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ABSTRACT

In this work we are concerned with the study of the stress state associated with
the activation of twinning in elastically anisotropic materials, in an attempt to
achieve a better understanding of the contribution that twinning makes to plastic
deformation and to texture development during forming operations. The assump-
tion usually made is that twinning is activated by a critical resolved shear stress on
the twinning plane and in the twinning dircction, although the experimental
evidence suggests that twinning depends in a more complex way upon the other
stress components present in the medium.

Here we use a continuum approach to mode! the twin lamella as a flat inclusion
of elliptic section embedded in an elastically anisotropic medium being acted upon
by externally applied stresses. We calculate the Gibbs free energy of the system as
the sum of an elastic term associated with size and inhomogeneity effects, and a
surface energy term, associated with the twin—matrix interface. The minimization of
the total energy with respect to the dimensions of the lamella is relevant both to twin
nucleation and to twin propagation; in the former case, it gives the condition for
when twin nucleation is energetically favourable with respect to a homogeneously
strained matrix. In the latter case, it gives the condition of instability of an existing
twin embryo, much the same as the Griffith’s criterion does for crack extension.

We derive explicit resuits for the twinning systems active in silicon-iron, calcite
and hexagonal zirconium, titanium and zinc. We find that, although the critical
condition for twin activation depends on all six independent stress components, the
resolved shear dominates and the influence of the other stress components is about
two orders of magnitude weaker. We conclude that any substantial dependence of
twinning upon stress components other than the resolved shear must come from the
dependence of the twin-boundary energy upon stress. Possible atomistic mechan-
isms which may be influenced by a general stress field are discussed qualitatively.

§ 1. INTROCDUCTION

Twinning is an important deformation mechanism in some cubic and in most non-
cubic materials. In h.c.p. crystals, where deformation by slip along some directions
either is not possible or at least requires very high stresses, twinning plays a
predominant role in maintaining the ductile behaviour of the polycrystal. Our interest
in twinning stems from the necessity of modelling the elastoplastic and large plastic
deformation of non-cubic materials. In a recent paper (Tomé, Lebensohn and Kocks
1991} we addressed the problem of accounting properly for the contribution to texture
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of the twinned fractions in each grain. Here we address another aspect of twinning
which is also relevant to modelling, namely the stress state required to nucleate and
propagate twinning. . .

It is widely acknowledged that slip is activated by means of a critical resolved shear
stress (CRSS) in the slip plane and in the slip direction. This CRSS can, to a large extent,
be regarded as independent of the other stress components and of the hydrostatic
pressure. For the case of twinning, although a CRSS in the twinning plane k, andin the
shear direction 5, seems to be a necessary condition for activation, the experimental
evidence indicates that the value of the CRSS depends upon the other stress
components present in the material. In an early review, Cahn (1954) concludes, after
analysing compression experiments done on rutile, dypside and baride, that twinning is
favoured by the superposition of hydrostatic stress. Turner, Griggs and Heard (1954),
on the other hand, find that pressure tends to inhibit the twinning activity in calcite
single crystals. Priestner and Louat (1963} performed tensile tests in coarse-grained
silicon steel samples cut from a sheet with a strong (110){001) texture and observed
that the CRSS for activating {211}(111) twins is a function of the orientation of the
tensile axis with respect to the texture component. Compressive tests performed by
Blahovec(1972) on single crystals of silicon—iron also provide evidence of a dependence
of the CRSS on the orientation of the crystals. '

Less direct evidence of the dependence of twinning activation upon stress
components other than the resolved shear is given by careful measurements of the
evolution of internal stresses during mechanical loading of Zircaloy bar reported by
MacEwen et al. (1988); at a stage of deformation that coincides with the initiation of
twinning, they observe a marked relaxation of the stress normal to the basal planes.
One way to explain such relaxation is to assume that twinning activation relaxes not
only the resolved shear but also the stress component normal to the twinning plane.
Atomistic simulations of twin boundaries performed by Serra and Bacon (1986)
indicate that there is a variation in lattice spacing of the order of 0-3%; across and within
a few atomic planes parallel to the twin boundary. If twinning tends to distort the plane
spacing, then the logical conclusion is that twinning may be enhanced or inhibited by
superimposing a normal stress to the shear component.

A better understanding of twinning and its related mechanisms, at both the
continuum and the atomistic levels, is required in order to interpret the evidence
presented previously. We concentrate in what follows on the study of the elastic aspects
of the problem and, specifically, on the ‘size’ and ‘inhomogeneity’ effects associated with
the volumetric contributions of the twin to the free energy of the system. The size effect
is due to the plastic shear strain associated with twinning and the inhomogeneity effect,
which is included by the elastic anisotropy of the crystal, originates in the difference
between the elastic constants of the matrix and of the twinned region. The criterion that
we use to minimize the energy is equivalent to that used by Lee and Yoo (1990}and Yoo
and Lee (1991) for dealing with the problem. By using a numerical (as opposed to an
analytical) formulation we derive an explicit relation between the stress components
and the critical dimensions of the twin lamella, valid for nucleation and for
propagation. No attempt is made here to describe accurately the free energy of the
twin—matrix interface or its dependence on the stress components.

