# Application of Extreme Value Statistics for Structural Health Monitoring

Hoon Sohn

Weapon Response Group Engineering Sciences and Applications Division Los Alamos National Laboratory Los Alamos, New Mexico, USA.

> Presented at Uncertainty Quantification Working Group May 1st, 2003

- Step 1: Damage Identification
- Step 2: Damage Localization
- Step 3: Damage Quantification
- Step 4: Damage Prognosis



#### **Structural Health Monitoring**



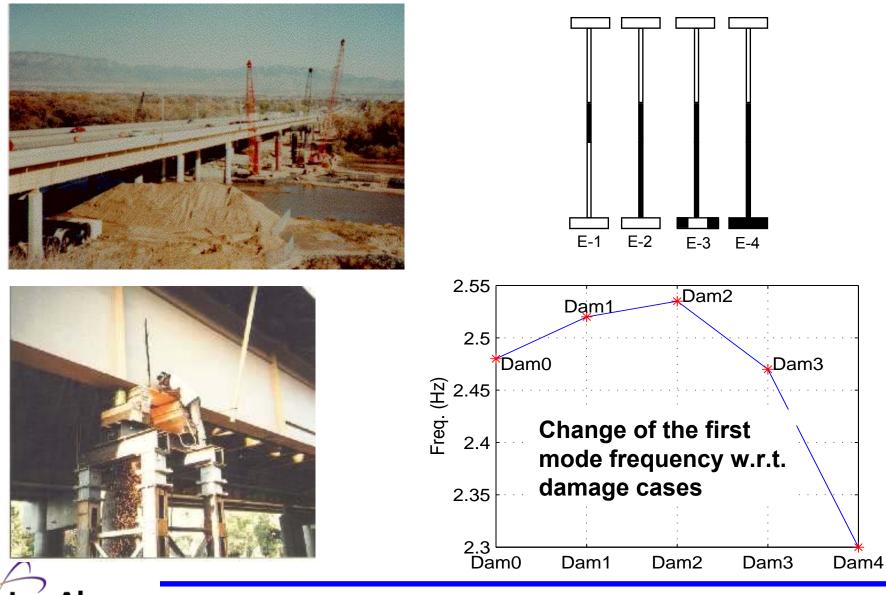
Is this bridge damaged?



#### Perform pattern comparison.

- Step 1: Operational Evaluation
- Step 2: Data Acquisition
- Step 3: Data Normalization
- Step 4: Feature Extraction
- Step 5: Statistical Inference

#### **Environmental Variation**



#### Example of Debris in Expansion Joint of the Alamosa Canyon Bridge

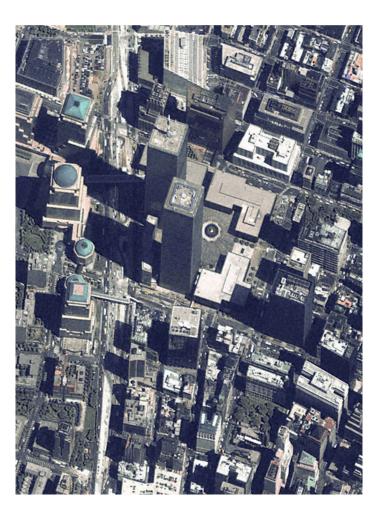


This debris can effect the boundary conditions of the structure and its response to environmental changes



