
Network Fault Tolerance in LA-MPI

Rob T. Aulwes, David J. Daniel, Nehal N. Desai,
Richard L. Graham, L. Dean Risinger,

Mitchel W. Sukalski, and Mark A. Taylor ??

Los Alamos National Laboratory, Advanced Computing Laboratory,
MS-B287, P. O. Box 1663, Los Alamos NM 87545, USA

lampi-support@lanl.gov

http://www.acl.lanl.gov/la-mpi/

Abstract. LA-MPI is a high-performance, network-fault-tolerant im-
plementation of MPI designed for terascale clusters that are inherently
unreliable due to their very large number of system components and to
trade-offs between cost and performance. This paper reviews the archi-
tectural design of LA-MPI, focusing on our approach to guaranteeing
data integrity. We discuss our network data path abstraction that makes
LA-MPI highly portable, gives high-performance through message strip-
ing, and most importantly provides the basis for network fault toler-
ance. Finally we include some performance numbers for Quadrics Elan,
Myrinet GM and UDP network data paths.

1 Introduction

LA-MPI [1, 2] is an implementation of the Message Passing Interface (MPI) [3,
4] motivated by a growing need for fault tolerance at the software level in large
high-performance computing (HPC) systems.

This need is caused by the sheer number of components present in modern
HPC systems, particularly clusters. The individual components – processors,
memory modules, network interface cards (NICs), etc. – are typically manufac-
tured to tolerances adequate for small or desktop systems. When aggregated
into a large HPC system, however, system-wide error rates may be too great to
successfully complete a long application run [5]. For example, a network device
may have an error rate which is perfectly acceptable for a desktop system, but
not in a cluster of thousands of nodes, which must run error free for many hours
or even days to complete a scientific calculation.

LA-MPI has two primary goals: network fault tolerance and high perfor-

mance. Fortunately these goals are partially complimentary, since the flexible
approach we take to the use of redundant network data paths to support fault

?? Los Alamos report LA-UR-03-2939. Los Alamos National Laboratory is operated
by the University of California for the National Nuclear Security Administration of
the United States Department of Energy under contract W-7405-ENG-36. Project
support was provided through ASCI/PSE and the Los Alamos Computer Science
Institute.

tolerance also allows LA-MPI to exploit all the available network bandwidth
in a network-device-rich system by sending different messages and/or message-
fragments over multiple network paths.

A well-known solution to the network fault tolerance problem is to use the
TCP/IP protocol. We believe, however, that this protocol – developed to handle
unreliable, inhomogeneous and oversubscribed networks – performs poorly and
is overly complex for HPC system messaging. Instead LA-MPI implements a
more limited but highly efficient checksum/retransmission protocol, which we
discuss in detail in section 3.

There are several other approaches to fault-tolerant message passing sys-
tems [6–9], but these have tended to focus on the issues of process fault tolerance
and assume the existence of a perfectly reliable network (typically TCP/IP). We
do intend to explore process fault tolerance in future, but believe that a high
performance, network-fault-tolerant messaging system is a necessary first step.

Other important features of LA-MPI include an open source license, stan-
dards compliance (MPI version 1.2 integrated with ROMIO [10] for MPI-IO v2
support), thread safety, and portability to many operating systems, processor
architectures and network devices.

In the following sections we will first review the architecture of LA-MPI
emphasizing the important role of our network data path abstraction. A detailed
discussion of LA-MPI’s data integrity protocol is given in section 3, while a
selection of performance results are presented in section 4.

2 Architecture

At a high level, LA-MPI’s architecture falls into two layers: an upper MPI layer,
implementing the full richness of the MPI standard, and a lower User Level
Messaging (ULM) layer that provides a simpler reliable message passing API.
Looking deeper, ULM is itself composed of two layers: a Memory and Message
Layer (MML), and a Send and Receive Layer (SRL). The MML consists of code
common to all systems and data paths, while the SRL is highly device-specific.

