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Abstract--We present in this work a visco-plastic self-consistent (VPSC) anisotropic approach for 
modeling the plastic deformation of polycrystals, together with a thorough discussion of the assumptions 
involved and the range of application of such approach. We use the VPSC model for predicting texture 
development during rolling and axisymmetric deformation of Zirconium alloys, and to calculate the yield 
locus and the Lankford coefficient of rolled Zircaloy sheet. We compare our results with experimental data 
and find that they are in good agreement with the available experimental evidence. We also compare the 
VPSC predictions with the ones of a Full Constraints approach and observe that they differ both 
quantitatively and qualitatively: according with the predictions of the VPSC scheme, deformation is 
accommodated mostly by the soft systems, the twinning activity is much lower, and fewer systems are 
active, in average, per grain. These results are a consequence of having accounted for the grain interaction 
with its surroundings, which is a crucial aspect when modeling plastically anisotropic materials. 

1. INTRODUCTION 

Polycrystal plasticity and texture development of 
non-cubic materials are characterized by the variety 
of active deformation modes present in each grain, 
non-negligible twinning activity accompanied by a 
substantial fraction of grain reorientation, and highly 
directional grain interactions. Our approach to the 
modeling of such a problem has been, to the extent 
that it is possible, to analyze and model separately 
each of the previous elements, and to evaluate their 
relative contribution to the overall material behavior 
[1-41. 

The variety of slip and twinning modes found in 
anisotropic materials makes it impractical to study 
the deformation textures associated with all possible 
combinations of their Critical Resolved Shear 
Stresses (CRSS). In an early paper [1] we propose a 
systematic procedure that permits to reduce substan- 
tially the combinations to be accounted for, by 
identifying domains of CRSS's leading to basically 
the same deformation textures. More recently, we 
propose a Volume Fraction Transfer Scheme (VFT) 
which accurately accounts for the contribution to 
texture development of the twinned grain fractions 
and greatly improves the prediction of textures in 
anisotropic materials [2, 3, 5]. Also in a recent paper 
[4], we analyze the stress state leading to twin acti- 
vation in materials of different crystallographic struc- 
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ture, and come to the conclusion that a CRSS on the 
twinning plane is a necessary condition for activating 
twinning. 

In this work we address a more fundamental 
problem, which is at the basis of every polycrystal 
model, namely: the interaction of the grain with its 
surroundings. The strength of such interaction dic- 
tates how much of the plastic deformation will be 
accommodated by the grain and how much by the 
surroundings. It is evident that the relative anisotropy 
of grain and matrix will be directly responsible for 
such response and, as a consequence, both have to 
enter explicitly in the formulation. The classical 
Taylor-Bishop-Hill  assumption [6, 7]---clenoted in 
what follows as the Full Constraints (FC) ap- 
p roach- imposes  the same deformation to every 
grain, irrespectively of its anisotropy. While such 
assumption assures the fulfillment of compatibility, it 
disregards any possible departure of the grain defor- 
mation from the average, so implicitly stating that the 
surroundings dictate the grain deformation, indepen- 
dently of the relative anisotropies. The Relaxed Con- 
straints (RC) formulation [8], on the other hand, 
allows for some of the strain components in the grain 
to differ from the average ones, but such relaxation 
is based on grain shape and stress continuity con- 
siderations and not in the relative stiffness of grain 
and matrix. 

The papers of Krrner  [9] and Budiansky and Wu 
[10], are the first ones concerned with treating the 
grain interaction effects during plastic deformation. 
The approach chosen by these authors is based on a 
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fully elastic accommodation by the matrix of the 
plastic misfit, which in practice amounts to assuming 
a rigid matrix (and so a FC approach) when the 
plastic deformation is much larger than the elastic. 
An elasto-plastic model proposed by Hill [11], which 
allows for plastic accommodation in the matrix, was 
implemented by Hutchinson [12] to simulate the 
elasto-plastic transition in a random aggregate of  
f.c.c, grains. An elaborate large-strain elasto-visco- 
plastic scheme developed by Nemat-Nasser and 
Obata [13] has been recently implemented by Harren 
[14, 15] for calculating texture development during 
plastic deformation of f.c.c, materials. The predic- 
tions of  this scheme, though, converge rapidly to the 
results of the FC model, indicating that the incremen- 
tal technique used for solving the elasto-visco-plastic 
equations does not describe correctly the grain- 
matrix interaction. 

An alternative strategy for tackling the problem of 
large plastic deformations is to neglect the elastic 
effects and assume that stress equilibrium is governed 
by a visco-plastic (instead of  an elasto-plastic) 
equation. This is the approach adopted by 
Hutchinson [16] for modeling steady creep of  poly- 
crystals, and by Molinari et al. [17] for modeling the 
texture development associated with large defor- 
mations of  cubic polycrystals. Although the tangent 
model of Molinari et al. seems to coincide with 
Hutchinson's incremental model in the so called 1-site 
approximation, both models lead to different results, 
as will be discussed in Section 3. For numerically 
implementing the l-site approach, Molinari et al. [17] 
assume that the visco-plastic response of the matrix is 
isotropic, so sacrificing part of the anisotropic charac- 
ter of the grain-matrix interaction. The l-site scheme 
has also been applied to materials with hexagonal 
[18], trigonal [19] and orthorhombic symmetry [20]. 

The approach that we use in this work is based on 
the assumption that each grain can be treated as an 
inhomogeneity embedded in the homogeneous effec- 
tive medium represented by the polycrystal. Such a 
formulation leads to an interaction equation that 
linearly relates the stress and strain rate in the grain 
with the overall stress and strain rate of the effective 
medium. The condition that the average of stress and 
strain rate over all the grains has to be consistent with 
the equivalent macroscopic magnitudes, makes for 
the self-consistent resolution of  the problem. No 
attempt is made in this work to include hardening 
effects, which will be the subject of a future study [21]. 
In our formulation we adopt an integral instead of an 
incremental approach, we borrow the concept of 
tangent behaviour from reference [17], and we explic- 
itly account for the plastic anisotropy of  grain and 
polycrystal, grain shape effects, and their evolution 
with deformation. In order to make a thorough 
discussion of the assumptions involved and their 
validity, and in order to compare with existing formu- 
lations, it seems appropriate to fully reproduce our 
formulation in what follows. 

The plan of the paper is as follows: in Section 2 we 
present the constitutive equations for the grain and 
the polycrystai. In Section 3 we explain the relevant 
aspects of the visco-plastic inclusion formulation, 
derive the interaction equation and describe the iter- 
ative scheme for solving the polycrystal deformation 
self-consistently. In Section 4 we apply the VPSC 
scheme to the calculation of rolling and axisymmetric 
deformation textures in zirconium alloys, compare 
the predictions with experimental measurements and 
discuss the results. Also in Section 4 we predict 
Lankford coefficients and polycrystal yield loci of 
rolled sheet, and compare them with experimental 
data for Zircaloy-4. Finally, in Section 5 we draw 
some general conclusions concerning active defor- 
mation mechanisms and the validity of the VPSC 
anisotropic approach. A comprehensive derivation of 
the interaction equation for the visco-plastic in- 
clusion problem is presented in the Appendix. 

