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The Los Alamos Message Passing Interface (LA-MPI) is an end-to-end network-
failure-tolerant message-passing system designed for terascale clusters. LA-MPI
is a standard-compliant implementation of MPI designed to tolerate network-
related failures including I/O bus errors, network card errors, and wire-trans-
mission errors. This paper details the distinguishing features of LA-MPI,
including support for concurrent use of multiple types of network interface,
and reliable message transmission utilizing multiple network paths and routes
between a given source and destination. In addition, performance measurements
on production-grade platforms are presented.

1. INTRODUCTION

High performance computing has traditionally been the domain of the
supercomputer: expensive, special purpose, vector and/or parallel systems
from specialist computer companies (e.g., Cray YMP, Cray T3x, Meiko CS-2,
Thinking Machines CM5). The hardware and software developed by



these vendors had to be designed to meet strict performance and fault-
tolerance criteria demanded by their customers (a few large corporate or
governmental organizations).

Recently, supercomputer-level performance has become achievable
using large clusters of commodity-based systems (e.g., Beowulf clusters).
While promising excellent price-performance, these systems pose a new set
of challenges to the system designer, namely:

• Obtaining the required performance by integrating disparate hard-
ware and software;

• Achieving acceptable levels of fault tolerance from commodity hard-
ware; and

• Cost- and time-effective management of very large systems.

With regard to fault tolerance, Saltzer et al. (1) and Stone and Partridge (2)

have pointed out the need for addressing the end-to-end aspect of network
data transfer. Saltzer et al. (1) cites as an example corrupt file transfers that
were the result of not having end-to-end data protection. This is often the
case for data transfers over network devices that are not integrated with the
cluster’s memory subsystems, such as networks that plug into the PCI bus.
In such systems, some components, such as the data transfer between
network interface cards (NIC), may have sufficient data protection. The
transfers between system memory and NICs, however, are not protected,
and so require a high level protocol to provide end-to-end reliability. Stone
and Partridge (2) studied real TCP/IP internet data traces and showed a
fairly high rate of corrupt end-to-end data tranfers, errors that went unde-
tected by the TCP or UDP checksum. They argue that applications should
provide end-to-end data checks.

The situation is aggravated for large-scale applications in which very
large amounts of data are transferred in the course of a single application
run. In these scenarios TCP/IP performance is often inadequate, with OS
bypass protocols being used to achieve acceptable levels of application
performance. We have observed application performance degradation as
large as a factor of two when comparing the performance using TCP/IP
versus OS bypass over HIPPI-800, on an Origin2000 cluster. While using
TCP/IP as a low level data transfer protocol provides some level of end-to-
end data protection, OS bypass protocols often leave this up to the appli-
cation to provide this type of data protection.

The Message Passing Interface (MPI) standard, (3) the de facto stan-
dard inter-process communication API for scientific applications, does not
address the issue of corrupt data delivery, dropped data, or mis-delivered
data. It assumes that data always arrives intact at the correct destination.
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Most current implementations either ignore this problem altogether, or use
TCP/IP, at a significant performance cost, as the means to protect data
transfers. Others, however, have recognized the need to provide some sort
of higher level data integrity checks when using using OS bypass protocols
to implement MPI. These include protocols such as GM from Myricom, (4)

and Portals from Sandia National Laboratory. (5)

In addition to the issue of corruption during data communication,
other sources of failure appear in terascale clusters. With the sheer number
of components that make up a terascale cluster, system component failure
becomes not only possible, but probable for an application which runs for
a sufficient amount of time. These include things such as processors, fans,
interconnects, switches, network interface cards, and more. In discussing
such failures, we use a three level taxonomy.

1. The lowest level deals with link level failures. These include data
corruption and data loss, and in LA-MPI are addressed at a
network device specific level.

2. The middle level deals with transient and permanent network
failures, and is implemented in LA-MPI above the network device
layer.

3. The upper level deals with more catastrophic failures, such as
process loss.

This classification is a little different than that used by Bosilca (6) to analyze
ways of dealing with MPI fault tolerance. Bosilica’s taxonomy focuses on
which bit of software deals with failure, the low level messaging library,
cooperation of the library and the application, or the application.