Before discussing these layers and their interaction in more detail, it is helpful
to discuss what types of network fault tolerance are provided by LA-MPI. We
distinguish two separate functionalities: (a) guaranteed data integrity of deliv-
ered messages; and (b) the ability to fail-over from one network device to another
if the first is generating too many errors. Both of these require that we are able
to treat each available network device on an equal footing, and this has led us
to develop an abstraction called a network data path object or, more succinctly,
a path.

A path is an abstraction of lower-level network transports and devices that
are available to LA-MPI. Each path can represent a single network adapter, or
a set of common adapters, or even a common protocol over many different net-
work adapters. Currently, paths are implemented for shared memory, UDP (over
all IP-enabled devices), Quadrics Elan3 [11, 12] remote direct memory access
(RDMA) and Myrinet GM [13], and is currently being developed for Infiniband

No paths available!

path found

path is O.K.

message delivered!

path selection

new message path::send()

path::sendDone()

more data to send andpath "owns"
message

terminate MPI job

message resources
reclaimed

path::bind()

path::unbind()

path::init()

path failure

progress:
path::needsPush() && path::push()
− control msgs

path::retransmitP() && path::resend()
− retransmission of msg. fragments

path::receive() − receive msgs

or sent completely
message not acknowledged

Fig. 1. Message-Path Interactions.

and TCP. In all of our current paths except UDP/IP, which treats multiple net-
work adapters as a single Internet Protocol “device”, multiple network adapters
are used by a single path instantiation, if they exist on the machine.

The path object provides the interface between the portable common code of
the MML and device-specific SRL. The interaction of the MML with the various
paths is described schematically in figure 1.

As noted in the introduction, the path model enables us to implement mes-
sage striping, where different messages may be sent along different data paths.
For paths that comprise several NICs, we also stripe fragments of a single mes-
sage across the NICs, and so achieve excellent network bandwidth.

An additional benefit of the path abstraction is that it enforces a high degree
of portability in LA-MPI. For example, since differenct messages may be sent
along different paths, all tag matching must be done in the MML in a path-
independent way in order to respect MPI ordering semantics. We have found
that there is no performance penalty for this approach (see section 4), while we
gain in terms of an increasingly clean and maintainable code base.

In the next section we give an in-depth discussion of one aspect of network
fault tolerance in LA-MPI, namely support for reliable message delivery, that
is, the guaranteed integrity of delivered data. The other aspects of LA-MPI’s
architecture are described in more detail elsewhere [2].

fragment retransmission timeout exceeded?

message fragment ready to send on FragsToSend list

send message fragment with checksum/CRC

move fragment to FragsToAck list

move fragment to FragsToSend list if

 in−order received sequence number (LIRS)
or free fragment resources if

− fragment sequence number > peer largest

− fragment sequence number <= peer largest
 in−order delivered sequence number (LIDS)

and LIRS would:
a) prevent unnecessary
retransmission of this

if ACK with latest peer LIDS

fragment, or
b) allow the sender to free
fragment resources
then send non−specific ACK
with only LIRS and LIDS

ACK specific fragment
with data good or
corrupt status

record in received
SeqTrackingList

(is its sequence number already
recorded in the received

is the fragment a duplicate

SeqTrackingList)?

discard fragment

receive message fragment with
checksum/CRC

if data good:
− record in delivered
SeqTrackingList
else if data corrupt:
− erase from received
SeqTrackingList

copy (if needed) and
verify checksum/CRC

match fragment with
message receive
descriptor

receive acknowledgment (ACK): is it a
duplicate specific ACK?

discard ACK

check later...

Sender Receiver

1) store latest LIRS and LIDS (if latest
LIDS >= currently stored LIDS)

list and resources, if this is a fragment specific ACK
2) free fragment descriptor from FragsToSend/Ack

with good data status, or
3) move fragment to FragsToSend for retransmission,
if the ACK indicates the fragment was corrupted.

process acknowledgment (ACK):

yes

no

yes no

corrupt data

yes

no

Fig. 2. Retransmission and Checksumming.

