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ABSTRACT

The present work is concerned with the comparison of a visco-plastic self-consistent
(VPSC) approach and a new purely kinematical scheme called Grain Axes Coincidence Model
(GACM). Both formulations are conceived for modeling plastic deformation and texture
development of polycrystals and lead to spin equations for each grain that make evident the
interaction between grain strain and a homogeneous effective medium strain. The interaction
term is linear in the difference between both strains with a coefficient that is, for the VPSC model,
an integral function of the anisotropic visco-plastic compliances and some form factors related
with the current degree of deformation. Meanwhile, the coefficients of the GACM are, as
expected, only function of the principal axes of the ellipsoid representative of the grain shape.
The comparison of both kinds of interaction terms will be presented for rolling and torsion tests in
cubic and hexagonal materials.

INTRODUCTION

In the field of texture development the influence of the grain shape has been recognized
and modeled by many authors [1-3]. Each grain must keep compatibility with the matrix
guaranteeing coincidence of shape and size with the hole lodging the grain. It means that the
principal axes of the ellipsoid representative of the grain must be collinear with the principal axes
of the ellipsoid representative of the hole. The models based in the Taylor hypothesis, assuming
equal deformation for each grain and equal to the macroscopic strain, do not follow the shape
and orientation of such ellipsoids. The Relaxed Constraints (RC) models approach the problem
allowing some of the strain components to be different from the average when the grain is far
from the initial spherical shape. The self-consistent models approach the problem right from the
beginning and they will be briefly discussed in the second section. In the present work we
compare a VPSC model with a pure kinematical model named Grain Axes Coincidence Model
(GACM) for modeling both the plastic deformation and texture development in polycrystals. The
GACM model has the Taylor model as a limit for spherical grains and it is related with the RC
model in ways that will be discussed.
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THE GRAIN AXES COINCIDENCE MODEL

In this model the grain is considered as part of a continuum media subject to finite
deformations [4]. The deformation gradient F can be decomposed in two components: a) Proper
plastic deformation reached by activation of crystal slip systems FP. b) Elastic deformation and
"any other cause" for exira reorientations F They can be decomposed, by the polar
decomposition, in the product of a pure rotation matrix R and a pure stretching V.

F=FFF =R*"V'R"V" 1)

The elastic deformation is regarded negligible compared with the plastic one and it does
not appreciably reorient crystal or grain axes. R can be differentiated by the chain rule and
transposed:

R=R“R°+R’ ‘R’ @
RT — RPT . R*T

that leads to

Q=RR =R'RT+R"RPRT R =Q+R" O RT ©

where Q is the time derivative of the orientation called "spin". The magnitudes representing
Q-spins can be written in terms of the antisymmetrical component of its velocity gradient and
certain functions o of the eigenvalues 2; , representative of the eliipsoid axes, multiplying the
component of the strain rate tensor. Rearranging we can obtain an expression slightly different
from the usual in Taylor models. The extra term depends on the grain deformation and the
difference between the average strain rate and the grain strain rate.

. Ai— A
Q= Q= Qf = wi—wj - A+ J_(Dij_dli?) =wi—wi —oy(Dy-df) @
iTA

The O coefficients are identically null for spherical grains, no matter how large the
differences between the strain rates are. They grow asymptotically from zero to one for large
deformations. This is the expected behavior in RC models for some components. The anisotropy
of the matrix is not taken in account but only the grain anisotropy, through the slip systems
activated. A similar equation is obtained for the SC models.

THE VISCO-PLASTIC SELF-CONSISTENT MODEL
The viscoplastic equation relating the plastic velocity gradient with the deviatoric stress
applied to each crystal (grain) can be written:

d = Yoimf(m,-s c}/ti)" (5)
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summing over all the slip systems. m; is the Schmid tensor, ck' is the deviatoric stress in

each grain, 1¢ is the critical stress, 7° is a normalization factor and n is the inverse of the strain
rate sensitivity of the material (n>>1). The single index magnitudes dip , oj' and mjs are the
vectorized form of dijp, ojj and mijs. Equation (5) can be rewritten as:

4 =[7° S (mme /D (mee /1) o, =M (o) o, ®)

where MC is the grain viscoplastic compliance modulus. An analogous pseudo linear
relation can be written at the polycrystal level:

Di=M;(Z)%; (7)

where Z'; and Dj are the deviatoric stress and the velocity gradient in the polycrystal in
the vectorized form and Mij is the polycrystal viscoplastic compliance modulus. The equations (6)
and (7) are the constitutive equations of an inclusion and a viscoplastic matrix. Applying the
Eshelby formalism for the resolution of the inclusion problem we obtain the interaction equation:

Di_diD:ai:_Mijaj:_Mj(Ei_Gr ®

where & and d are the deviations in stress and velocity gradient of the grain with respect

to the macroscopic magnitudes and M is the interaction tensor defined as N(I— S)™'SM. The

viscoplastic Eshelby tensor S is function of the macroscopic modulus M and of the grain shape.
The self-consistent equation is:

M =< ME(M° + M)"' (M + M) > ©)