LA-MPI is an implementation of MPI in which we address fault
tolerance at all of these levels. LA-MPI implements version 1.2 of the
standard, and is integrated with ROMIO (7) for MPI-IO version 2 support.
LA-MPI (a) reliably delivers messages in the presence of I/O bus, network
card and wire-transmission errors; (b) survives network card and path
failures (when the operating system survives) and guarantees delivery of in-
flight messages after such a failure; (c) supports the concurrent use of mul-
tiple types of network interface; and (d) implements message striping across
multiple heterogeneous network interfaces, and striping of message frag-
ments across multiple homogeneous network interfaces.

There have been a number of research efforts attempting to incorpo-
rate network and process fault tolerance into message passing systems. To
date most of this research has been done in the context of check-
point/rollback recovery systems. One of the first efforts to incorporate
fault tolerance into MPI was CoCheck tuMPI (8) from Technischen
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University Munich. CoCheck used the Condor (9) library to checkpoint and
then if necessary restart and rollback the MPI job. This system’s main
drawback was the need to checkpoint the entire application, which could
be prohibitively expensive in terms of time and scalability for large appli-
cations (like those that would run on a terascale cluster). Another effort,
Starfish MPI, (10) is similar in operation to CoCheck, and also operates at
an upper level. However, Starfish uses its own systems to checkpoint jobs,
and does not rely on a flush message protocol to handle communications.
Starfish uses ‘‘atomic’’ group communications protocols based on the
Ensemble system. (11) A third upper level approach is the FT-MPI (12) effort
from the University of Tennessee-Knoxville. FT-MPI handles fault
tolerance at the MPI communicator level, and lets the application develo-
per decide what course of action they wish to take. The application may
decide to shrink, rebuild or abort the communicator depending on the type
of fault.

An assumption implicit in many of these systems is that the underlying
communication layer (this includes the reliability protocol built on top of
the media) delivers data error-free. Stone and Partridge among others have
shown that this assumption is not valid. The use of a reliability protocol
like TCP is no guarantee of end-to-end data integrity. LA-MPI’s novelty is
based on the end-to-end system design philosophy of Saltzer, Reed and
Clark, (1) in which the only guarantee of reliability occurs when the end-
points of the communication have agreed on the validity of the data sent.
At the same time LA-MPI provides excellent performance. Only when end-
to-end reliability is assured can the more complex challenges of process
check-pointing, rollback, and recovery be addressed.

2. ARCHITECTURE

The LA-MPI architecture is outlined in Fig. 1. To simplify the discus-
sion we divide the design into three parts: the MPI interface layer, the
Memory and Message Layer (MML) and the Send and Receive Layer
(SRL). The MPI layer provides a thread-safe MPI 1.2 (3) compliant inter-
face for compatibility with existing applications. The MML provides policy-
driven management of physical and logical resources. The SRL performs
the low-level data communication.

2.1. MPI Layer

As mentioned above, the MPI layer implements an MPI 1.2 compliant
API, the de facto message-passing standard for scientific applications.
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Fig. 1. LA-MPI architecture overview.

Although LA-MPI is designed in a modular fashion, and the MPI layer
could be replaced by alternative API wrapper layers, it should be empha-
sized that the need to provide a complete and efficient MPI implementation
led to specific architectural design choices in the lower layers of LA-MPI.
In part this is a reflection of the complexity of the MPI standard.

It is worth noting that MPI promises applications the correct delivery
of data. To date, most MPI implementations assume that a lower-level
protocol or transport provides this guarantee. This is valid if the transport
is, for example, a TCP/IP driver, or shared memory. There are, however,
many examples of high-performance interconnects with OS bypass software
support where hardware-level reliability is not adequately handled. LA-
MPI provides an implementation of MPI which guarantees correct data
delivery to the application in such circumstances.
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2.2. Memory and Message Layer

The Memory and Message Layer (MML) is composed of a memory
manager, a set of network paths, and a path scheduler.