2. CONSTITUTIVE EQUATIONS FOR GRAIN AND 
POLYCRYSTAL 

We present in this Section the equations that relate 
stress and strain rate at the single crystal and at the 
polycrystal level. Stress and strain rate are second 
order symmetric tensors, with six independent com- 
ponents, and can be represented by means of a six 
dimensional vector. However, since plastic defor- 
mation takes place through shear and is independent 
of the hydrostatic stress component, plasticity can be 
formulated in terms of only the deviatoric stress and 
strain rate tensors. As a consequence, a five dimen- 
sional vector suffices to represent those magnitudes. 
Here we adopt the convention proposed by Lequeu 
et al. [22] (with the first two components inter- 
changed) 

a '  = , / ~ ( ( ~ 3 3  - ~ . )  + (~33 - ~22) 
\ 2,/g 

622 -- 61______~1 ) 
2 ' a23' al3, a~2 (1) 

/ 

\ 2,¢/~ 
e22- ell . . ) 

2 ,q3,E13,~12 (2) 
/ 

which has the advantage that stress and strain rate 
vector components have the same form. Although it 
is evident from their definition that the vector com- 
ponents are independent of the tensor's trace, we will 
keep the prime on deviatoric stresses in order to 
differentiate them from the Cauchy stress com- 
ponents. According to this convention, the plastic 
energy rate is given by the scalar product between 
both vectors  07~k=a;j(:ij). A sixth vector com- 
ponent, proportional to the tensor's trace, will be 
added later (see Appendix), but for the formulation 
that follows it is redundant and will not be con- 
sidered. 
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Plastic deformation takes place when a slip or a 
twinning system becomes active. Each deformation 
system is characterized by a vector n (normal to the 
slip or the twinning plane) and a vector b (Burgers 
vector in the case of slip and twin shear direction in 
the case of twinning). The Schmid tensor of system 

s __ 1 (s), defined as m~j- 5(n~bj+ njb~), is symmetric and 
traceless, and is represented here using the same 
vector convention defined by equations (1) and (2). In 
vector notation, the resolved shear stress on the 
system (s), z~, adopts the form 

z~ = m~a(, (3) 

where repeated lower indices imply summation. The 
plastic strain rate associated with the shear rate in the 
system (s), ~ ,  is given by 

ek = m~'~'. (4) 

The shear rate induced in (s) by a given applied 
stress is here described by a rate sensitive criterion, 
which formally amounts to assuming a non-linear 
viscous response 

) (5) 

where Y0 is a reference rate, z~ is a threshold stress 
(linked to Y0) and n is the inverse of the rate sensi- 
tivity. When n ~ 1 the activity of the system is 
negligible unless z~ is very close to z~, and the latter 
can be identified with the CRSS characteristic of the 
Schmid criterion. We will see later, though, that the 
formulation tends to a lower bound when n is too 
large, and that n should not be larger than approxi- 
mately 20. Replacing (5) in (4) gives a kinematic 
equation for each grain of the polycrystal 

o' s m ~ fm]tr]'~" 
ek= 70 _271 k t--~--¢ ) (k = 1,5) (6) 

where the sum is carried over all the systems in the 
grain. This non-linear system of 5 equations contains 
10 unknowns: the 5 strain rate and the 5 deviatoric 
stress components. Within the FC or the RC ap- 
proaches, the system is solved for each grain separ- 
ately, imposing either the five strain rate components 
or a combination of five stress and strain rate com- 
ponents respectively. Since the underlying assump- 
tion is that the grain "follows the dictates" of the 
polycrystal, both schemes give good results when 
dealing with materials of low plastic anisotropy. The 
approach that we use in this work, instead, couples 
the strain-rate and the stress in each grain with the 
average strain rate and the average stress in the 
polycrystal, so providing another set of five 
equations. These equations have to be solved in 
combination with the system (6) using the self- 
consistent formulation that will be described in 
Section 3. 

Following Hutchinson [16], equation (6) is rewrit- 
ten in a pseudo-linear form 

. . . . .  

~,= ~0~=, ~ \ ~ ] j , - M ~ j  (~)oj (7) 

where M~ ~¢) are the secant visco-plastic compliance 
moduli of the grain. Except for n = 1, M ~¢~¢¢~ depends 
on the stress and the validity of the linear relation 
between stress and strain rate is limited to the precise 
point a ' ~  that describes the grain state. A linear 
relation valid in the vicinity of the point 6"~g is 
obtained by doing a Taylor expansion of (7) around 
#', which defines the tangent modulus M c(tg) and the 
back extrapolated term ~0 

• gg,  I 
E i ~  - -  1 ~ / i i  t # ~ j  1.=~,~;+~0= • ..... ',~'~,,'+~7. (8) 

The relation between the grain's secant and tangent 
moduli is simply 

M C ~  tg) ~ n A 4 c ( s e c )  _.._? . ( 9 )  

At the macroscopic level, the overall polycrystal 
response is assumed to be described by constitutive 
equations similar to (7) and (8). If 1~ and Z' are the 
polycrystal strain rate and deviatoric stress respect- 
ively, the secant relation can be written as 

£ = MIT~(~'IZ; (lO) 

while the tangent relation, valid also in the vicinity of 
Z, adopts the form 

with 

(tg) ' , /~i M,: ( Z ) Z j + / ~  ° (111 

M!tg) = g - ' [  (12) 

Hutchinson [16] demonstrates that the polycrystal 
tangent and secant moduli fulfill the same relation 
derived earlier for the single crystal moduli 

• - n M ,  . ( 1 3 )  

A word is in order at this point concerning the 
previous constitutive equations. Equations (8) and 
(11) are exact only when they describe the strain rate 
associated with the stress used as a reference for the 
expansion, otherwise they are only approximate. This 
does not represent a limitation in the case of the 
grain, because the stress and the strain rate will be 
assumed to be uniform within it, and the actual value 
of stress can always be chosen as the reference for the 
linear expansion. This is also true for (11) when it is 
used to describe the response of a homogeneous 
medium, in which case it is equivalent to the secant 
form (10). The limitation appears, though, when (11) 
is used to describe the response of a homogeneous 
medium in the vicinity of an inclusion, where local 
variations in stress take place: in such a case, the 
stress variations have to be within the interval where 
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the tangent approximation is assumed to be ade- 
quate. As for the secant form, it is not appropriate for 
describing such dependence. 

in equation (16) gives the classical interaction 
equation.t 

i ' =  - l ( , l f f '  ( 1 8 )  

3. THE INCLUSION FORMALISM where 1('I is the interaction matrix defined as 

The tangent approximation of equation (11) 
amounts to regarding the aggregate as a homogeneous 
equivalent medium (HEM) having a visco-plastic com- 
pliance M (ts) plus a reference strain rate 1~ °, whose 
behavior is identical to the overall behaviour of the 
polycrystal. Each grain, characterized by the visco- 
plastic compliance M ~tg) plus a reference strain rate i °, 
is in turn regarded as an inhomogeneity embedded in 
the HEM, which disturbs the stress field locally when 
a uniform stress is applied to the HEM. The problem 
of an inhomogeneity embedded in a homogeneous 
matrix being acted upon by the uniform stress X' at 
infinity can be solved using the Eshelby formalism, 
which is reviewed in the Appendix. Within this 
approach, the inhomogeneity is replaced by an 
'equivalent inclusion' having the same moduli 
(Mttg), ]~0) of the polycrystal but undergoing a ficti- 
tious transformation strain rate i* that induces the 
same stress in the inclusion and in the surroundings 
as the inhomogeneity does. The condition that i* has 
to fulfill within the domain of the inclusion is, after 
equations (8) and (11), that 

dk = Mff)tr~ +/~0 + d* (14) 