3 Reliability

Unlike many MPI libraries that consider all underlying communication perfectly
reliable, LA-MPI optionally supports sender-side retransmission of messages by
checking an “unacknowledged” list periodically for message send descriptors that
have exceeded their timeout periods. This retransmission scheme is appropriate
for low error rate environments, typical of most clusters. Each network transport
is responsible for arranging to retransmit the necessary fragments. Each frag-
ment’s retransmission time is calculated using a truncated exponential back-off
scheme; this avoids resource exhaustion at a receiving process that is busy doing
non-MPI computation. Fragments that must be retransmitted are moved from
the FragsToAck list to the FragsToSend list, and the associated message send
descriptor is placed on the incomplete list.

System Path Latency (µs) Bandwidth (MB/s)

alpha Shared Memory 2.93 935
alpha Quadrics/Elan (1 NIC) 11.23 (8.39) 257 (273)
alpha Quadrics/Elan (2 NICs) 11.37 (8.43) 438 (468)
alpha Quadrics/Elan (UDP/IP) 156 67
i686 UDP/IP gigE 125.1 91
i686 Shared Memory 3.09 455
i686 Myrinet/GM (1 NIC) 11.91 241
i686 Myrinet/GM (2 NICs) 12.26 403
i686 Myrinet/GM (UDP/IP) 125.2 94
i686 UDP/IP gigE 125.1 91

Table 1. Zero-byte latency and peak point-to-point bandwidth for various LA-MPI
paths. For the Quadrics path, we also give (in parentheses) the performance numbers
with reliability (guaranteed data integrity) turned off (a run-time option).

Each network transport is also responsible for providing a main memory-to-
main memory 32-bit additive checksum or 32-bit cyclic redundancy code (CRC),
if it is needed. This checksum/CRC protects against network and I/O bus cor-
ruption, and is generated at the same time data is copied, if at all possible. By
delaying checksumming to avoid wasting memory bandwidth, a received frag-
ment is not necessarily a deliverable, or uncorrupted, fragment. The checksum
can be disabled at run-time for additional performance at the cost of guaranteed
data integrity.

Several MML generic features aid in the implementation of this retransmis-
sion and checksumming scheme. Every byte of data sent between a given pair of
processes is associated with a monotonically increasing 64-bit sequence number.
A fragment is therefore labeled by a range of sequence numbers (as a special
case, zero-byte messages are assigned a single sequence number). The receiving
process records the sequence numbers of arriving fragments in a special object,
SeqTrackingList, as an ordered set of possibly non-contiguous ranges of se-
quence numbers. These lists use internal hint pointers to exploit any temporal
locality in accessing these lists to minimize access overhead. The receiver main-
tains two SeqTrackingList lists for each peer with which it communicates to
distinguish between fragments that have been received, and those that have been
received and delivered successfully (i.e., no data corruption). Duplicate fragments
are easily detected by checking the received fragment’s sequence number range
against the received SeqTrackingList.

We use per-byte rather than per-fragment sequence numbers to support net-
work fault tolerance: by keeping track of the delivery of individual bytes we
can more easily rebind failed fragment transmissions to alternate network paths
with different fragment sizes. This is outlined in figure 1 and discussed more
fully elsewhere [2].