The memory manager controls all memory (physical and virtual),
including the process private memory, shared memory, as well as ‘‘network
memory,’’ such as memory on the NIC. Memory is managed in several
pools, both process private and process shared, which are used for the
allocation of buffers of various types using a free-list allocation strategy to
optimize buffer reuse. Special attention is paid to memory locality issues on
NUMA (non-uniform memory architecture) multiprocessor systems:
shared memory pools are set up for each process so that a request can be
made for memory ‘‘close’’ to the process which will access it most.

A network path is a homogeneous transport abstraction used to
encapsulate the properties of different network devices and protocols. A path
controls access to one or more network interface cards (NICs). Within a
path there may be several independent ‘‘routes’’ corresponding to physical
NICs. Currently implemented paths include UDP/IP (over any physical
transport), HIPPI-800 and Quadrics Elan3, with on-going development for
Myrinet 2000. Messaging between processes on the same host is handled by
a special shared memory ‘‘network’’ path which uses additional optimizations.

An example may clarify this concept. The Nirvana cluster at LANL is a
cluster of 16 SGI Origin 2000 128 processor systems, linked together with 4
independent HIPPI-800 switches, and gigabit ethernet. LA-MPI provides three
paths: shared memory, HIPPI-800, and UDP/IP over gigabit ethernet. The
HIPPI-800 path comprises the entire HIPPI-800 interconnect, using multiple
(4) independent sub-paths or routes between a given pair of end-points.

The path scheduler ‘‘binds’’ a specific message between given source
and destination processes to a particular path, so that different messages
between the same end-points may use different paths. Though still under
development, the intention here is that the routing and scheduling algo-
rithms can be selected at compile time or run time, and may be a default or
user-written module. An algorithm might schedule messages across paths
according to message properties (e.g., size, destination, etc.), and/or use
statistics-based heuristics. Depending on message size and available routes,
a single message may be striped across several routes.

In the Nirvana cluster described above, whole messages may be
scheduled across different paths (HIPPI-800 and UDP/IP), while frag-
ments of a single message may be striped across up to four different routes.

The MML architecture implements several desirable features:

• Message striping across several network paths, thereby increasing
network utilization and performance, is straightforward. By message
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striping we mean, sending different messages between the same end
points via different network paths, such as an OS bypass over HIPPI-
800 path and a UDP/IP path.

• Message-fragment striping across several routes within a single
network path is possible when a path comprises more than one
network interface. E.g., a single message is fragmented and sent
along multiple network paths, such as over multiple HIPPI-800
NICS and switches. At the destination, this message is reassembled.

• Reliability is implemented within the path abstraction. The path is
responsible for breaking an outgoing message into one or more
fragments, and reassembling incoming fragments into complete
messages. During fragmentation and reassembly, a path specific
‘‘checksum’’ function is used to verify correct transmission. For
HIPPI-800 we use a a 32 bit data checksum, and in the UDP/IP
implementation we rely on the network checksum provided by this
protocol and assume that any data we receive is correct. The Send
and Receive layer (SRL—see below) uses the ‘‘checksum’’ when
deciding how to proceed. If data corruption is detected the entire
fragment is retransmitted. The detailed protocol for this process is
discussed in Section 3.

• Resilience to network device failure is a function of the path sched-
uler. In case of a network route failure, evidenced by many failed
message transmissions, the path scheduler will attempt to ‘‘rebind’’
outstanding messages to another valid (and functional) route
between the source and destination processes. This route may use
the same path or it may be assigned to a different path. Future
messages will not be bound to the failed route. The ability to ‘‘fail-
back’’ to the first route (corresponding to the case of a temporarily
unavailable network device) is also planned. This work is in progress.

2.3. Send and Receive Layer

The Send and Receive Layer (SRL) is responsible for sending and
receiving message fragments, and is highly network dependent.

