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Application of Extreme Value Statistics for 
Structural Health Monitoring
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Step 1: Damage Identification

Step 2: Damage Localization

Step 3: Damage Quantification

Step 4: Damage Prognosis

Four Goals for Structural Health Monitoring
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Structural Health Monitoring

Is this bridge damaged? Perform pattern comparison.
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Step 1: Operational Evaluation

Step 2: Data Acquisition

Step 3: Data Normalization

Step 4: Feature Extraction

Step 5: Statistical Inference

Five Steps for Structural Health Monitoring
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Environmental Variation
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Example of Debris in Expansion Joint of the 
Alamosa Canyon Bridge

This debris can effect the boundary conditions of the 
structure and its response to environmental changes
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Statistical Pattern Recognition Paradigm for SHM

Before Sep. 11, 2001After Sep. 11, 2001
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Data Normalization Example [Sohn et al. 2002]

m1m8

Case Description Input level Data # per input Total data #
0 No bumper 3, 4, 5, 6, 7 Volts 15 sets 75 sets
1 Bumper between m1-m2 3, 4, 5, 6, 7 Volts 5 sets 25 sets
2 Bumper between m5-m6 3, 4, 5, 6, 7 Volts 5 sets 25 sets
3 Bumper between m7-m8 4, 5, 6, 7 Volts 5 sets 20 sets

List of time series employed in this study

Bumper
Shaker
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Outline of Damage Diagnosis using 
AR-ARX, Auto-Associative Network and Hypothesis Test
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3. DATA NORMALIZATION

6. DECISION MAKING
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Auto-Associative Neural Network for Data Normalization
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Damage Localization
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Real World Application [Sohn et al. 2001] 
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(b) Fiber optic strain gauges

(a) Surface-Effect Fast Patrol Boat

Courtesy of Naval Research Laboratory
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Raw Dynamic Strain Time Series Data
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Damage Classification using            . )()( xy εσεσ
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A Moment Resisting Frame Structure Model

Damage 2

Damage 1
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Undamaged
(Training)

Undamaged
(Testing)

Establishment of Decision Boundaries

Damaged
(Testing)

Unsupervised Learning:
Use only the baseline

data for training

# of Expected outliers
= 1% of 1000 points
= 10 outliers

From Normal
# of outliers: 48



17Weapon Response Group, Engineering Sciences & Applications Division 

0.0

0.999

0.500

-1.0 1.0

0.001

Prediction Errors

Pr
ob

ab
ilit

y

Normal Probability Plot

A normal probability plot graphically assesses whether the data 
come from a normal distribution. 

C
D

F

Normality Assumption of Data 

Let’s look at the baseline prediction errors to see whether they
have a normal distribution or not.

If the data are normal, the 
plot will be linear. Otherwise,  
there would be curvature in 
the plot.

The central population of 
data seems to fit to the 
normal distribution well, 
but the tails do not.
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There are only three types of distributions for the extreme 
(maximum or minimum) values regardless the distribution 
type of the parent data [Fisher and Tippett, 1928].

In general, the distribution type of the parent data is 
unknown, and there are infinite numbers of candidate 
distributions.

Why Extreme Value Statistics ?

In general, the distribution type of the parent data is 
unknown, 

There are only three types of distributions for extreme 
(maximum or minimum) values

That means, the model selection for the extreme values 
becomes much easier, because there are only three 
models to choose.(Gumbel, Weibull, Frechet distributions)
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Feasible Cumulative Density Functions for Maxima

From Castillo [1988]:
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Fitting to Gumbel Distribution

• Divide the original times series with 8192 data points into 128 
time series with 64 points.

• Compute the maximum value from each block and fit the 128 
maxima to a Gumbel distribution.
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Undamaged
(Training)

Undamaged
(Testing)

Establishment of Decision Boundaries

Damaged
(Testing)

From EVS
# of outliers: 9

From Normal
# of outliers: 48

# of Expected outliers
= 1% of 1000 points
= 10 outliers
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Container

Detection of Rattling

In-Axis 
Accelerometer

Off-Axis 
Accelerometer

Base Excitation at 18 Hz

Internal
component

Bumper

Spring

Frictionless Roller
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Rattling

Acceleration Response

Rattling
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Discontinuity Detection via Holder Exponent

Objective:  Identify discontinuity in signals that can be 
caused by certain types of damage.

Definition: The Holder Exponent is a measure of the 
regularity of the signal. The regularity of the signal is the 
number of continuous derivatives that the signal 
possesses.

Application: Examples of damage that might induce 
discontinuity into the dynamic response signal include:
– Opening and closing of cracks
– A loose joint that is allowing contact (rattle) to occur
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Holder Exponent Analysis
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Holder Exponent Analysis

Scalogram

Slop = Holder Exponent
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Scalogram from Wavelet Transform
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Holder Exponent Analysis

(1) Find the max drop (2) Threshold = C x max drop (3) Discontinuity > Threshold
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Summary

Cast structural health monitoring problems in the 
framework of statistical pattern recognition.
Developed various signal-based damage  detection 
algorithms.
Embed damage detection algorithms into on-board 
microprocessors.
Address data normalization issue explicitly.
Decision making is based on rigorous statistical 
modeling.
Provide a suite of data interrogation algorithms for 
structural health monitoring in the format of GUI 
software called DIAMOND II (patent pending).