Upon processing fragment acknowledgments from a receiver, a sender will
store two special values that are carried in every acknowledgment: the largest

Implementation Path Latency (µs) Bandwidth (MB/s)

LA-MPI Shared Memory 2.93 935
LA-MPI Quadrics/Elan (1 NIC) 11.23 (8.39) 257 (273)
LA-MPI Quadrics/Elan (2 NICs) 11.37 (8.43) 438 (468)
MPICH Quadrics/Elan (1 NIC) 4.65 228
MPICH Quadrics/Elan (2 NICs) 4.57 257
HP/Compaq Quadrics/Elan (1 NIC) 4.89 292
HP/Compaq Quadrics/Elan (2 NICs) 4.99 258

Table 2. Zero-byte latency and peak point-to-point bandwidth for several MPI imple-
mentations (LA-MPI, MPICH and HP/Compaq MPI (“alaska”), on the alpha system
described in table 1. The LA-MPI numbers in parentheses are those with reliability
turned off (a run-time option).

in-order peer received sequence number (LIRS), and the largest in-order peer
delivered sequence number (LIDS). The LIRS is used to prevent the retransmis-
sion of fragments that have been received, but whose data integrity has not been
checked yet; it may increase or decrease over time, depending upon transmission
and I/O bus errors. The LIDS is used to free any fragments whose acknowl-
edgment was lost. The LIDS is always less than or equal to the LIRS. Figure 2
shows the interaction of these sequence numbers, the retransmission scheme, and
checksumming.

4 Performance

In this section we present benchmark results that characterize the performance
of LA-MPI on a variety of computer architectures, and allow a comparison with
other implementations of MPI.

In table 1 we give “ping-pong” performance results from two systems cur-
rently of interest to us: (a) an alpha/Tru64 system consisting of HP/Compaq ES45
4-way nodes with 1.25 GHz alpha ev68 processors, and a “dual rail” Quadrics
Elan/Elite interconnect; and (b) an i686/Linux system composed of 2 GHz dual
Xeon nodes with 2 Myrinet 2000 cards.

Also included in table 1 are results for LA-MPI’s UDP/IP path run over
Elan/IP, and Myrinet GM/IP. These numbers give an indication of the very
large cost associated with a complete IP implementation, and why LA-MPI uses
the light-weight checksum/retransmission protocol described in section 3.

For the Quadrics path on alpha we quote the results with and without data
integrity guaranteed. As can be seen the impact of reliability on performance is
relatively small, increasing latency by about a third and reducing bandwidth by
less than 10 %.

Table 2 gives a comparison of LA-MPI with two vendor supplied MPI imple-
mentations: MPICH as optimized by Quadrics for the Elan/Elite network, and
HP/Compaq MPI version r11 (also known as “alaska”). Both of these implemen-
tations are based on the native Quadrics libelan tagged-messaging primitive

elan tport, whereas LA-MPI uses the common code in the MML for tag match-
ing and accesses the Elan using libelan3 chained DMAs [11].

In fairness we should point out that the Quadrics native Elan library achieves
a ping-pong latency of about 4.5 µs. There are several structural reasons for our
higher latency (8.39), mainly related to the way that tag matching is imple-
mented – in order to support all paths LA-MPI can make fewer assumptions
about message-fragment arrival. We believe, however, that further refinements
to LA-MPI’s MML and SRL will reduce this gap.

For “on-host” messages, on the other hand, LA-MPI can use its shared mem-
ory path which easily out-performs the Elan network; this option is not available
to the elan tport-based approaches.

LA-MPI truly excels in the bandwidth benchmarks, for two reasons. Firstly,
on-host traffic is handled by the shared memory path which has a much higher
bandwidth than the Elan devices. Secondly, on systems with two “rails” of
Elan/Elite network (i.e. two Elan devices per node), LA-MPI highly efficiently
sends message fragments along both rails. In this simple ping-pong benchmark
the elan tport-based libraries show little or negative improvement with two
rails, because they use the rails by assigning messages between a process pair to
a fixed rail. For some communication patterns this approach may be reasonably
efficient, but we emphasize that LA-MPI’s fragment-based scheduling across the
rails is efficient for all communication patterns.