Yoo (1979a, b) was the first to address the size and the inhomogeneity effects in an
approximate way. He proposed to treat the twin lamella as if it were a slit crack in an
elastically anisotropic medium, being activated by a-mode II shear state. Using the
formal treatment of Stroh (1958), Yoo replaced the ‘misfit strain’ by a continuum
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distribution of dislocations and derived explicit expressions for the free energy of such a
system subjected to externally imposed stresses for the case of hexagonal symmetry.
The condition for twin propagation is obtained applying the Griffith’s criterion of
energy extrema to the slit crack, which leads to the following relation between the
critical stress components:
Gl
692(B11092+ By 509,)=—, (1)
Ty

where a, is the width of the twin lamella, regarded as an infinite slit parallel to the
twinning plane k,, of; are the critical values of the stress components, B; is the
symmetrical compliance tensor defined by Stroh (1958) and G! is the ‘twin extension
force per unit length’, analogous to the ‘crack extension force per unit length’ for a mode
II crack. Since eqn (1) is formally derived from the interaction between a crack and a
stress field, Yoo mentioned two important differences which may invalidate the twin-
crack analogy: (a) while the free boundary of the crack is unable to withstand shear
stresses, it is possible to transmit stress across the ‘welded’ twin crystal interface. In
other words, while the lamella is represented as an inclusion with elastic stiffness Cfy; of
the same order as that of the crystal, the crack is equivalent to a void with C¥,,=0; (b)
although twin lamellae exhibit a lens shape of low aspect ratio, they are not infinitely
flat in one dimensions and infinitely long in the other, as implied by the assumption of
the slit crack. As a consequence, it may not be realistic to model it as an infinite flat
cylinder, and an oblate ellipsoid seems to be closer to the actual shape for modelling
purposes.

In the present work we improve upon the twin-crack analogy and treat the lamella
as an elastic inclusion of ellipsoidal shape embedded in the elastically anisotropic
medium represented by the crystal. Making use of results valid for inclusions in elastic
media, we calculate the stress in the inclusion and the free energy of the system when a
general stress field is externally imposed on the crystal. From these expressions we
derive conditions for twin nucleation and twin propagation.

§2. MODELLING THE TWIN LAMELLA

The twin lamella is a region of the grain which has undergone a plastic shear
characteristic of the twin system under consideration and which has reoriented with
respect to the parent crystal. As a consequence, the elastic constants of the twinned
region differ from those of the matrix when both are referred to the same set of axes. In
this work we assume that the lamella is a flat ellipsoid and use the standard Eshelby
formalism for elastic inclusions to analyse the elastic response of such a system. The
main axes of the ellipsoid are taken as g, parallel to the shear direction #,, a,
perpendicular to the twinning plane x, and a; perpendicular to the other two axes (see
fig. 1). We shall characterize the ellipsoid by the length a, of the main axis-and by the
aspect ratios y,=a,/a; and y;=as/a,. The experimental evidence and the results
derived in this work indicate that y,<«1. As for the third aspect ratio, although the
derivation that follows is completely general, for the calculations presented here it is
given the value y;=1, which corresponds to a lamella with the shape of an oblate
spheroid, and y; = oo, which defines an infinite elliptic cylinder and allows us to test the
twin-crack analogy.

In what follows we.shall use the main axes of the ellipsoid, defined by the unitary
vectors associated with the twinning system, as in the reference system (see fig. 1). We -
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Fig. 1 i

twinning plane

Position of the twinning plane k,, the twinning direction n, and the axes of the ellipsoid
representing the twin lamella, with respect to the crystal axes.

shall denote by C¥,; and C,j, the elastic constants of the lamella and of the parent
crystal respectively, referred to this set of axes. When expressed in this system, the
plastic deformation associated with the twin adopts the simple form

€mn =%s(5m 151'12 + 5m25n1)s (2)

where s is the characteristic shear of the twinning system under consideration and 6, is
Kronecker's delta. Since our interest is to analyse the effect of stress upon twin
activation, we shall assume a uniform stress ¢° applied to the crystal, which would
induce a uniform strain €} = Ciz;0p, if the medinm were homogeneous. The presence of
the lamella modifies the otherwise homogeneous stress and strain and induces the size
effect, associated with the plastic transformation ¢?, and the inhomogeneity effect,
associated with the difference between the elastic constants of the domain occupied by
the lamella and of the medium.

Although the elastic treatment of an inhomogeneous inclusion of ellipsoidal shape
is standard and can be found in textbooks (Mura 1987), it will help in understanding
what follows to review the main results. The total stress inside the inclusion is uniform
and given by

o+ 0= ChuleRs + € — €R), 3

where —¢® is the elastic strain necessary to bring the inclusion back to the original
shape and €' is the relaxation strain. The stress ¢ and the strain € are, by definition, the
deviations with respect to o° and €® induced by the inclusion. The standard way of
solving this problem is to replace the inhomogeneous inclusion by a homogeneous
inclusion having the same shape and supporting the same stress as the former. That is
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achieved by defining a fictitious transformation ¢}*=¢f+¢f; and imposing the
condition

o+ 0% =Coplen+ e — ) _ 4)

The relaxation term is related to the fictitious transformation strain through the
equation

6;-:1 =S klmnE:er (5)

where Sy, is the Eshelby tensor, a key element in the calculation and a function of the
ellipsoid shape and the elastic constants of the matrix. Although explicit expressions
exist which give S for isotropic media and particular inclusion shapes, for the purpose
of this work we need to evaluate S for inclusions of general shape embedded in a
medium with low symmetry elastic constants (when expressed in the inclusion axes the
constants C;y, frequently exhibit orthotropic symmetry). In the Appendix we describe a
simple numerical method that permits one to evaluate S for the most general
conditions. From eqns (3-5) and using the relation e=C" o the following system of
equations is obtained:

(A Cijk! Sictmn T+ Cijmn)éf::‘ =—AC; ¥ Cﬁin“’ gm + C?‘jklfkpb ) (6)

where AC=C*-C. After calculating S the system (6) can be inverted to obtain e*¥,
which depends upon the imposed stress of. Replacing ¢** and S in eqn. (4) gives the
internal stress ¢i; in the lamella as a function of o}

U'gj =C; jk:(SktmnE:;f — &%) (7

§3. ENERGETIC CONSIDERATIONS
The elastic energy W of a medium undergoing a transformation strain ® and being
acted upon by external stresses is given by the general expression (Mura 1987)