It is convenient, for what follows, to write this 
equation in terms of the stress and strain rate devi- 
ations in the inclusion with respect to the polycrystal 
averages. The deviations are defined by 

e; = ~ ;  - x ; .  (15)  

Replacing (15) in equation (14) and using (11) gives 

~k - ~ '  = M~)#;  • (16) 

We show in the Appendix that (16) is formally 
equivalent to the equation that describes the elastic 
inclusion problem (once the hydrostatic pressure is 
accounted for), and that the strain rate deviation in 
the inclusion is uniform and given by 

ek = S k / *  (17) 

where Ski is the matrix representation of the visco- 
plastic (instead of the elastic) Eshelby tensor, a 
function of  the shape of the inclusion and the tangent 
visco-plastic moduli. As we discuss in the Appendix, 
the incompressibility associated with the plastic 
deformation requires taking special care when calcu- 
lating S. Replacing the inverse of equation (17) 

tThe explicit index notation will be omited in what follows, 
and the tensorial contraction will be represented as the 
product of boldface tensors. 

lq'I = (I - S)-ISM (tg). (19) 

Observe that, since the absolute value of the com- 
ponents of the Eshelby tensor are always lower than 
unity, the interaction matrix is of the order of the 
tangent moduli of the polycrystal. From a physical 
point of view, it is meaningful that the tangent moduli 
enter in the interaction equation, instead of the secant 
moduli, because it is the former which describe the 
response of the HEM in the vicinity of the inclusion, 
where the stress departs from the average loading 
conditions. The relation between macroscopic secant 
and tangent moduli given by (13) permits to express 
the equations in terms of the secant moduli. In what 
concerns the Eshelby tensor, it is a function of the 
tangent moduli but, since it is a homogeneous func- 
tion of degree zero (see Appendix) and since 
M (tg) = n M  (~), the same result is obtained when cal- 
culated using the secant moduli. As a consequence, 
the interaction tensor can be simply expressed as 

1(-I = n (I - S)-ISM(~). (20) 

Molinari et al. [17] use a general formalism which 
takes into account the interaction of each grain with 
the nearest neighbours, and assumes a HEM beyond 
such a cluster. They arrive at a more general form of 
the interaction equation, which reduces to ours in 
what they call the 1-site approximation, which con- 
sists in ignoring the neighbouring grains, leaving only 
the HEM. For the purpose of numerical implemen- 
tation of the 1-site approach, however, they assume 
that the visco-plastic response of the HEM is iso- 
tropic, in which case the compliance tensor of the 
HEM is described by only one independent modulus. 
The disadvantage of such an approach is that it only 
retains the anisotropy of the grain but does not 
account for the plastic anisotropy of the medium. 
Besides, in their calculations they actually assume the 
visco-plastic stiffness tensor to be isotropic, which is 
an approximation because it still depends explicitly 
upon the overall stress components [23]. 

So far, we have been able to relate the stress and 
the strain rate in each grain with the corresponding 
magnitudes in the HEM, assuming that the visco- 
plastic moduli of  the grain and of the HEM are 
known in advance, which is not the case. The assump- 
tion that the HEM describes the average behaviour of 
the aggregate, though, leads to the condition that the 
weighted average of stress and strain rate over the 
grains has to coincide with the corresponding macro- 
scopic magnitudes. The latter condition provides an 
expression from which the overall tensor M (~) can be 
calculated in a self-consistent iterative way. Using 
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equations (7) and (10), equation (18) may be written 
in the form 

Wlf '  = a '  (21) 

where 

W = (M ~(~°~) + lq'I)-'(M ~ )  + 1('1) (22) 

is called the a c c o m m o d a t i o n  t e n s o r .  The secant re- 
lation (7) for the grain adopts the form 

M~)(B~Z ') = i (23) 

The condition that ( i ) = I ~ ,  where ( )  indicates 
weighted average over all the grains, leads to 

( M C t ~ ) B  c > 2;' = M ¢ = ) X  ' ( 24 )  

Equation (24) is fulfilled when 

M (~)  = (M~tS~¢)B ¢) ( 25 )  

but since n ~ )  depends implicitly upon ,Y', we cannot 
guarantee that this is an unique solution. Equation 
(25) indicates that the polycrystal compliance is given 
by an average of the single crystal compliances, 
weighted by the associated volume fraction and the 
accommodation tensor B c, defined by equation (22). 
Since B ~ is a function of M ~) ,  both explicitly and 
through the dependence of M upon n I=), the ex- 
pression (25) represents an implicit equation from 
which M ¢~) has to be obtained self-consistently. 

An interesting limit of equation (25) is the rate 
insensitive case, when n--,oo, because it reveals a 
limitation of the linear response assumption in par- 
ticular, and of the model in general. Equation (25) 
may be rewritten explicitly in terms of the secant 
moduli using (20) and (22) as 

/n~l=~ ) [nt~"~) + n(l  - S) 1SM¢~)]\  
M ~  = \ [M ¢¢~c~ + n (I - S) -~ SM~C)]/ (26) 

Since M ̀ ts"°) and M ~s°~) are of the same order of 
magnitude and since the components of (I - S)-  ~ S 
are of the order unity then, in the rate insensitive limit 
n ~oc ,  the predicted polycrystal compliance tensor 
reduces to the average of the grain compliances 

M <~=) = ( M  ¢~)) (27) 

which is the result that would be obtained using the 
Reuss assumption of uniform stress in the medium. 
This implies that our formulation should reduce to 
the lower bound formulation in the rate insensitive 
limit and, as matter of fact, the results of our 
calculations confirm such conclusion. The polycrystal 
response starts to show a change in tendency for 
n > 20: the average number of active systems per 
grain and the stress deviations in the grains with 
respect to the average decrease as n increases beyond 
n = 20. The reason for such behaviour is to be found 
in the non-validity of the tangent approximation for 
describing the increasingly non-linear characteristics 
of the polycrystal. 

The incremental formulation proposed by 
Hutchinson [16], on the contrary, converges to the 

upper bound in the rate insensitive limit, as is evident 
from observing the results plotted in Fig. 1 of his 
paper. We were able to reproduce those results by 
using the secant (instead of the tangent) modulus in 
equation (19), to calculate the interaction tensor lfl. 
Since such empirical correction amounts to consider 
a matrix n times less compliant than what our 
formulation requires, and since the upper bound is 
characterized by a rigid matrix, it is logical that such 
procedure will lead to the upper bound in the limit 
n--, oo. The difference between Hutchinson's formu- 
lation and ours is in the interaction equation: 
Hutchinson assumes a relation between the stress and 
strain rate i n c r e m e n t s  of the form: 

( 6 i  - 61~) = - l ~ ' l ( 6 a '  - 6 . r ' ) .  (28 )  

Our interaction equation (18), on the other hand, 
applies to the t o t a l  stress and strain rate, and when 
differentiated it becomes 

( 6 i  - f i t )  = - I f l (  & r  ' - 6 i f , ' )  - 6 I f l (  a ' - i f , ' ) .  (29) 

The extra term with respect to (28) arises because of 
the dependence of the compliance on the stress. As 
discussed above, the consequences of this modifi- 
cation are important when n is large, and further 
work will be required in the future in order to clarify 
this point. 