The physical path message fragments fall into two categories: those
that require the network (off-host) and those that do not (on-host). On-
host messages are simple copies through shared memory. Off-host messages
are handled by the Network Communication module, where the message
fragments are sent via physical resources associated with the path to which
the message is bound.
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As mentioned above, the SRL layer also handles message fragmentation
and reassembly. Message reassembly occurs in the order in which the frag-
ments are received, and in systems with multiple routes between a pair of end-
points out-of-order fragment arrival is a common event, and is handled
correctly by this layer. This layer also handles the arrival of duplicate
message fragments which can occur with timer based data retransmission.

Finally, the SRL layer also handles the in-order delivery required by
the MPI standard. Data that arrives out-of-order is queued for later
processing, as is unexpected data.

Figure 2 illustrates the steps in a typical off-host point-to-point com-
munication. For simplicity, assume the message consists of a single frag-
ment. When the user specifies a send, the MML determines the appropriate
path and fragments the message. The fragment is sent to the destination
while the source waits for an acknowledgment. For a multiple fragment
message, the fragments are sent in parallel as long as resources are avail-
able, and the acknowledgments can be received in any order. If the frag-
ment was not received properly (determined either by a negative ack-
nowledgment or time out), the fragment is retransmitted. If the fragment
was received properly, the old fragment is freed. A more detailed descrip-
tion of the architecture is available elsewhere. (13)

3. RELIABILITY

3.1. Why Include a Reliability Layer?

‘‘Reliable’’ network protocols and devices are often designed to one set
of criteria, and deployed in environments that fail to respect these design
assumptions. For example, high-performance NICs are sometimes capable
of assuring reliable data transfer between NICs by doing reliable transport
protocol (e.g., TCP) processing on the NIC itself. Unfortunately, this
reliability guarantee is negated if the NIC itself is plugged into an unreli-
able I/O bus. Given the complexity of modern computers, the net result is
that in large cluster environments application to application reliability is
often quite difficult to achieve, and its lack almost impossible to diagnose.

Why not use the nearly ubiquitous TCP transport protocol (executed
on the main CPUs)? The answer is, in a word, performance. TCP/IP-based
messaging has relatively high latency due to the maintenance of connection
state that allows its heuristics to operate in environments from noisy
56Kbps dialup modems to gigabit ethernet LANs. High performance
cluster environments, however, are usually implemented with modern local
and system area networks that are capable of supporting very low latency
in the range of 3–30 microseconds from NIC to NIC. A well-performing
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Fig. 2. Point-to-Point off-host communication for a single fragment message. For a multiple
fragment message, the fragments are sent in parallel as long as resources are available, and the
acknowledgments can be received in any order.
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message library must provide reliability over a range of network devices
(e.g., Myrinet, Quadrics, gigabit ethernet, etc.) using protocols with
minimal impact on latency (e.g., UDP/IP, VIA, etc.). In order to minimize
latency in these environments, LA-MPI uses its own lightweight protocol
to provide reliability over a diverse set of network technologies.

The reliability layer in LA-MPI shares a number of attributes with
other reliability layers (most notably TCP) including the use of watchdog
timers, checksums, and sequence numbers to check for duplicate, lost, or
corrupt data. (14, 15) Unlike most TCP implementations, the LA-MPI relia-
bility layer is implemented in user space much like the reliability protocol
in Globus-Nexus. (16) Figure 2 shows the basics of the LA-MPI reliability
protocol.

The protocol uses sender side retransmission to achieve the desired
level of reliability. Messages are fragmented into fixed-sized chunks, or
‘‘fragments’’. Each fragment is assigned a sequence number (out of a
monotonically increasing sequence of 64-bit values) and a timestamp, and
the number of times a given fragment has been sent is updated each time
the fragment is sent. Retransmission is scheduled on a per fragment basis
using a truncated exponential backoff scheme for every retransmission
attempt; the backoff scheme helps protect receiver resources in the event
the receiver is busy executing non-communication code.