1 . . ,
Wzi fp(ag +a; J-)(u?_ jtu —ef)dD— J;F {ud +ud)ds, ‘ (8)

where F; are the components of the applied surface traction, g}, 4} ;and u} are the stress,
the distortion and the displacement respectively induced by the inclusion,and Dand S
are the volume and the external surface respectively of the medium. An inclusion-free
homogeneous medium would have associated a Gibbs free energy W° given by

. |
wo=> j ol dD— J Fuf ds, ®

For the analysis that follows, what matters is to compute the variation in free energy
associated with the presence of the inclusion and defined by AW= W— W°. Mura (1987)
demonstrates that

2

where Q is the volume occupied by the inclusion. According to the classical nucleation
theory, the first term in egn. (10) corresponds to the ‘elastic strain energy’ induced by the
inclusion in the absence of externally applied stress (W* in the book by Mura (1987)),
while the second term corresponds to the ‘driving force’ and gives the interaction
energy between the inclusion and the applied stress (AW in the book by Mura (1987)).

AW= ___J. o';jgg.dD— j J%E%dD, (10)
0o 2
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For the case of inhomogeneous inclusions, €® has to be replaced in eqn. (10) by the
equivalent transformation strain e**. However, when solving eqn. (6) it turns out that
et =e2* adsand ef* «€Ff ifij # 12, provided that ¢7) remains below the relatively high
bound of 10* MPa. As a consequence, the inhomogeneity effect is relatively small in this
case and P, instead of e**, can be used to compute the energy variation. Replacing eqn.
(2) in eqn. (10) and using the fact that the stress is uniform within the ellipsoidal
inclusion, we obtain

AW —Qs(ia’ , +0%,). ‘ ' (1)

Our calculation indicate that the induced stress given by eqn. (7)is, for a parametric
value of 75, a linear function of the externally imposed stress and of the aspect ratio y,.
In particular, the component

O'i12=F1zkrUi?1—ﬂ'Pz- (12)

The coefficients F,,,, and 8> 0 are calculated numerically by linear regression, which
requires the solving of eqns (6) and (7) for several values of ay; and y,. The linearity
expressed by eqn. (12) is valid only for a lamella of low aspect ratio (y, <0-1) and stress
components oy not exceeding 10* MPa. Equation (12)isan important result because it
allows one to write an analytical expression for the free energy in terms of the stress
components and the physical dimensions of the lamella. One may, in turn, derive
analytical expressions for the critical parameters that minimize the energy.

Up to now, only the elastic contribution to the Gibbs free energy has been
accounted for. Since the twin lamella has a different crystallographic orientation from
the crystal in which it is embedded, a term has to be added to the free energy to account
for the presence of the twin—matrix interface. This term is associated with interactions
on the atomic scale and, as will be discussed later, we believe that it plays a dominant
role in controlling the conditions for twin nucleation and propagation. A proper
calculation of this contribution would require detailed calculations of the atomic
configurations of the twin boundaries, which is beyond the scope of this work.
Fortunately, the contribution of the interface to the energy can be treated independ-
ently from the volumetric contribution associated with the elastic interactions. As a
consequence, in what follows we shall concentrate in properly describing the latter,
while for the former we shall assume that the boundary energy per unit area I', is
constant. Within this assumption, no distinction is made between the coherent and the
incoherent parts of the interface, and I', has to be interpreted as an average
characteristic energy per unit area. The total free energy is G= W+ T, with

T =2maty,I, (13)

where 7, « 1 is assumed for calculating the area of the ellipsoid. The variation in Gibbs
free energy induced by the lamella is given by eqns. (11)-(13) as

AG=G—W°
=AW+ T
=3naly,yssGF 1 00m— 3Py, +0 1)+ 2naiysl. (14)

Equation (14) gives the difference between the free energy of a medium containing a
lamella of a given dimension and shape and subjected to a stress ¢°, and that of the
same medium without the inclusion. Since an elastic system will tend to minimize its
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Gibbs free energy G in a form compatible with the conditions externally imposed, in
what follows we investigate the stability conditions for a twin lamella in the shape of an
ellipsoid being acted upon by a stress 2. Since W? is independent of the parameters a;,
v, and y, that characterize the lamella, stability is defined by the extrema condition on
the free energy variation at constant stress and temperature:

d(AG),9, 7=0. (15)

As will be discussed later, eqn. (15) is relevant both to twin nucleation and to twin
propagation.

For a lamella of fixed ¢, and y in equilibrium with a stress ¢° there is a critical value
of y, which minimizes the free energy, given by the conditions

A '
HAG) =0, _(_2Gl >0. (16)
9y, 4173 V3 61073

When the frec energy is given by egn. (14), this condition leads to a critical aspect ratio

P _%F1 20612

L A

B
0

z(F1:,:12;‘ 1)612=JJ?2, a7

where J is a positive constant which depends on the crystallographic orientation of the
twin system, its characteristic shear s and the eleastic constants of the crystal. Our
calculations indicate that J is mildly dependent on the aspect ratio 7, but is independent
of the absolute size a;. Because of the simple form of the surface energy assumed here,
the critical aspect ratio turns out to be independent of I', for a flat lamella. In writing the
approximate form of eqn. (17) we take into account that, according to the results of the
numerical regression, F, 5155 Fy 5 for kl# 12. The relation (17) between applied stress
and aspect ratio has been deduced previously by Venables (1973) for elastically
isotropic f.c.c. crystals using energetic considerations and dislocation theory. A related
calculation was presented recently by Mitchell and Hirth (1991); they treated the
interface as a distributed array of straight dislocations and calculated their equilibrium
distribution under the action of a shear stress, showing thattoa first order in the stress
the equilibrium shape is a flat ellipse. In their case, however, the dimensions of the
lamella are fixed and the stresss only has a sharpening or blunting effect upon the tip.