The visco-plastic formulation described above is 
implemented in this work for the calculation of 
texture development as follows: the final polycrystal 
deformation is achieved through successive incremen- 
tal deformation steps, obtained by imposing a macro- 
scopic strain rate !~ during a time interval At. At each 
step, guess values for the strain rate i in each grain 
are proposed: for the first deformation step, a FC 
guess is used and the stress is calculated solving 
equation (6); for the following steps, the strain rate 
and the stress of the previous step are assumed as 
starting guess values for the grain. The self-consistent 
problem is solved by means of two nested iterative 
procedures. Within the innermost loop, the crystals 
secant moduli M ~ )  are calculated for given a '  using 
(7) and are kept fixed. The first estimate of the 
macroscopic secant modulus Mts=) is done using a 
Voigt average: M t~c)-' = ( M  ct~) ' ) ;  for consequent 
estimates the value derived in the previous step is 
used. M (S~ is in turn used to calculate the Eshelby 
tensor S, the interaction tensor lfl and the accommo- 
dation tensor B c. Next, equation (25) is solved itera- 
tively, as follows: the average ( M ¢ ~ B  ~) is calculated 
and used as an improved guess for the overall tensor 
M (s~). The iteration is repeated until the average 
coincides with the input tensor within a certain 
tolerance, in which case the innermost procedure is 
terminated, and the M (s"°) so obtained is used to 
calculate the macroscopic stress: 

r ,  = M c~ec) ~1~ (30) 
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Replacing (6) and (30) into the interaction equation 
(18), yields a system of 5 non-linear equations for 
each grain: 

• s o 

y0 ~ mk ~- -~- - - ] - /~k  =- - .~k t ( t r¢ -  Z { ) ( 3 1 )  

from which the 5 components of  a '  can be calculated 
and replaced in (6) to derive the associated strain rate 
in the grain i. For self-consistency to be guaranteed, 
the recalculated o '  has to coincide with the values 
assumed at the beginning of the innermost loop for 
calculating the M ~(~). Consequently, two conver- 
gence conditions are tested at this point 

I(o 'on)) - Z'I < error 

(la '(n) - o '(n- 1)1) < error (32) 

where the subindices (n - 1) and (n) refer to succes- 
sive iterations and the relative error is typically set 
equal to 1%. If the conditions (32) are not simul- 
taneously verified, the recalculate ~ and tr' are used as 
the new guess to recalculate M ¢~), and the innermost 
iteration loop is repeated. 

Once convergence is achieved, the reorientation of 
each grain due to slip and twinning must be per- 
formed before attempting the next deformation step. 
Since the formulation allows the grains to deform by 
different amounts, the lattice rotation rate for each 
grain is given by 

d)ij = Dij + I'IqklSklmnEmn-~ '" - ~ ½(b, nj --  b/n,) '9 ~ (33) 
s 

where ~ is the antisymmetric component of the 
macroscopic distortion rate, the second term is the 
reorientation of the associated ellipsoid derived in the 
Appendix, and the last term is the antisymmetric 
component of  the plastic distortion rate. The term 
associated with the reorientation of  the ellipsoid is 
proportional to the difference between the strain rate 
in the grain and in the polycrystal, and increases with 
the ellipsoid distortion, as Tiem et  al. show for the 
elastic inclusion case [24]. For the particular cases of 
rolling and axisymmetric tension which are presented 
later, this term contributes less than 1% at the 
beginning of deformation, but represents about 40 
and 20%, respectively, of the total lattice rotation 
rate at 1.0 true strain. 

As we have demonstrated recently [2, 3], modeling 
the grain reorientation in materials presenting sub- 
stantial twinning activity, makes it advisable to use 
the Volume Fraction Transfer (VFT) scheme for a 
proper treatment of  the twinned fractions. Within the 
VFT scheme the polycrystal is represented by means 

tZircaloy refers to the class of zirconium alloys containing 
primarily Sn, Fe and Cr. Zircaloy-2 and Zirealoy-4 are 
used in nuclear power reactors, and their composition 
in weight percent is: (1.5%Sn, 0.12%Fe, 0.10%Cr, 
0.05%Ni, 0.01%O, Zr bal) and (l.5%Sn, 0.21%Fe, 
0.10%Cr, 0.01%0, Zr bal), respectively. 

of a discrete set of orientations which are kept fixed 
while the associated volume fractions are allowed to 
evolve during deformation. The Euler space (Bunge 
angles convention) is partitioned regularly in ap- 
proximately equiaxed cells of 10 ° by side. The orien- 
tations are made to coincide with the center of the 
cells and a certain volume fraction of material is 
assigned to each cell in correspondence with the 
initial texture. Plastic deformation is imposed to these 
representative grains and the resulting reorientation 
can be visualized as a displacement in Euler space of 
the representative point. We assume that the cell as 
a whole displaces rigidly by that amount and that the 
material is uniformly distributed within it. When 
displaced, the cell partially overlaps with the neigh- 
boring cells and the volume fraction of material 
contained in the overlapped portions is subtracted 
from it and transferred to the neighboring cells. This 
process of transference, repeated after every strain 
increment, leads to a gradual variation of the volume 
fraction in each cell and so to texture development. 
When twinning is active, a fraction of the grain 
adopts a new orientation and is transferred to the 
corresponding cell in Euler space and accumulated to 
the fraction already assigned to the cell. By doing this 
we manage to account exactly for every twinned 
fraction in every twin system of every grain after each 
strain increment. 

4. RESULTS AND DISCUSSION 

The self-consistent formulation described in the 
previous section permits to account for deviations in 
the grain behavior from the average behavior of the 
polycrystal. Such deviations can be significant for 
materials with marked plastic anisotropy and, as a 
consequence, important differences with respect to 
the predictions of classical formulations should be 
expected for hexagonal (and, in general, non-cubic) 
materials. On the contrary, no great improvements 
are obtained for cubic materials, as Molinari et  al. 
have shown using the "isotropic HEM" self-consist- 
ent scheme [17]. However, one has to bear in mind 
that if the heterogeneity between the grain and the 
HEM properties is large, the stress deviation with 
respect to the average in the vicinity of the grain can 
be expected to be large too, and the tangent approxi- 
mation will be less accurate in such case. 