Upon receiving the fragment, the receiving process sends either a
positive acknowledgment, ACK, or a negative acknowledgment, NACK, to
the sending process. ACKs can be of two types: fragment specific, and non-
specific. Fragment specific ACKs are generated when the receiving process
has successfully received a fragment, verified its ‘‘checksum,’’ and copied its
data into application-specified memory. Non-specific ACKs are generated
when a duplicate fragment is received. They contain information about the
largest in-order sequence numbers seen from a sending peer for data that
has been received, and for data that has been successfully received and
delivered to the receiving application (i.e., copied out of the LA-MPI
library). Non-specific ACK information is piggybacked in each fragment
specific ACK, and is used by the sender to delay retransmission of frag-
ments that have been received but have not yet been acknowledged by
a fragment-specific ACK or NACK.

NACKs are generated when the data received is corrupt (i.e., fails
‘‘checksum’’ verification upon being copied to application memory). Upon
receiving a NACK, the sender will arrange to retransmit the data.

Figures 3 and 4 illustrate the overhead of providing end-to-end relia-
bility in LA-MPI. The overhead is small, and ranges between 2 to 15% for
x86 Linux and 2 to 3% for SGI Origin2000. In LA-MPI’s reliable UDP/IP
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implementation, this low overhead is due to our reliance on UDP/IP’s
checksum, and the relatively infrequent rate (every several seconds) at
which we check to see if a fragment needs to be retransmitted. On HIPPI-
800 on the Origin2000, the overhead of reliability is minimized by calculating
checksums concurrently with data copying.
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4. PERFORMANCE

In this section we present LA-MPI performance data on a simple ping-
pong benchmark and a representative scientific application, CICE (the Los
Alamos Sea Ice Model). For comparison, we also present data from other
available MPI implementations where this is available, notably Argonne
National Laboratory’s reference MPI implementation, MPICH version
1.2.3, and SGI’s Message Passing Toolkit version 1.5.2 (MPT). We choose
to compare our results with MPICH because it is the most widely known
implementation, and many vendor implementations orginated from it.
SGI’s implmentation is used on the Origin because it is the vendor’s
implementation, and is tuned for it’s systems.

Performance was measured on Nirvana, LANL’s 16-machine cluster
of SGI Origin 2000 (O2K) machines (128 250 MHz R10K processors per
machine) running IRIX 6.5, and representative commodity machines,
namely Dell Precision 610 PCs running RedHat Linux 7.1 and 7.2 (dual
550MHz Pentium III processors for on-host testing and a single processor
for off-host testing). Off-host communication on Nirvana was accom-
plished over the HIPPI-800 (100 MB/s peak performance) interconnect
using user-level operating system bypass support, and using UDP/IP over
gigabit ethernet (1 Gbps peak performance). Off-host communication on
the Dells was accomplished using UDP/IP over a 100 Mbps switched
ethernet. On-host communication in both environments uses anonymous
shared memory.

While current performance can be characterized as good to excellent
(while providing services other MPI libraries do not), we expect these
numbers and other performance metrics to improve as we continue opti-
mizing the library. A more comprehensive performance evaluation is under
way.

4.1. Ping-Pong Latency and Bandwidth

Table I shows the zero-byte half-round-trip message latency for LA-
MPI, SGI MPT and MPICH (from Argonne National Lab) in micro-
seconds.

As this table indicates LA-MPI has very good zero-byte latency. On
the Origin2000, the on-host latency of LA-MPI is 7.0 micro-seconds, 8%
worse than SGI’s MPT, but nearly three times better than MPICH. Over
HIPPI-800 LA-MPI’s latency is about 8% higher than SGI’s MPT.
MPICH has no implementation for this device. LA-MPI’s (UDP/IP) and
MPT’s (TCP/IP) latency over gigabit ethernet are virtually identical, while
MPICH (TCP/IP) has a latency that is about 11% higher.
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Table I. Zero-Byte Latency in Micro-Seconds for Various Message-Passing Libraries

Platform (network) LA-MPI SGI MPT MPICH

O2K (shared mem) 7.0 6.5 19.9
O2K (Hippi800) 155.3 143.5 N/A
O2K (IP) 526.7 525.6 586.0
i686 (shared mem) 2.3 N/A 23.5
i686 (UDP/IP) 132.8 N/A 123.5

On the Dell’s LA-MPI shared memory latency is 2.3 micro-seconds, an
order of magnitude better than MPICH, but over switched ethernet
MPICH is currently about 8% better than LA-MPI.