Next, if the size a; is also left free to adopt a value compatible with the imposed
stress, the lamella will evolve to a critical size aff defined by the conditions

AAG)
da,

<0, (18)

cr
¥z .¥3

Equations (16) and (18) define the coordinates of a saddle point in the surface AG(ay, 72)
for parametric values of y; and ¢°. In the previous analysis we use the aspect ratio y,
and the dimension a, as independent variables. It can be shown that our approach is
equivalent and leads to the same critical conditions as the formulation by Yoo and Lee
(1991) who, following Johnson and Cahn (1984), minimized the energy with respect to
the aspect ratio y, and the volume V of the lamella. The equivalence is easily
demonstrated if the numerically obtained relations given by equations (12)and (17), are
replaced in the formulation of Yoo and Lee (1991).
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Substituting the Gibbs free energy given by eqn. (14) into egn. (18) and using the
aspect ratio given by eqn. (17) lead to the condition for being at the saddle point:

- a]_SJO'?z(Dm,,O',?m) + -rl = 0! (19)
where the dimensionless tensor D is defined as
Do =3F 1 3n+ 11 201+ F1215)]- (20)

Equation (19) gives the relation between stress, size and aspect ratio for a twin in the
shape of an oblate ellipsoid to be in equilibrium under the action of an applied stress. It
is evident that shear stress ¢, acting on the twinning plane is a necessary condition for
stability. We analyse in what follows the implications of the previous formulation upon
twin nucleation and growth. Numerical calculations are presented for the following
materials: zirconium, titanium, zine, Fe-Si and calcite. The commonly observed
twinning systems and the elastic constants of these materials are listed in tables 1 and 2

Table 1. Elastic constants and c/a ratio for the materials studied in this work. (After Simmons and Wang

(1971))
. Ciy Ci, Cis Cs, Cas Cia
Material Structure cla (10'*Pa) (10''Pa) (10''PA) (10''Pa) (10'*Pa) (10'1Pa)

Zr hep. 1-593 1-43 073 0-65 1-65 032 0
Ti hep. 1-588 1-62 092 0-69 1-81 047 0
Zn h.c.p. 1-856 1-64 0-36 053 0-63 039 0
Fe-3-2wit% Si bh.c.c. — 2-38 1-36 136 2:38 1-20 0

Calcite Trigonal 3418 1-46 0-60 0-51 0-85 034 -072

Table2. Observed twinring systems and associated twin shear s for the materials studied in this

work.
Material System System s

Zr tt1 (1012)<T011) 0-167
ctl (2112)¢2113) 0-225

112 (1121)¢1126)> 0-628

ct2 (1011)¢1012)> 0-104

Ti ttt (1012)¢T011) 0174
ctl (112)Q2113) 0219

tt2 (11211126 0-630

ct2 (1011)¢1012> 0-099

Zn t1 (1012)¢ 1011 0138
ctl (2112)¢2113) 0-519

tt2 (1121)¢1126) 0-539

ct2 (1011)<1012) 0-372

Fe-3-2wt%, Si — (211)111) 0:707

Calcite c* (0118)¢0341> 0694
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Table 3. Proportionality constant J between the applied shear 69, and the lamella aspect ratio
7,; non-zero dimensionless coefficients D;; coupling the applied shear 63, with the other
stress components (eqn. (19)) are also shown. These are for the case y;=1.

. J Dy, D, D
Material System (10-*Pa~!) (1073 (1073 (1077 2xD,; 2JsDy,
Zr o 857 _016 —030 035 0501 1434
ctl 635 056 —014 —032 0502 1434
12 231 —054 028 020 03502 1456
o2 1434 060 —021 —029 0503 1497
Ti 1 711 _032 —035 070 0504 1245
et 519 036 025 —065 0503 1434
12 184 _026 —013 041 0501 1161
o2 1165 035 022 —061 0503 1160
Zn 1 1233 _196 _164 - 146 0531 1807
ott 342 —245 -040 115 0528 1874
12 336 178 —011 —068 0511 1851
ct2 483 _239 _021 —105 0525 1887
Fe-3-2wi% Si — 096 0 120 —120 0511 0693
Calcite ot 229 096 099 —108 0506 1608

respectively. The calculated value of the components D,,, are listed in table 3 for all the
materials and twinning systems, assuming a lameila in the shape of an oblate spheroid
(v3=1). It can be seen that, for all materials, D, , is much larger than the other D;;
components. Furthermore, Dy3=D3,=Dy3=D3; =0 for all the twinning systems
because of the orthotropic symmetry of the elastic constants expressed in the system of
the ellipsoid axes.

3.1. Twin nucleation

Twin nucleation differs from the more familiar second-phase or precipitate
nucleation in that there is no difference between the intrinsic energy per unit volume of
each phase, a feature which can tip the energetic balance and induce spontaneous
nucleation. Instead, AG gives the energy to be provided either by local fluctuations or
by some other mechanism if nucleation of a twin of a given size and shape is to take
place under the presence of a stress ¢°. The condition for stability of the nucleated
lamella is given by eqn. (19), which for a fixed value of ° defines the minimum size of the
twin lamella that can nucleate as being

Iy
I532(D nCma)

Equation (21) indicates that, the smaller the applied shear, the larger has to be the twin
lamella for it to be stable, and the feasibility of such nucleation is measured by the
amount of energy required. After substituting eqn. (21) in eqns (14) and (20), we obtain

AG{aF, o) =3m(a?) 5T, (22)

which is exactly one third of the twin interface energy given by eqn. (13). An estimate of
the critical dimensions and the nucleation energy for the two compressive twin systems

(21)

af =
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(2112) and (1011) in titanium can be obtained using typical values of y,=1,
69, =10° MPa, the values of J, 2D, , and s listed in tables 2 and 3, and the values of
surface energy I', = 0-266 Jm ™ ? and I',=0-765 J m ~ 2 respectively reported by Yoo and
Lee (1991) from their atomistic simulations. The following values are then obtained:
a;=0047pm, y,=0052 and AG=123x10"13] (or 297x10°%T at
T'=300K) for the (2112) system, and a; =0-131 pm, y,=0-117 and AG=27x 1015]
(or 65 x 10°kT at T =300K) for the (1071) system. The immediate conclusion is, as Yoo
and Lee (1991) pointed out, that the first system is more likely to be active than the
fatter, as the experimental evidence confirms.