In what follows, we present the comparison be- 
tween experimental and calculated textures obtained 
with the FC and the VPSC formulations for Zirco- 
nium alloys deforming in plane strain, axisymmetric 
tension and axisymmetric compression. The Poly- 
crystal Yield Surface (PCYS) and the Lankford co- 
efficients of Zircaloyt sheet are calculated using 
different schemes and are also compared with exper- 
imental results. Here, an exponent of n = 19 is used 
to describe the rate dependence of the slip and 
twinning systems in the calculations that follow. This 
exponent is meant to describe a fairly rate insensitive 
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material, without exceeding the range of validity of 
the tangent approximation. The active deformation 
systems are assumed to be: {10T0}(I~I0) prism slip, 
{10T2}(10T1) tensile twins (ttw) and {21T2}(21-1-3) 
compressive twins (ctw). The relation between 
CRSS's used here is the one that gives the best 
agreement with experimental results namely, 
zPr: z ~tw :r c~ = 0.8:1:2. Although such relation differs 
from the ratio 1 : 2 : 2 that we use in our previous FC 
calculations [3], the FC formulation is insensitive to 
this difference in CRSS's, because both combinations 
fall within the same topological domain of the Single 
Crystal Yield Surface [3]. Except for small differences 
that arise from using a slightly different Euler space 
cell partition and from deforming up to 100% (in- 
stead of 50%) true strain, it is evident that the 
textures reported in this work coincide with the FC 
textures reported in reference [3]. The ratio of CRSS's 
is kept constant throughout the deformation process, 
which amounts to neglecting hardening effects. At the 
beginning of deformation the grains are assumed to 
be equiaxed (the representative ellipsoid is a sphere) 
and, as deformation proceeds, the grain shape is 
updated in average but not individually. The grain 
shape enters into the calculation of the Eshelby 
tensors S and II, which are a function of the ellipsoid 
axes, 

In what follows, together with the calculated pole 
figures, we present grain statistics which provide 
further insight concerning the characteristics of the 
polycrystal deformation, The average relative devi- 
ation of each stress component is defined by 

Ac b = x / ( ( a i -  Zi)2) (34) 
IlZll 

The same definition is used for the standard deviation 
of the strain rate components, which is zero in the FC 
approximation. The relative activity of each defor- 
mation mode is computed as the ratio of two 
weighted averages over the grains: the sum of the 
plastic shears contributed by a given mode (i.e. 
prismatic systems) divided by the sum of the shears 
contributed by all the deformation modes. Another 
statistic refers to the number of significantly active 
systems, defined as the weighted average of the active 
systems in each grain (nO), where n ¢ is computed as 
follows: after identifying the system where the plastic 
shear is maximum, all the systems in the grain where 
the shear is at least 5% of that maximum are counted 
as active. 

4.1. Texture development 

Figure 1 (a) shows a typical experimental (0002) pole 
figure of rolled Zircaloy-4 reported by Tom6 et al. 
[25]. Figure l(b) shows the (10T0) poles correspond- 
ing to the same experimental texture. The basal poles 
are preferentially oriented at an angle of 35 ° from the 
ND towards the TD, while the prism poles exhibit a 
weak maximum at the RD. Figure l(c) and (d) are the 

basal and prism pole figures, respectively, predicted 
by the FC approach in combination with the VFT 
scheme. Figure l(e) and (f) correspond to the VPSC 
calculation, also implemented in combination with a 
VFT scheme. Both simulations, FC and VPSC, are 
carried up to 1.0 true strain, starting from a random 
distribution of orientations. In what concerns the 
basal pole distribution, we observe that the FC 
simulation predicts a maximum in the N D - T D  plane, 
shifted by comparison with the experimentally ob- 
served one, and two unobserved texture components 
along the RD and the TD. The latter are a conse- 
quence of a relatively high activity of the compressive 
twins forced by the FC formulation, as will be 
discussed later. For  the case of the VPSC calculation, 
the basal poles show a larger tilting towards the TD 
and a better agreement with the experiment, while the 
unrealistic components along the RD and the TD are 
not predicted. Concerning the prismatic poles, it can 
be seen that both FC and VPSC textures present the 
maximum along the RD, although the VPSC scheme 
prediction matches better the experiment. 

L 

(0002) (10]0) 
RD RD 

T D  

RD RD 

TD T D  

RD RD 

T D  T D  

Fig. 1. (a) (0002) and (b) (10T0) measured pole figures of 
rolled Zrly-4 I25]; (c) (0002) and (d) (10T0) pole figures 
calculated with the FC formulation, deforming up to 1.0 
true strain and using zPr=0.8, zttw= 1.0, re'w= 2.0; (e) 
(0002) and (f) (10"1"0) pole figures calculated with VPSC 
formulation for the same true strain and CRSS's. In all the 
figures, the lines correspond to multiples of random orien- 
tations and the dots indicate density values lower than 1. 

Equal area and not stereographic projection is used. 



2618 LEBENSOHN and TOM]~: PLASTICITY AND TEXTURE DEVELOPMENT OF POLYCRYSTALS 

Besides the quantitative difference in the rolling 
textures obtained with the FC and the SC schemes, 
both formulations give qualitatively different results 
in what concerns the strain and the active defor- 
mation modes in each grain. Within the FC scheme, 
the requirement of equal deformation in every grain 
forces high stress discontinuities between grains (the 
standard deviation of  the stress components with 
respect to the average is typically of  30%), an average 
number of about five active systems per grain and a 
non negligible activity of  the deformation modes with 
high CRSS. Within the VPSC scheme, on the other 
side, each grain deforms differently, depending on its 
orientation and its anisotropy relative to that of  the 
matrix. As a consequence, the stress distribution 
becomes more uniform (the standard deviation is 
now of about 15% for the stress components, and of 
25% for the strain rate components), deformation is 
accommodated with fewer active systems, and the 
"soft" deformation modes are favoured with respect 
to the 'hard' ones. This situation is evident in 
Fig. 2(a) and (b), where the relative contribution of 
each deformation mode and the average number of 
active systems per grain are plotted against accumu- 
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Fig. 2. Relative contribution of each deformation mode to 
the total shear (solid lines) and average number of active 
systems per grain (AVACS, dashed line) as a function of 
deformation. Rolling case: (a) FC formulation; (b) VPSC 

formulation. 

lated deformation, for the FC and the VPSC cases, 
respectively. It can be seen in Fig. 2(a) that, within the 
FC case, the activities of the tensile and compressive 
twinning systems are comparable and much higher 
than the prismatic activity, and the number of signifi- 
cantly active systems is around five. For the VPSC 
calculation, on the other hand, most of the defor- 
mation is accommodated through prismatic slip and 
three significantly active systems per grain suffice for 
that matter [see Fig. 2(b)], which is in better agree- 
ment with the experimental evidence. 

The next case studied here corresponds to the 
comparison between calculated axisymmetric tension 
textures and experimental rod textures. Experimental 
Zircaloy-2 and Zr-2.5%Nb rod textures have been 
reported by MacEwen et  al. [26] and by Salinas- 
Rodrignez [27]. Although these textures are obtained 
after a swaging process, no relevant differences 
between them and the texture associated with an 
axisymmetric strain path are expected. In what fol- 
lows, the FC and the VPSC formulations will be used 
to simulate axisymmetric deformation in tension, up 
to 100% true deformation and starting from a non- 
textured polycrystal. Axisymmetry makes it un- 
necessary to plot complete pole figures because the 
isointensity lines consist of circles, concentric with the 
axial direction. As a consequence, the basal and 
prismatic pole intensities are plotted in Fig. 3 as a 
function of the tilt angle of  the poles with respect to 
the tensile axis. 