5 Conclusions

With the rise of terascale distributed computing environments consisting of thou-
sands of processors and network adapters, the need for fault tolerant software
has become critical to their successful use. Negligible component error and fail-
ure rates in small to medium size clusters are no longer negligible in these large
clusters, due to their complexity, sheer number of components, and amount of
data transferred.

LA-MPI addresses the network-related challenges of this environment by pro-
viding a production-quality, reliable, high-performance MPI library for applica-
tions capable of (a) surviving network and I/O bus data corruption and loss,
and (b) surviving network hardware and software failure if other connectivity is
available.

Future development efforts will address (a) the implementation of a fault-
tolerant, scalable, administrative network for job control, standard I/O redirec-
tion, and MPI wire-up; (b) the implementation of process fault-tolerance in the
face of multiple process failures; and (c) the implementation of dynamic topol-
ogy reconfiguration and addition of MPI processes to support dynamic process
migration and MPI-2 dynamic processes.

LA-MPI is currently available as open source software under an LGPL li-
cense. It currently runs on Linux (i686 and Alpha processors), HP’s Tru64
(Alpha only), SGI’s IRIX 6.5 (MIPS), and Apple’s Mac OS X (PowerPC). It

supports an increasing variety of paths (network devices) as discussed in sec-
tion 2. LA-MPI supports job spawning and control with Platform LSF, Quadrics
RMS (Tru64 only), Bproc [14], and standard BSD rsh. Please send email to
lampi-support@lanl.gov, and for more information visit our web site [15]. All
fault tolerance features described in this paper have been fully implemented,
except for on-going work on automatic network fail-over support.

References

1. Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai, Ronald G.
Minnich, Craig E. Rasmussen, L. Dean Risinger, and Mitchel W. Sukalski. A
network-failure-tolerant message-passing system for terascale clusters. In Proceed-
ings of the 16th international conference on Supercomputing, pages 77–83. ACM
Press, 2002.

2. Rob T. Aulwes, David J. Daniel, Nehal N. Desai, Richard L. Graham, L. Dean
Risinger, and Mitchel W. Sukalski. LA-MPI: The design and implementation of
a network-fault-tolerant MPI for terascale clusters. Technical Report LA-UR-03-
0939, Los Alamos National Laboratory, 2003.

3. Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
Technical report, 1994.

4. Message Passing Interface Forum. MPI-2.0: Extensions to the Message-Passing
Interface. Technical report, 1997.

5. C. Partridge, J. Hughes, and J. Stone. Performance of checksums and CRCs over
real data. Computer Communication Review, v. 25 n. 4:68–76, 1995.

6. Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Pro-
ceedings of the 10th International Parallel Processing Symposium (IPPS ’96), Hon-
olulu, Hawaii, 1996.

7. M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations.
In 8th International Conference on Distributed Computing System, pages 108–111.
IEEE Computer Society Press, 1988.

8. A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI programs on
clusters of workstations. In 8th IEEE International Symposium on High Perfor-
mance Distributed Computing, 1999.

9. G. Fagg and a Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic
Applications in a Dynamic World. In EuroPVM/ MPI User’s Group Meeting
2000, Springer-Verlag, Berlin, Germany, 2000, 2000.

10. Rajeev Thakur, William Gropp, and Ewing Lusk. Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation. Mathematics and Computer
Science Division, Argonne National Laboratory, October 1997. ANL/MCS-TM-
234.

11. Quadrics Ltd. http://www.quadrics.com/.
12. Fabrizio Petrini, Wu-Chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-

enberg. The Quadrics network: High-performance clustering technology. IEEE
Micro, v. 22 n. 1:46–57, 2002.

13. Myricom, Inc. http://www.myri.com/.
14. Cluster Research Team, Advanced Computing Laboratory, Los Alamos National

Laboratory. http://public.lanl.gov/cluster/index.html.
15. Los Alamos Message Passing Interface, Advanced Computing Laboratory, Los

Alamos National Laboratory. http://www.ccs.lanl.gov/ccs1/projects/la-mpi.