Such high energies cannot be provided by thermal fluctuation, which eliminates
the likelihood of inducing homogeneous nucleation. It should be borne in mind that we
are modelling a simple system, formed by an inclusion in an infinite homogeneous
matrix; while the real situation is far more complex. However, if the previous results are
combined with this complexity, they provide a clue for the mechanisms that may
facilitate twin nucleation. To start with, the linear dependence on y5, expressed by eqn.
(22), indicates that the required energy is reduced if the lamella nucleates adopting a
‘needle’ (instead of a ‘disc’) shape. Also, dislocation pile-ups could provide stress
concentrations high enough to lower the critical size a, of the stable twin (given by
eqn. (21)) and, consequently, the energy required for nucleation. Grain boundaries or
dislocation jogs can be envisaged as ‘pre-cxistent’ defective zones that may act as a
‘seed’ and provide part.of the energy AG required for nucleation, so reducing the energy
to be provided by the elastic term. Dislocation pile-ups at grain boundaries would
combine two of the previous mechanisms and would be likely candidates for triggering
nucleation. In principle, according to the previous arguments, any microstructural
feature acting as a stress concentrator or having an associated extra energy improves
the chances of inducing twin nucleation in the grains.

The stresses involved in the nucleation process would be of a local short-range type
and, once the lamella has been created, it is conceivable that the configuration will
become unstable; the lamella will go ‘over the top’, grow beyond the critical size and, in
the process, will relax the stress that induced nucleation. As a result, the critical value
for nucleation given by eqn. (21) represents a lower bound and the final size of the
lamella may be expected to be within the range of the stresses being relaxed.

3.2. Twin growth

The fact that twins can form, as single-crystal experiments show, under conditions
of suddenly falling stress, implies that the stress for propagation is different from the
stress for nucleation. To analyse twin propagation, one has to assume that a previously
nucleated lamella of size a; is already present in the material. As the imposed stress
increases, the energy G will eventually reach a maximum, after which any further
increase in stress will destabilize the lamella and make it grow, much the same as a crack
does. In this respect, the theory of twin growth is formally equivalent to the Griffith’s
theory of crack propagation. The condition of instability is given by the maximum of
the free energy G =W+ AG but, since W2 is independent of the twin parameters, the
problem reduces to find the extremum of AG, which has been done in the previous
section. For a Jamella of size a, the stress state that will make the system overcome the
energy barrier is given by eqn. (19) as

r
9.(D,,60,)=— 23
1 2( mno—mn) alJS, ( )
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which indicates that a shear component is a necessary condition for twin propagation.
However, the precise value of such component depends on the values that the other
components adopt, and their influence upon o9, is measured by the coupling
coefficients D,,,. As is evident from table 3, for all the cases studied, D, , is much larger
than the other D,, values and, as a consequence, eqn. (23) can be written in the
approximate form

Ft _ Ft
2D Jsa; Disay

0% 24
provided that none of the other stress components is much larger than ¢?,. Equation
(24) is important because it justifies the assumption of a CRSS associated with twin
activation. Such CRSS depends on crystallographic parameters and physical constants
of the material through D, , = 2D, ,Js, listed in table 3. It also shows that, the smaller the
interface energy per unit arca or the larger the size of the existing lamella, the smaller is
the CRSS required to propagate it. A lower bound for the CRSS is set by the grain
dimension, which limits the maximum size achievable and may explain why twinning is
not observed in fine-grained polycrystals.

3.3. The case of a flat elliptic cylinder

We analyse in this section the saddle point-configuration of the free energy for the
case of lamella having the shape of a flat elliptic cylinder (7, < 1;y,=co) subjected to a
stress ¢°. Although such morphology may be unrealistic, the case is useful for showing
that the assumption of a lenticular lamella (y;=1) is not restrictive and that similar
results are obtained at the other extreme of the interval 1 <y, < oc. Also, the cylindrical
morphology will permit us to test the validity of the twin-crack analogy used by Yoo
(1979a, b) to study the effect of stress upon twin activation.

For an infinite lamella the relevant magnitudes are the interface energy per unit
length given by- :

T'=4a,T, ' (25)
the volume per unit length given by

Q'=naty, (26)
and the free-energy variation per unit length given by
AG = —11a2y,SGF 1 20— 372 +015) +4asle 27

The search for the energy extrema {eqns {16) and (18)) leads to a condition of the same
form as eqn. (19):

— 70,5709 {(D 0o} + 2 =0, ' (28)
where J and D, have to be calculated for y;= oo (sce Appendix). As before, eqn. (28)

gives the minimum size for a stable twin lamella to nucleate under the action of a stress
o°. The corresponding change in free energy required for such nucleation is

AGHaS", %)= 6a5 T, =3T". (29)
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Table 4. Proportionality constant J between the applied shear 69, and the lamella aspect ratio
72; non-zero dimensionless coefficients D;; coupling the applied shear ¢$, with the other
stress components (eqn (19)) are also shown. These are for the case y,= cc.