In what concerns the basal poles [Fig. 3(a)] the 
experimental intensities corresponding both to 
Zircaloy-2 and Zr-2.5%Nb exhibit a concentration 
of poles perpendicular to the axial direction. They 
differ, however, in that Zr-2.5%Nb also shows a 
maximum in the tensile direction which is absent for 
Zircaloy-2. This maximum has been attributed by 
Salinas-Rodriguez and Jonas [28] to the high tem- 
perature deformation texture of the ~ component, 
followed by cooling from the ~ + fl phase into the 
phase. The basal pole figure intensities calculated 
with the FC and VPSC schemes are superimposed in 
Fig. 3(a). Both simulations correctly predict the basal 
component perpendicular to the axial direction, but 
a relative maximum at 20 ° that appears when using 
FC, is not observed in the VPSC case. As for the case 
of rolling, this maximum is a consequence of  the high 
activity of compressive twins required by the FC 
calculation, as will be discussed later. The maximum 
along the axial direction is not predicted by either 
simulation, which is understandable if, as Salinas and 
Jonas discuss [28], it is related to the presence o fa  2nd 
phase (which is not accounted for in our calcu- 
lations). 

The comparison of the predicted and the exper- 
imental prismatic poles intensities clearly shows the 
advantage of using the VPSC formulation instead of 
the FC scheme. Figure 3(b) and (c) depict the exper- 
imental (Zr-2.5%Nb), the FC and the VPSC intensi- 
ties vs tilt angle for the (10T0) and the (l~10) poles, 
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Fig. 
Zr-2.5%Nb [31], and axisymmetric tensile textures calcu- 
lated with the FC and the VPSC formulations for 1.0 true 
strain and CRSS's: z pr = 0.8, .~ttw = 1.0, 17 ctw = 2.0. (a) (0002) 
basal poles intensities; (b) (10T0) prismatic poles intensities; 

(c) (1~10) prismatic poles intensities. 

respectively. The VPSC calculation reproduces ex- 
tremely well all the features of the experimental curve, 
while the FC predictions give a rather uniform inten- 
sity, too smooth by comparison with the experiment. 
The pole figures corresponding to Zircaloy-2 are not 
presented because recrystallization during annealing 
(4 h at 925 K after swaging) seems to have modified 
the deformation texture, rotating the crystal by 30 ° 
about  the c-axis, which swaps the (1010) and the 
(11~0) poles. This type of recrystallization effect has 
been observed by Dervin [29] in t i tanium and by 
Pochettino [30] in Zircaloy-4. 

The deformation mode activity associated with 
axisymmetric tension complements the previous re- 
sults and is reported in Fig. 4. The activities corre- 
sponding to the FC calculation [Fig. 4(a)] and the 
VPSC calculation [Fig. 4(b)] are completely different. 
It can be seen that while the FC requires a substantial 
amount  of tensile and compressive twinning, the 
VPSC accommodates most of the deformation 
through the easier prismatic slip, with a minor contri- 
but ion of tensile twinning and a negligible amount  of 
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Fig. 4. Relative contribution of each deformation mode to 
the total shear (solid lines) and average number of active 
systems per grain (AVACS, dashed line) as a function of 
deformation. Axisymmetric tension case: (a) FC formu- 

lation; (b) VPSC formulation. 
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Fig. 5. Initial rod texture and final 0.2 true strain com- 
pression texture measured in Zrly-2 [26], and axisymmetric 
compressive textures, obtained starting from the same initial 
rod texture, calculated with the FC and the VPSC formu- 
lations for 0.2 true strain and CRSS's -c pr = 0 . 8 ,  ~.ttw = 1 . 0 ,  

z on* = 2.0. (a) (0002) basal poles intensities; (b) (1010) pris- 
matic poles intensities; (c) (I~I0) prismatic poles intensities. 

compressive twinning. The high reorientation rate 
associated with the twinning activity in the FC 
scheme, prevents the prism poles from achieving a 
stable orientation and is responsible for the smooth 
appearance of the FC intensity curve. On the other 
hand, the high prism activity predicted by the VPSC 
is a known experimental feature in Zirconium alloys. 
The average active systems are around five in the FC 
case, while only two systems per grain suffice to 
accommodate the deformation in the VPSC case (Fig. 
4). This results emphasize another qualitative differ- 
ence between both schemes, namely, that within the 
self-consistent calculation the Single Crystal Yield 
Surface does not have to be closed, because the 
matrix accommodates deformation when the grain 
lacks five independent systems or when some of them 
are too "hard" for being activated. 

The following case is a compression experiment 
performed on the swaged Zircaloy-2 bar of the 
previous case [27, 31]. The initial rod texture used for 
the purpose of simulation is reported in Fig. 5, 
together with the experimental pole intensities after 
20% compressive deformation and the corresponding 
predictions of the FC and the VPSC calculations. 
Figures 5(a, b, c) show the basal, the (10i0) prism and 
the (11E0) prism intensities, respectively. The strong 
reorientation of basal poles along the axial direction 
and the reorientation of the prismatic poles are 
accurately reproduced both, by the FC and the VPSC 
calculations. However, different activities are associ- 
ated with each calculation scheme, as can be seen in 
Fig. 6(a, b). Once again, the FC scheme predicts high 
tensile and compressive twinning activity, while the 
experimental evidence reported by Ballinger [32] indi- 
cates that compressive twins are not observed in 
Zircaloy-2. On the other hand, the VPSC calculation 
involves mainly prismatic slip, very low tensile and 
even lower compressive twin activity. The average 
active systems are five for FC and around three for 
VPSC (Fig. 6). The standard deviation in the stress 
components is of about 30% for FC and of about 
15% for VPSC. In the latter case the average relative 
deviation of the strain rate components is of about 
20% with respect to the average. 

4.2. Polycrystal yield surface and Lankford coefficient 

If  the texture and the active deformation systems of 
a polycrystal are known, the VPSC formulation can 
be used for calculating the polycrystal yield surface 
(PCYS), defined as the locus (in the 5-dim stress 
space) of stress states that induce plastic yield of the 
material at constant dissipation rate. The method- 
ology used for obtaining the PCYS consists in prob- 
ing the polycrystal along different strain rate 
directions, and to calculate the yield stress as the 
weighted average of the resulting grain stresses. Each 
probe strain rate is scaled by a factor, in order to 
fulfill the condition of constant dissipation rate: 
(I~, s ~ ( m j a j ) )  = const., required for the yield surface 
to coincide with the plastic potential [16]. As a matter 
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Fig. 6. Relative contribution of each deformation mode to 
the total shear (solid lines) and average number of active 
systems per grain (AVACS, dashed line) as a function of 
deformation. Axisymmetric compression case: (a) FC for- 

mulation; (b) VPSC formulation. 

of  fact, for the case treated here (n = 19), rate effects 
are not  important  and the scaling procedure practi- 
cally amounts  to normalizing the probe strain rate 
tensors. 