Figures 5 and 6 compare the bandwidth achieved by LA-MPI, MPT
and MPICH at various message sizes.

Comparing on-host (shared memory) bandwidths on the Origin 2000,
at small message sizes MPT performs better than LA-MPI, but by the time
one reaches larger messages size LA-MPI outperforms MPT. For example
at 256 byte messages, MPT runs at 19 MB/s, and LA-MPI at 17 MB/s, at
8 KB MPT gets about 101 MB/s and LA-MPI gets about 87 MB/s, but at
1 MB MPT gets 135 MB/s, but LA-MPI runs at 145 MB/s. MPICH does
not perform as well as LA-MPI and SGI’s MPT, with bandwidth of
9.9 MB/s, 75 MB/s, and 80 MB/s, respectively.

0 4 16 64 256 1K 4K 16K 64K

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200

M
B

/s
ec

Round-trip throughput for Dell x86 Linux

LA-MPI SMP (on-host)

LA-MPI (off-host)

MPICH 1.2.3 SMP (on-host)

MPICH 1.2.3 (off-host)

Fig. 5. Comparison of round-trip message throughput for Dell PC x86 Linux.

A Network-Failure-Tolerant Message-Passing System for Terascale Clusters 297



0 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200
M

B
/s

ec
Round-trip throughput for SGI Origin 2000

LA-MPI SMP (on-host)

LA-MPI (off-host)

SGI MPT 1.5.2 (on-host)

SGI MPT 1.5.2 (off-host)

MPICH 1.2.3

Fig. 6. Comparison of round-trip message throughput for the SGI Origin 2000.

Similar results are obtained for shared memory communications on
the Dell when we compare LA-MPI and MPICH, with LA-MPI showing
significantly better bandwidths than MPICH. At 256 bytes LA-MPI is
running at 59 MB/s, at 8 KB bytes at 75 MB/s, peaking out at 64 KB
message sizes at a bandwidth of 169 MB/s, and at 512 KB the rate is
93 MB/s. MPICH’s performance is 9.6 MB/s, 75 MB/s, 131 MB/s, and
86 MB/s, respectively.

For off-host communication, comparing LA-MPI and SGI’s MPT
bandwidths, we see that for small messages the two are comparable, but for
larger messages LA-MPI has significantly better performance, since LA-
MPI stripes fragments of a single message across several HIPPI-800 routes
(4 in this case). At 256 bytes LA-MPI’s bandwidth is 1.5 MB/s, at 8 KB
18.8 MB/s, at 128 KB 86 MB/s, and at 1 MB 135 MB/s. For SGI’s MPT
the bandwidths are 1.4 MB/s, 20 MB/s, 57 MB/s, and 73 MB/s, respec-
tively. The relatively large differences (about 60%) already evident at
128 KBytes can be understood, since the striping is done in chunks of
16 KB, and at the size of 128 KB each HIPPI-800 route is already handling
2 message fragments.

Figure 7 illustrates the benefits of message-fragment striping, that is,
sending message fragments in parallel over different NICs. LA-MPI chops
HIPPI-800 messages into 16 KB fragments, and the benefit of striping is
obviously not evident until the message length is more than one fragment.

Low latency is achieved in a variety of ways. Shared memory latency is
low, because we use lockless queues in non-threaded operation, and
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memory management costs are minimized through the use of a simple free-
list strategy. For cross-host communication, the checksum cost is propor-
tional to the length of data transmitted, and therefore does not have a
significant impact on latency as seen in Table I. Simultaneously, LA-MPI
achieves high bandwidth by fragmenting messages which allows the overlap
of sender and receiver memory copies. For shared memory, copying is also
overlapped with tag matching.

4.2. CICE: the Los Alamos Sea Ice Model

CICE (17) is a widely used production code for efficiently modeling sea
ice in a fully coupled atmosphere-ice-ocean-land global climate model.
CICE is a community model developed by scientists at LANL, the Natio-
nal Center for Atmospheric Research (NCAR), and other universities.