J 'Dl 1 ‘DZZ D33
Matertal System (107''Pa"!) (1073 (1072 (10~ 2x Dy,
Zr ttl 11-34 —012 —023 026 0-301
ctl 8-27 0-43 —011 —0-24 0-502
2 292 —042 022 16 0-502
ct2 18:54 0-46 —017 —023 0-504
Ti tt1 912 —025 —027 0-54 0-502
ctl 6-68 028 20 —050 0-502
tt2 237 —020 —~010 0-32 0501
- ct2 14-99 027 017 —0-47 0-502
Zn ttl 1746 —1-37 —114 1-02 0-518
ctl 511 —1:62 -0-27 077 0516
12 5-31 1-11 —007 —042 0-506
ct2 733 —1-55 —014 —0-69 0514
Fe32wt¥%Si =~ — 1-19 ¢ ¢-97 —097 0-508
Calcite e’ 3-40 0-65 0-67 —073 0504

For an existing lamella of size a,, however, eqn. (28) gives the combination of stress
components that will destabilize it and make it propagate:

4T,
2Jsna,

G?Z(Dmnar?m) = (30)
Values of J and D,,, for all the materials and twinning systems considered here are
calculated for y; = o0 and are reported in table 4, where it can be seen that they are
slightly smaller in absolute value but not substantially different from the values
reported in table 3, corresponding to y; = 1. Although the corresponding values are not
reported here, we have verified that both J and D, show a smooth monotonic decrease
when y; varies from (-5 to co. As a consequence, the formulation does not depend
critically on the width of the lamella as far as the energy extrema are concerned.. The
required energy for nucleation given by eqn. (22), however, is directly proportional to
such width, which would suggest that narrow lameilae would be favoured in the
nucleation process.

§4. DISCUSSION OF RESULTS
Owing to the crystallographic symmetry of the materials and twinning systems
considered in this work, D,;=D,, =0 for all the cases. As a result, the critical stress
condition for twin nucleation and propagation (eqn. (19)) can be written explicitly as

69,(2D,,0%, + D, 1691+ D509, + D33095)=constant, (31)

indicating that a shear stress is a necessary condition for destabilizing the lamella, and
thatits precise value depends on the values adopted by the diagonal stress components.
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Of particular interest is the case of a hydrostatic pressure p superimposed on the shear
component, which gives a critical condition of the form

0'?2[21)120'(1}2—-(1)11+D22+D33)p]=constant. (32)

From the results in tables 3 and 4 it is evident that a hydrostatic pressure should have
no effect over twinning in cubic crystals, because Dy;+Dss +D55==0 for this case.

The fact that D, D, for all the cases (see tables 3 and 4) indicates that the critical
shear is weakly affected by the diagonal components. As a consequence, (a) the
predicted dependence of twin nucleation and twin propagation with stress components
other than the resolved shear in the twinning plane and along the twinning direction is
very weak within the present approach and (b) it is possible to derive a CRSS in terms of
crystal parameters, interface encrgy and size of the lamella (eqn. (24)).

The experimental evidence available for silicon-iron, although not so clear cut,
indicates a stronger coupling between the diagonal and the shear components. The
tensile experiments performed by Priestner and Louat (1963) in strongly textured
material, show an increase in the critical shear for twinning as the difference ¢35 — 69,
decreases. An analysis of their experimental data permits us to estimate the coupling
coefficients to be of the order 2D, =0-5and D33=—D3 = 0-1. The latter components
differ in sign and absolute value from those calculated here, which are listed in tables 3
and 4. The only way to explain the discrepancy is to ascribe such behaviour to a
different mechanism which couples more strongly the stress components and screen
completely the inhomogeneity effect. Compressive experiments done by Blahovec
(1972) in silicon-iron single crystals, also exhibit a dependence of the CRSS for
twinning with the orientation of the twinning plane with respect to the COmMpressive
axis. The scatter in his results, however, does not ailow reliable estimation of the
coupling coefficients.

A case for which our approach predicts the correct order and the correct sign for the
coupling is that of calcite subjected to large hydrostatic pressure. According to the
classical experiments performed by Turner et al. (1954), the critical twinning shear at
atmospheric pressure (p=0-1 MPa) is 1-5 MPa, while at a pressure of 1000 MPa they
observed that the critical shear rises to 6 MPa. Replacing the values of D,,, from table 3
(y;=1) in eqn. (32) we obtain a relation

¢2,(0-50609, —0-0087p) =constant, (33)

from where the constant term can be calculated by replacing the critical stress
measured at atmospheric pressure. After doing that, the critical shear predicted for a
superimposed hydrostatic pressure of 1000 MPa is 17-1 MPa. If instead the values from
table 4 (y,= oc) are used, a CRSS of 11-9 MPa is obtained. It should be noted that,
although the coupling is weak, it is enhanced by a pressure two orders of magnitude
larger than the critical shear.

4.1. The twin-crack analogy

Yoo (1979a,b) has addressed the competition between twinning and fracture in
hexagonal metals using an energy criterion and assuming that the twin lamella reacts to
the applicd stress in the same manner as a mode II slit crack. By imposing such a twin-
crack analogy, Yoo arrived at a criterion for deciding whether twinning or fracture is
the dominant mechanism. Such a criterion depends on the ratio of the interface energy
associated with the twin to that of the crack, which.in turn is a function of the
orientation of the slit plane with respect to the crystal axes for the case of elastic
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anisotropy. Yoo was aware, however, of the distinction between slit cracks and
deformation twins and warned that ‘the finite thickness of the twin and the welded
boundary condition for twin interfaces’ may invalidate the conclusions that he derived
through the twin-crack analogy. In this section we assess the validity of such an
assumption using the model developed in the previous sections.