For  the purpose, of calculation, we processed an 
experimental rolling texture of Zircaloy-4 reported by 
Tom6 et al. [25], and represent it by means of 2646 
discrete orientations. The aspect ratios of the repre- 
sentative ellipsoid are taken as al : a2: a3 = 2.3:1.0: 0.4, 
and correspond to about  60% plane strain defor- 
mation. The n-plane projection of the PCYS is 
calculated here, which requires to probe the aggregate 
with only diagonal strain rates. Our predictions are 
compared with the yield stresses that result from 
uniaxial tension and compression tests performed 
along the main directions of the sheet [25]. In Fig. 7 
we superimpose the experimental points with the 
yield loci predicted by the FC and the VPSC formu- 
lations, using the same ratios of CRSS's used in the 
rest of  the paper, namely: 'r pr :'c ttw : r ctw = 0.8 : 1 : 2. Since 
the resulting stresses are in units of ' t  "ttw, both loci are 
scaled to fit the experimental yield stress of 550 MPa, 
corresponding to the compressive test along the 

normal direction. As a requirement of this scaling, the 
CRSS in the prismatic systems has to be z pr = 72 MPa 
for the VPSC case and, consequently, l ttw and r c'w 
have to be 90 MPa and 180 MPa respectively. For  the 
FC calculation, on the other hand, this values turn 
out to be much lower: z~r= 40 MPa, z t '~= 50 MPa 
and zctw= 100 MPa, which is a consequence of the 
upper-bound character of the FC approach. The 
closest available experimental data of prismatic 
CRSS, are the measurements performed by Akhtar  
[33] on zirconium single crystals favourably oriented 
for prismatic slip. At the lowest measuring tempera- 
ture, 423 K, he obtains a flow stress of 80 MPa, which 
is relatively close to the value predicted under the 
VPSC assumption and provides further evidence in 
favour of the latter over the FC approach. A detailed 
comparison is not  possible, however, because small 
differences in temperature and in alloy content are 
known to modify substantially the final CRSS's. 
Figure 7 also shows that a better adjustment of the 
experimental points is achieved when the VPSC 
scheme is used for the PCYS calculation, specially for 
the values of tensile and compressive flow stress along 
the transverse direction. 

Finally, we compare Lankford coefficient measure- 
ments reported by Tom6 et aL [25] for the previous 
material, with the predictions of the FC and the 
VPSC calculations. The curves of Lankford co- 
efficient (R) vs ct are obtained by cutting samples 
from a rolled sheet at different angles ct from the 
rolling direction. A tensile test is performed on each 
sample and the ratio between the transverse strain ~2 
and the through-thickness plastic strain ~3 is 
measured at different amounts  of axial deformation 
El. The calculation of Lankford coefficients using 
either the FC or the VPSC formulation is done as 
follows: for each "sample" the imposed strain com- 
ponents are iteratively adjusted until the average 
stress is purely tensile along the "sample" axis, with 
zero transverse components.  Figure 8 depicts five 
different curves of R vs ct. Two experimental sets of 

o Zrly-4 ND 
- - -  FC predicted 
- -  SC predicted 

Fig. 7. Polycrystal Yield Loci calculated with FC and VPSC 
formulations. The dots correspond to experimental data 

[26]. 
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data are plotted: the "initial trend" represents the 
Lankford coefficient corresponding to an early defor- 
mation stage (Et less than 1%), while the "stable" 
values represent the Lankford coefficient for El > 5%. 
The initial trend shows a singular behaviour for 
samples cut along the transverse direction (~t = 90°), 
indicating that there is negligible (although not ex- 
actly zero) deformation in the through thickness 
direction. The consequence of this behaviour on the 
n-plane projection of the PCYS is that the normal 
to the PCYS at its intersection with the TD is 
perpendicular to (or has no component along) the 
ND. Experimentally, this initial trend is rapidly 
overcome and finite stable values are obtained for 
El > 5% (see Fig. 8), probably because of the rapid 
hardening in the initially active favourably oriented 
grains. 

The other three curves depicted in Fig. 8 are 
obtained using simulations codes. Besides the FC and 
VPSC results, we include the one obtained with the 
"isotropic HEM" self-consistent scheme [25]. It can 
be seen that a better adjustment of the initial trend is 
given by the VPSC curve, while the "isotropic HEP" 
predicts a divergence at about ct = 50 ° and an expan- 
sion of the sample in the through thickness direction 
when ~ > 50 °, which results in negative values of R. 
On the other side, the Lankford coefficient associated 
with the FC calculation exhibits a completely differ- 
ent behavior, staying well below the measured values 
for most of the ct interval. The singular behavior of 
the VPSC curve is to be attributed to the high 
prismatic activity which, combined with the predom- 
inant grain orientation, leads to a negligible 
"through-thickness" strain and resembles the initial 
experimental trend. On the other hand, within the FC 
calculation, deformation is rather insensitive to the 
existence of a hard direction in the sample, twinning 
activity is not restricted despite its higher CRSS, and 
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Fig. 8. L a n k f o r d  coefficient vs the angle  be tween tensi le  axis 
and  ro l l ing  direct ion.  Expe r imen ta l  d a t a  [25] and  pred ic t ions  
of the FC, the isotropic HEM, and the VPSC formulations. 

deformation is accommodated by about the same 
amount in the transverse and the through thickness 
directions of the tensile sample. As a consequence, the 
Lankford coefficient adopts values close to unity. No 
attempts are made here at calculating the evolution of 
the Lankford coefficient as a function of the tensile 
strain. Such calculation would require to accurately 
account for the evolution of grain orientations, hard- 
ening and grain interaction stresses. For this reason, 
only the comparison of our predictions with the 
measured initial trend is emphasized here. 

5. CONCLUSIONS 

We present in this work a visco-plastic self-consist- 
ent approach for modeling the plastic deformation of 
polycrystals. By applying the inclusion formalism and 
deriving a general expression for the Eshelby tensor, 
we are able to explicitly account for the plastic 
anisotropy of grain and matrix and for grain shape 
effects. We give a thorough description of the formu- 
lation, the assumptions involved and its limitations. 
In particular, we demonstrate that the tangent ap- 
proach used by us and by other authors [16, 17] does 
not hold in the rate insensitive limit, and is less 
accurate when the heterogeneity between grain and 
matrix properties is large. Still, by comparison with 
the classical Full Constraint or Relaxed Constraint 
approaches, we believe that this formulation provides 
a better representation of the plastic behaviour of 
polycrystals. 

We apply the formulation to the prediction of 
texture development and the plastic response of 
Zirconium alloys, and compare these results with the 
ones derived using a Full Constraints approach. Since 
in both cases twinning is properly accounted for by 
means of the Volume Fraction Transfer scheme [3], 
the departure in the predictions of each model are to 
be attributed to the difference in the treatment of the 
intergranular interactions. We believe that such as- 
pect of the problem is crucial for the case of plasti- 
cally anisotropic materials, and the results that we 
derive tend to confirm this assertion. Not only more 
accurate textures are predicted through the VPSC 
approach, but the conditions under which defor- 
mation takes place are completely different: while the 
VPSC scheme accommodates deformation mostly by 
means of the soft systems, the FC scheme requires a 
substantial "hard" twinning activity. A related aspect 
is the fact that, within the VPSC scheme, less than 
four active systems per grain are required, which 
permits to treat grains that cannot accommodate 
certain deformation components, by letting the sur- 
rounding matrix do so. All these facts are in better 
agreement with experimental evidence. Although the 
only materials analyzed in this work are Zirconium 
alloys, the conclusions that we derive are of a general 
character and calculations for other non-cubic 
materials are in progress [21]. 
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APPENDIX 

(a) The Elastic Inclusion Problem 

The assumption that the grains can be treated as inclusions 
embedded in a visco-plastic medium is a key element of our 
treatment, because it leads to the grain-matrix interaction 
described by equation (18). Since the visco-plastie problem 
is formally analogous to the elastic inclusion problem, in 
what follows we will review the main results of the elastic 
formulation. 