CICE is also a good benchmark program for evaluating MPI imple-
mentations. It is written in Fortran 90 using a wide assortment of MPI
features including point-to-point communication (MPI_ISEND/MPI_
IRECV), broadcasts, reductions, MPI groups, and MPI datatype opera-
tions. In addition, CICE uses a fairly even distribution of message sizes
with slightly more very small and very large messages (see Table II). This
removes strong biases toward particular message sizes when evaluating
performance.

CICE is typically run on eight processors on the SGI Origin 2000
at LANL. Figure 8 shows the performance of CICE for 64 and 128 time
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Table II. Number of Messages by Size Range in CICE for Point-to-

Point Communication. The Distribution of Message Sizes Is Fairly

Even With Slightly More Very Small and Very Large Messages

Message size in bytes Number of messages

< 100 21786
101–1000 18410

1001–10001 18410
10001–100000 18410
> 100000 26090

steps for MPICH, SGI MPT, and LA-MPI. Performance with LA-MPI
(99.18 seconds) is within 3% of SGI MPT (96.47) for the 64 time step
case, and within less than 2% of SGI MPT for the 128 time step case
(191.85 seconds and 188.78 respectively). MPICH ran 18% and 20% slower
than LA-MPI, respectively.

The point-to-point communications times are also interesting to
compare with LA-MPI (8.02 seconds) taking 5% less time than SGI’s MPT
(8.43 seconds) and 69% less time than MPICH (13.54 seconds) at the 64
time step case. For the 128 time step case these differences are 27%, and
200%, respectively, with LA-MPI taking 14.05 seconds, SGI’s MPT 17.82
seconds, and MPICH 28.18 seconds.
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Fig. 8. CICE run time using MPICH, SGI MPT, and LA-MPI for 64 and 128 time steps.
The dark portion of the bars indicate time spent in communication.
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5. CONCLUSIONS

In this paper, we have given a brief overview of LA-MPI, the Los
Alamos Message Passing Interface, a message-passing system for terascale
clusters. Such clusters will be composed of hundreds or thousands of indi-
vidual commodity-based machines connected by hundreds or thousands of
network interfaces over hundreds or thousands of cables. Each individual
component of the system not only adds capability but also points of
failure.

LA-MPI was designed with the assumption that terascale clusters are
unreliable. In particular, the increasing functionality of hardware, espe-
cially with respect to data integrity, does not eliminate the need for addi-
tional software to ensure end-to-end reliability. LA-MPI’s novelty is that it
provides end-to-end reliability in a high performance message-passing
system without significant overhead on a wide variety of network trans-
ports and devices.

With the number of system failures expected to increase with cluster
size, applications must be prepared to deal with these failures. We have
taken the first steps in providing resilience for applications running on such
clusters; applications can continue through network failures as long as
there is at least one physical path between source and destination proces-
sors.

LA-MPI also offers the possibility to enhance performance relative to
existing message-passing systems by implementing message striping across
multiple heterogeneous network interfaces, and message-fragment striping
across multiple homogeneous network interfaces.

6. FUTURE WORK

LA-MPI is still in active development. We have recently made a port
to Compaq’s Tru64 UNIX to add to our existing Linux and IRIX support.
Quadrics’ Elan3 network interface is now supported under Tru64, and
Myrinet 2000 network support under Linux is being implemented. Full
automatic network path failover is in development, and future performance
optimization work will address scalability issues.

In addition to these efforts, LA-MPI is part of a larger project aimed
at providing complete application resilience, or run-through. The Cluster
Research Lab in the Advanced Computing Laboratory at LANL has a
number of projects that will together enable an application to run-through
to completion despite hardware failures. This is particularly important for
applications at LANL and other DOE laboratories that run for weeks to
months before getting an ‘‘answer.’’ LA-MPI will ultimately be integrated
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with Supermon, (18) a cluster monitoring system that will predict failures
based on vital hardware statistics such as CPU temperature and fan speeds.
Applications running on processors or nodes that are predicted to fail will
be migrated off to a healthy node via the BProc migration facility. (19)

LA-MPI will be enhanced to support process migration.
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