In order to facilitate comparison with eqn. (1) derived by Yoo (1979a), it is
convenient to rewrite eqn. (30) in terms of the compliance factors D,,,=2JsD,, and the
twin extension force G!=4rI, per unit length as

1
092(2D',0%; + D} 0%, +D’22022+D33533)=%- (34)
The elastic compliances D,,, are the equivalent, for the twin lamella, to the symmetrical
second-order tensor B,,, defined by Stroh (1958) for the slit crack. Next, we modify the
elastic moduli of the twin lamella by a softening factor *:

CF=oC* (35)

such that, when o varies from 1 to 0 we go from the elliptic lamella that represents the
twin to an elliptic void of the same shape. Using C¥* instead of C* in eqns (3}<7), we
compute D,,=2JsD,, as a function of o° for the (1012)<1011) twinning system in
titanium, zirconium and zinc. Equation (17) giving the proportionality parameter J
between the applied shear and the equilibrium aspect ratio y, was not applied because
the inclusion tends to adopt a spherical shape as it becomes softer. Instead, the value of
J corresponding to o = 1 is enforced throughout the calculation, which corresponds to
the assumption of a small but non-zero aspect ratio y,. The case 7, =0 cannot be
treated because our expression for the Eshelby tensor (see Appendix) is not defined at
that value.

The non-zero coupling components D}, are plotted in fig. 2 as a function of o® and
the values corresponding to o =1 and o°* =0 (in fact a®« 1) are reported in table 5. For
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Variation in the coupling components Dj; entering eqn. (34), when going from a cylindrical twin
Jlamella (o&f=1) in the (1072)¢T011} system to an ellipsoidal cavity of the same shape
(o0f =0) in the same plane. Calculations correspond to (a) zircontum, () titanium and (c)
zinc.
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o* =0 they have to be compared with the values B,, and B,, which appear in eqn. (1),
corresponding to the slit crack. We observe that the leading component, D ;, remains
almost constant thoughout the softening process and equal to the value of By, for the
slit crack. The component D, coupling o9, with the normal stress 09,, increases by an
order of magnitude and falls very close to the corresponding compliance B, , for the slit
crack. The other two coupling compliances D, and D), decrease by an order of
magnitude when o*—0, in agreement with the response predicted for the slit crack. The
difference between our predictions and those for the slit crack arises because, in our
calculations, y,<« 1 but is still different from zero while, for the slit crack, y,=0.
What our results show is that the twin-crack analogy proposed by Yoo (1979a) is
valid for calculating the main compliance D 5; on the other hand, it predicts the correct
sign for the coupling with 2, but overestimated the coupling coefficient D5,. However,
the latter is still much smaller than D, (with the sole exception of D, for zinc) and,asa
consequence, the twin-crack analogy provides a reasonable estimate of the effect of
stress upon twin activation. It should be borne in mind that only elastic effects are
accounted for by this formulation. A qualitative discussion of possible atomistic
mechanisms which may show a stress dependence is presented in the following section.

§ 5. CONCLUDING REMARKS

We try in this work to elucidate the influence upon twinning of stress components
other than the resolved shear in the twinning plane and in the twinning direction. We
adopt for this purpose an elastic continuum approach and treat the twin lamella as an
ellipsoidal inclusion embedded in an elastic matrix being acted upon by an externally
imposed stress. We express the free energy of the system as the sum of three terms: the
internal strain energy associated with the twinning shear, the elastic energy arising from
the interaction between the inclusion and the external stress, and a surface energy term
associated with the presence of the twin-matrix interface. The latter term is strongly
related to the atomistic and crystallographic characteristics of the boundary, but the
assumption is made here that this contribution is simply proportional to the arca of the
interface. Such an assumption amounts to putting the coherent and incoherent parts of
the boundary on the same footing and to defining an average energy per unit area
which is characteristic of the lamella under study.

Within a continuum approach, the coupling between the resolved shear and the
other strees components is related to the inhomogeneity effect and would not show up
in an elastically isotropic crystal. For all materials analysed in this work, the elastic
anisotropy is not strong enough to give a substantial coupling of the diagonal stress
components with the shear component. Only if the diagonal components are orders of
magnitude larger than the shear stress does the critical shear show a non-negligible
variation, as the experimental evidence for calcite shows.

When the elastic stiffness moduli of the twin lamella are ‘softened’ artificially in
order to derive results for the crack, the inhomogeneity effect is more pronounced but
the predicted influence of the diagonal stress components (table 5) remains still low.

An important conclusion of this study is that, from a continuum point of view, the
activation of twinning is correctly described by the Schmid criterion of CRSS,
independent of the other stress components (and of the hydrostatic pressure in
particular) provided that the latter are not much bigger. Also, our calculations show
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that the twin-crack analogy proposed by Yoo (1979b) for deciding whether twins or
cracks-are operative in a given material, depending upon the relative energy associated
with the twin and the crack interfaces, is meaningful.

In performing this study, however, we are not accounting for any dependence of the
interface energy with the stress components. We would like to close the present
discussion with a brief analysis of the atomistic characteristics of the twin boundary
and the possible effect of stress upon it.

Twin growth requires the motion of twin dislocations, which shift the atoms in the
twinning plane to the perfect lattice positions in the twinned crystal. Such a shift,
however, does not take place in every plane but after every n planes (n varies depending
on the crystallography of the system). The atoms in intermediate planes have to ‘shuffle’
in order to recompose the perfect lattice, and in the process they have to overcome the
energy barriers created by the interaction with the neighbours. As a consequence,
shuffling is a likely candidate when looking for atomistic mechanisms which can affect
the dynamics of twinning in low-symmetry crystals. Yoo and Lee (1991} suggest that
the enhancement and inhibition of twinning observed in titanium and zirconium alloys
respectively, when the content of alloying elements increases, may be due to differences
between the shuffling dynamics of solute and matrix atoms. In relation to our problem,
it is clear that the presence of a stress field will change the atomic separations in the
lattice. As a consequence, shuffling (and so twinning) will be affected because of the
induced variations in the atomic interactions and in the energy barriers that the atoms
have to overcome.