The stress in an elastic medium of stiffness C~jk~, induced 
by a distribution of eigenstrains e * (x) is defined by Hooke's 
law and the equilibrium equations 

aij - C,j~l(uk, t -- ekl) (AI) 

o,j.j = 0 (A2) 

where a,j is the Cauchy stress tensor and uk.z is the elastic 
distortion tensor referred to the untransformed medium. For 
the case in which e* is uniform within an ellipsoidal region 
and null outside, Ukj turns out to be uniform within the 
domain of the inclusion, and linearly related to e~ through 
[16, 341 

Ui. ) = AikjiCklmnf.*mn, (A3) 

Here Cklm. is the elastic stiffness tensor expressed in the 
principal axis of the ellipsoid and 

Aikjl = 4~ sin 0 dO 2,~j/dq~ (A4) 
o 

is a fourth order tensor, with 

)'i~jl = K0 ' (~)~k ~/ (A5) 

K,p (~) = Cop ! ~, ~! ( A 6 )  
and 

sin 0 cos ¢ .  sin 0 sin ~ .  cos 0 
~2 (A7) I 

al  a 2 a3 

The angles 0 < q~ < 2n and 0 < 0 < n are spherical coordi- 
nates that define the direction of the vector ~ with respect 
to the principal axes of the ellipsoid, of length 2al, 2a2, 2a 3. 
The uniform elastic strain and the elastic rotation in the 
inclusion are given by the symmetric and anti-symmetric 
components of the distortion tensor defined by (A3) 

~ij = ]2(Mi, j -{- Uj, i )  = ]2(dikfl ~- Ajkd)Cklmn~mn = S t jmn~n (A8) 

ogij = ~ (u,j -- uj.i) = 2(Aikjt -- Aj~it)(-kt,,~ e~  --/7,jm~ e m~. (A9) 

Here S is the classical Eshelby tensor, and II is the Eshelby 
rotation tensor. They can be calculated straightforwardly 
from the expressions (A4) to (A9) giving the tensor A. It is 
evident that both S and 1I, are homogeneous functions of 
degree zero of the elastic constants and only depend upon 
the aspect ratios of the ellipsoid. 

(b) The Visco-plastic Inclusion Problem 

The form of equation (16) in Section 3: 

(~:k - -  ~k ) = M~t~g)ffl (k ,  l = 1, 5)  ( A 1 0 )  

indicates that the tangent formulation leads to an equation 
resembling the elastic equation (AI), where the deviation in 
visco-plastic strain rate replaces the elastic strain, the inverse 
of the visco-plastic compliance M (tg) plays the role of the 
elastic constants, and the deviation in deviatoric stress 
replaces the Cauchy stress. While the macroscopic tangent 
moduli relate plastic strain rate with the five deviatoric stress 
components, the equilibrium equation that the stress devi- 
ation tensor fulfills 

#,Jd = (a - E),j./= a,j.j = 0 (A11) 

applies to the 6 independent Cauchy stress components 
of the visco-plastic problem. For obtaining a complete 
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equivalence with the elastic case, it is necessary to account 
for the hydrostatic pressure in the visco-plastic formulation. 
Such extension is achieved by adding a sixth independent 
component to the vector representation of equations (1) and 
(2), defined by 

fill  "4- (722 "[- 0"33 and ~6 - -  £11 "~- E22 q- ~33 (A12) 

The new components are proportional to the pressure and 
the dilatation rate, and fulfill the condition that the energy 
rate is given by the scalar product of the extended 6-d 
vectors. From the definition of the vector components 
[equations (1, 2) and (AI2)], it is straightforward to derive 
the linear transformations e and/~ that permit to transform 
vector into tensor components and viceversa, such that 

Uij = O~ijk t)k 

Dk ~ ~knm 1)nm 

and 

Ctqk~t,m = 1Siam (i,j, n, m = 1, 3; k = 1, 6). (A13) 

Here v 0 is a symmetric tensor and Vk is the associated vector 
representation. The 6th index is redundant when transform- 
ing deviatoric tensors because the 6th vector component is 
identically zero. 

The definition of the 5 x 5 tangent compliance matrix 
M (tg) also has to be extended if it has to operate on 6-d 
vectors. Such extension is achieved here by adding to it a 6th 
row and column equal to zero, except for the diagonal 
clement M ~  ), which is arbitrarily set to a much lower value 
than the other diagonal components (0 < M ~  ) <~ IMl,tg)l for 
i = 1, 5). [For the sake of completeness the reference strain 
rate ~'6 ° is arbitrarily set to zero in (I1).] This "modus 
operandi", which has also been used by Hutchinson [16], 
amounts to introducing a small compressibility in an other- 
wise incompressible medium, and allows to invert the 
extended form of equation (A10) 

~=[M('g)l i j l (~--~ *) (i,j = 1,6). (AI4) 

For an adequately small compressibility the rate of volume 
change: trl~ = M E  ) tr]~, can be considered to be negligible. 

We have verified that for M~6 < 10 -5 trM, the results of this 
calculation become independent of the precise value of 
compressibility assumed. The matrix equation (A14) can be 
transformed, using (Al3), into a tensor equation 

O~y=L,$t (~ , - i~ ,  ) ( i , j , k , l = l , 3 )  (A15) 

where 
Let = ctijn[M(tg)]n~ flmkl (A16) 

defines the tensorial form of the tangent stiffness. Stated in 
the form (A11) and (AI5) the problem of the visco-plastie 
inclusion becomes equivalent to the elastic problem and 
admits the same formal solution. The tensor form of the 
visco-plastic stiffness is needed to calculate the visco-plastic 
Eshelby tensor, replacing the elastic moduli Cijkt by Lr~ I in 
the expressions (A3) to (A9). The matrix representation of 
the Eshelby tensor S is, in turn, given by 

Sij  = fliklSklmn O~nmj. (A17) 

By analogy with the result (A3) for the elastic case, the 
Eshclby tensor linearly relates ~1 and d~ 

= Sk,~ ~' (A18) 

and leads to equation (19), which is the visco-plastic equiv- 
alent of the elastic interaction equation. Also by similitude 
with the elastic case, the local rotation rate of the ellipsoid 
is given by (A9) as 

• _ - 1  -" ( A 1 9 )  coij -- I'[ijkt S kt,,m E,,~ 

where we have made explicit use of (A18) for expressing it 
in terms of the strain rate deviation, which is the magnitude 
relevant to our problem. It is possible to see that this 
rotation becomes important for distorted ellipsoid shapes 
[24]. 

An important remark has to be made at this point 
regarding the extension of the Eshelby formulation to the 
visco-plastic problem. While the elastic moduli are uniform 
throughout the medium, the visco-plastic compliances (and 
so their inverses), can be regarded as uniform only when the 
stresses induced by the inclusion in its neighborhood do not 
exceed the range where the tangent formulation is valid. As 
a consequence, the previous formulation is valid only when 
this condition is met. 


