alternatively as relevant 
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[28] and Turner  and Tom6 [29]. Another  missing 
feature is the fact that, while the reoriented fractions 
are subsequently treated as independent  of the grain 
where they originated, we are aware that the presence 
of twins may influence the subsequent plastic response 
of the grain. The  afore-mentioned limitations may be 
responsible for the discrepancies between the pre- 
dicted and the experimental  textures in the case of 
a -U.  As a partial conclusion, we believe that the pres- 
ent modelling of twinning in polycrystal codes is still 
crude and that there is room for improvements .  
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Fig. 10. Relative contribution of each mode to the total deforma- 
tion as a function of strain for the a-U case using (a) the FC and 
(b) the VPSC formulation: o, (010)[100]slip; n, (110)[110]slip; 
o, (001)[100]slip; <>, (130)[310]slip; v,  (172)[312]slip; 
+, (112)[372] slip; ×, (197)[512]slip. 

to the latter with an uncertainty introduced by the 
linearization of the constitutive behaviour. Sometimes, 
such an "effective" representat ion may be suppor ted  by 
experimental  evidence, as in the case of brass discussed 
in Section 3.2 of this work. The  VPSC scheme is 
appealing in this respect because it provides a formal 
f ramework  to modify the strength of the interaction, 
where the relative stiffness of grain and matrix is still 
accounted for and where stress and strain averages are 
kept consistent with the overall boundary  conditions. 

A word is in order  at this point concerning the treat- 
ment  of twinning. Although the V F T  scheme repre- 
sents an improvement  in the t reatment  of the twinned 
fractions and can simultaneously tackle the reorienta- 
tion due to slip, there are some aspects of twinning 
which are not addressed by the present  formulation. 
One  of them is the stress relaxation associated with 
twin activation: in materials that do not twin, once a 
grain starts yielding, the stress remains on the yield 
surface and most  of the subsequent deformation is 
plastic. When  twins are active, however, a stress relaxa- 
tion takes place that modifies substantially the stress in 
the grain and its interaction with the matrix. Account-  
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