Another feature of twinning, revealed by atomistic simulations performed by Serra
and Bacon (1986), Serra et al. (1991), and Yoo and Lee (1991) among others, is a
variation in the spacing of the atomic planes close to the twin boundary, with respect to
the perfect lattice spacing. Calculations done by those workers for {1122} twins in a
h.c.p. crystal with an ideal c/a ratio held together by a short-range empirical central
potential predict positive distortions of 0-3% and (157 in the atomic spacing of the
{1122} planes close to the twin boundary. Such a distortion, which results from
minimizing the configurational energy of the system, suggests that the occurrence of
twinning may be enhanced by superimposing externally an elastic distortion of the
same sign to the untwinned crystal. Conversely, a superimposed distortion of opposite
sign will force the forming twin to perform work against it and will tend to inhibit the
occurrence of twinning. This is still another way in which the presence of stress
components other than shear can be envisaged to modify the dynamics of twinning.

As for the mechanisms which may be modified by the presence of a stress field in the
non-coherent region of the interface one may consider-the twin-dislocation pile-up at
the tip of the lamella. The energy and shape of such configuration has been studied by
Mitchell and Hirth (1991) for screw and edge dislocations as a function of the applied
shear. It is evident that the addition of other stress components will modify the
configuration of the dislocation cores and, as a consequence, the Peierls stress. What is
not clear is in which direction and to what extent the dislocation dynamics will be
affected. Such an analysis, and the previous analyses as well, can be carried out only
through atomistic calculations.
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APPENDIX
THE ANISOTROPIC ESHELBY TENSOR
The Eshelby tensor associated with an ellipsoidal inclusion of main axes a,, a,, a3
embedded in an elastically anisotropic medium can be calculated using the integral
expression derived in Chapter 3 of the book by Mura (1987):

Sijmrl = Aiqucpgmm (A 1)
where C g, is the tensor of elastic stiffness expressed in the axis of the inclusion and
1 n . 2n

AijPQ:ijS]lang J’O Auiqudqb, (AZ)
wi_th
Aijpg= Li;i(afjéq + Lﬂ:i(a‘:ifp +L; WY&, + Ly YEYEL, (A3)
Here
Lip(a =C, jpr jé i : (A 4)
and
__sin fcos ¢
1~ a, L
sin  sin
g, = Snisne (AS)
Qs
cos @
63 - aé L]

where 0< ¢ < 2r are spherical coordinates defining the position of a pointin a unitary
sphere, referred to the main axes of the ellipsoid. The case of an elliptic cylinder (y; = c0)
corresponds to £, =0. It is evident from eqns (A 2) and (A 3) that

Avjpg=Ajipg= Aijop=Apaiz (A 6)

The Eshelby tensor given by eqn. (A 1) is evaluated in this work using the previous
formulation as follows: the intervals 0<8<m and 0< @< 2m are partitioned in 2°
increments and £ {eqn. (A 5)), L (eqn. (A 4)) and A (eqn. (A 3)) are evaluated in that
sequence for every pair of angles 8,, ¢, The tensor A given by eqn. (A 2) is integrated
straightforwardly using an extended trapezoidal rule in each dimension and, once
obtained, is multiplied by C to derive the Eshleby tensor defined by eqn. (A 1). By taking
advantage of the general inversion symmetry A(F)=A(— &) it is possible to reduce the
domain where the numerical integration has to be performed to 0< f<m/2 and
0<op<m/2.

REFERENCES

Bragovic, J., 1972, Czech. J. Phys. B, 22, 233.

Canx, R. W., 1954, Adv. Phys., 3, 363.

Jounson, W. C., and CAHN, J. W., 1984, Acta metall., 32, 1925.

Lzg, I. K., and Yoo, M. H., 1990, Metall. Trans. A, 21, 2521.

MacEwEN, 8. R., CHRISTODOULOU, N., TomE, C. N, JACKMAN, T, HoLpEx, T. M., FABER, LI,
and HITTERMAN, R. L., 1988, Proceedings of the Eighth International Conference on the
Texture of Materials, edited by 7. S. Kallend and G. Gottstein (Warrendale, Pennsyl-
vania: Metallurgical Society of AIME), p. 825.



206 : Twinning in anisotropic materials

MircueLs, T. E., and HIRTH, J. P, 1991, Acta metall. mater., 39, 1711.

Mura, T., 1987, Micromechanics of Defects in Solids (Dordrecht: Martinus Nijhoff).

PREISTNER, R., and Louar, N., 1963, Acta metall., 11, 195.

SERRA, A., and Bacon, D. 1., 1986, Phil. Mag. A, 54, 793.

SERRA, A, POND, R. C,, and Bacon, D. J,, 1991, Acta metall. mater., 39, 1469.

SmMons, G., and WANG, H., 1971, Single Crystal Elastic Constanis and Calculated Aggregate
Properties: A Handbook (Cambridge, Massachusetts: MIT Press).

StroB, A. N, 1958, Phil. Mag., 3, 625.

TomE, C. N., LERENSOHN, R. A., and Kocks, U. F,, 1991, Acta metall. mater., 39, 2667.

Turner, F. J., GriGGs, D. T, and HearD, H., 1954, Bull. Geol. Soc. Am., 65, 883.

VENARBLES, J. A, 1973, Proceedings of Metallurgical Society of AIME Conference on Deformation
Twinning, edited by R. E. Reed-Hill, J. P. Hirth and H. C. Rogers (New York: Gordon
and Breach), p. 77.

Yoo, M. H.,, 1979a, Scripta metall., 13, 131; 1979b, Proceedings of the Fifth International
Conference on the Strength of Metals and Alloys, Vol. 2., edited by P. Haasen, V. Gerold
and G. Kostorz (Oxford: Pergamon), p. §25.

Yoo, M. H.. and LEg, J. K, 1991, Phil. Mag., A, 63, 987.