The SC formulation can be used for texture development modeling [5]. An incremental
step of deformation is imposed to a polycrystal composed of a discrete number of ellipsoidal
grains, fixing a velocity gradient D in a time interval At. A first try guess is proposed for the
stresses in each grain and iteratively the solution of equation (9) can be obtained. Each grain can
be reoriented by:

Qi = wij— WS — IMiji Siarmn(Drmn = ) (10)

where we have gone back to the tensorial notation and Wij is the antisymmetrical part of the

macroscopic velocity gradient, M is the antisymmetrical part of the distortion due to plastic slip

and the third term is the local spin. The tensor Il is the antisymmetrical complementary
component of the symmetric Eshelby tensor S. Its product by $-1 is a tensor that linearly

combines the differences in strain rates. They are a set of interaction coefficients evaluated
numerically in each deformation step.
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RESULTS

Fig. 1 shows the evolution of the oj; parameters proposed by the GACM for rolling up to a
Von Mises equivalent deformation of 2.00. The rolling, normal and transversal directions are
assumed to be along the axis 3, 1 and 2 respectively. This model, being purely kinematical,
cannot be used to calculate the grain reorientation without an additional constitutive equation
connecting the spin with the stresses or, alternatively, allowing the calculation of the strain rate
differences. The asymptotic evolution of the coefficients becomes evident as the accumulated
deformation increases.

The SC simulations were performed starting from a polycrystal with equiaxed grains and
random distribution of orientations. Rolling deformation was simulated for copper polycrystal up
to a Von Mises equivalent strain of 2.00. Equation (10) shows that the coefficients potentially
significant are more than one for each spin component. Nevertheless, it is numerically observed
that the coefficients presented in Fig. 2, which correspond one to one to the kinematically
calculated coefficients, are at least two orders of magnitude higher than the others. Their
behavior is also similar to the behavior of the o coefficients except because they approach
faster to the asymptotic value. Fig. 3 shows the evolution of the standard deviations (SD) of the
respective strain rates. They represent the average differences between the strain rates of the
grains and the polycrystal strain rates. The component SD(d{3) grows with the deformation stage
and it is the most important one.

The kinematical coefficients for torsion are shown in Fig. 4. They evolve slower than in
rolling because the shape does not change at the same pace. A similar VPSC simulation was
performed for torsion in copper and the coefficients are shown in Fig. 5. They evolve similarly to
the rolling coefficients but closer to the kinematical ones.

A VPSC simulation was performed for rolled zirconium (hexagonal symmetry) at high
temperature (no twinning has been considered) and the coefficients are shown in Fig. 6. They
behave similarly to the kinematical ones keeping the other coefficients close to zero.

The VPSC model also takes into account the anisotropy of the matrix. The coefficients
include the influence of such anisotropy simultaneously with the shape influence. The shape
evolution can be turned off in the code like if the grains were kept spherical during the
deformation process and allowing just for crystal reorientation and consequent texture evolution.
The anisotropy influence can be extracted and it should be complementary of the kinematical
shape influence. Fig. 7 shows the calculated coefficients for rolled copper without grain shape
evolution. At low deformation they show the right evolution to be complementary of the
kinematical coefficients. The disagreements at higher deformations with the simple subtraction of
Fig. 1 and 2 can be attributed to the fact that the grains, deprived of shape evolution, reorient
differently from the shape evolving case and the consequent anisotropy is different. The
evolution of anisotropy can also explain the differences between copper in rolling and torsion.
The anisotropy evolves not only different but also slowly in torsion tests than in rolling because
the texture reaches lower strength for the same deformation. For hexagonal crystal symmetry the
coefficients are also strongly influenced by the anisotropy.

CONCLUSIONS

It has been shown that a pure kinematical model can give a better insight about the
reorientation mechanisms in texture development. It does not provide the kinetics of crystal
reorientation and an extra constitutive relationship has to be used in order to calculate the grain
strain deviation. Self-consistent models are suitable for that purpose and simultaneously they
provide the values of the interaction coefficients, which aiso include the anisotropy influence. The
machine time consumption could be reduced by using the kinematical coefficients but further
tests are necessary to check its influence in the final texture. For RC approaches the GACM
model provides the value of the coefficients, at any deformation step, with no divergence
problems for spherical grains.
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Fig. 4: Interaction coefficients calculated by GACM for torsion.
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Fig. 6: Interaction Coefficients for initially spherical grains.

VPSC calculation for zirconium rolled at high temperature.
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Fig. 5: interaction coefficients calculated by VPSC model.
Torsion in copper with initially spherical grains.

10 T T T T T T T T T
08 J
064 ]
04 a
_a-a-bAbAbA s
024 A-o-b-b-B-B K
“A-a-b
0.09-0-0-0-0-0-0-0-0~0-0-0~0-0—0-0-0~0-0~0-T
02§ 7DAD‘D“U—D<D—n»n o) q
-1 ©-8-0-g.g_g_g-0-o7"
049 | =BTy S s T
-1
06] | O MyaS s g
-1
0sd | T2 MawS .
-1.0 T 4 T T T T T T T
00 02 04 06 08 10 12 14 16 18 20

Von Mises equivalent deformation.

Fig. 7: Interaction Coefficients for rolling without shape updating.
VPSC mode! for spherical copper grains.