#### **Statistical Pattern Recognition Paradigm for SHM**



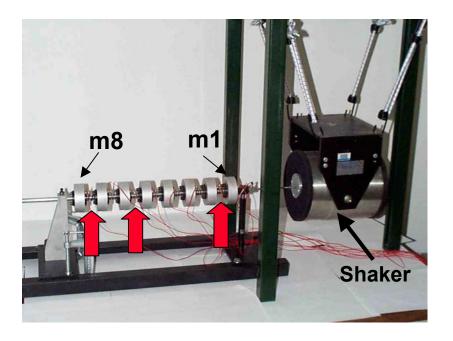


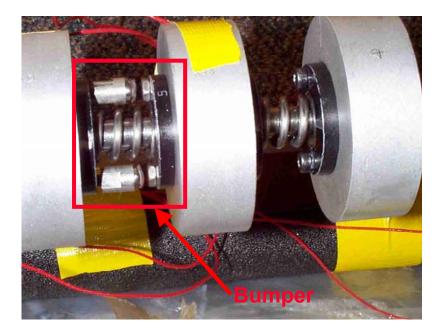
Before Sep. 11, 2001



Los Alamos Weapon Response Group, Engineering Sciences & Applications Division

#### Data Normalization Example [Sohn et al. 2002]



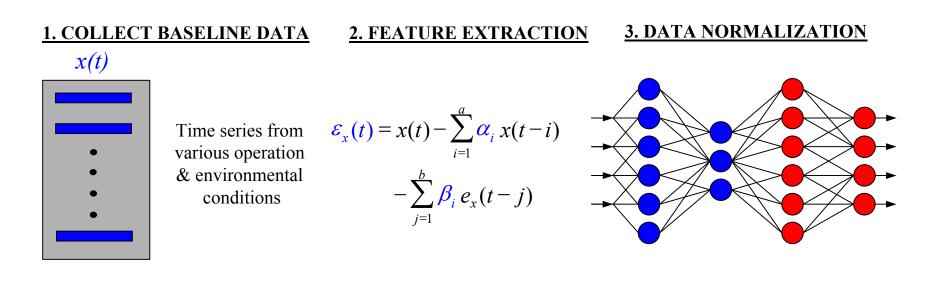


#### List of time series employed in this study

| Case | Description          | Input level         | Data # per input | Total data # |
|------|----------------------|---------------------|------------------|--------------|
| 0    | No bumper            | 3, 4, 5, 6, 7 Volts | 15 sets          | 75 sets      |
| 1    | Bumper between m1-m2 | 3, 4, 5, 6, 7 Volts | 5 sets           | 25 sets      |
| 2    | Bumper between m5-m6 | 3, 4, 5, 6, 7 Volts | 5 sets           | 25 sets      |
| 3    | Bumper between m7-m8 | 4, 5, 6, 7 Volts    | 5 sets           | 20 sets      |



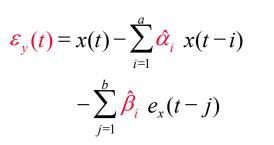
## **Outline of Damage Diagnosis using AR-ARX, Auto-Associative Network and Hypothesis Test**



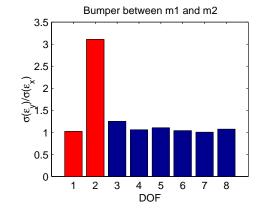
**4. FEATURE EXTRACTION** 

#### **5. STATISTICAL INFERENCE**

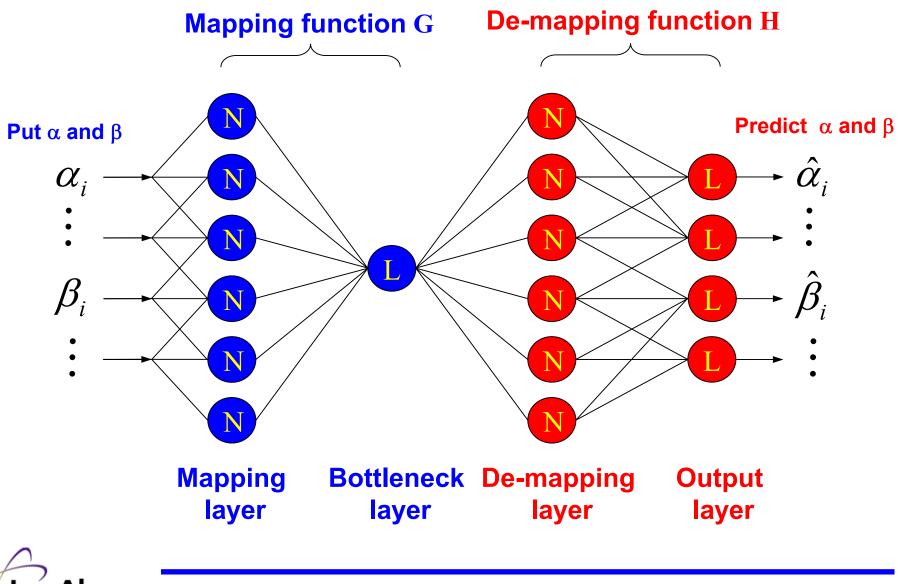




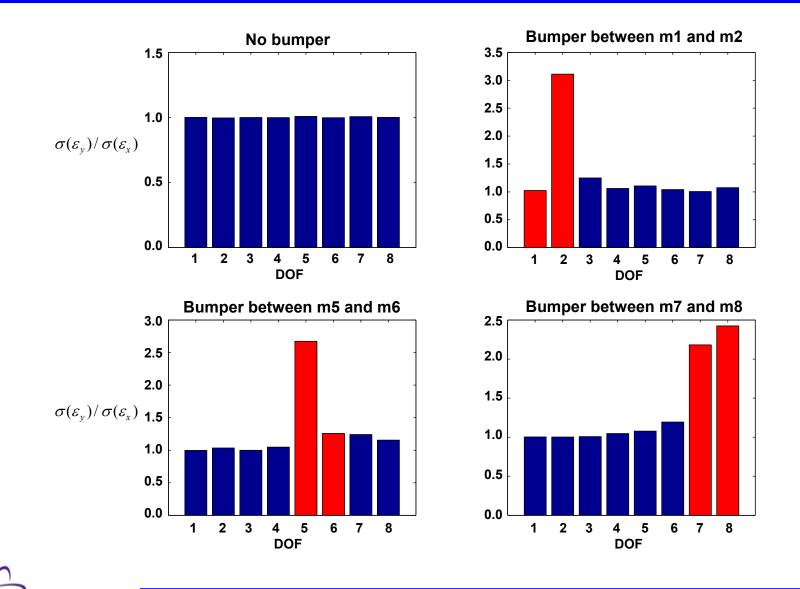
 $H_o: \sigma(\mathcal{E}_y) \leq \sigma(\mathcal{E}_x)$  $H_1: \sigma(\mathcal{E}_v) \geq \sigma(\mathcal{E}_x)$ 



#### **Auto-Associative Neural Network for Data Normalization**

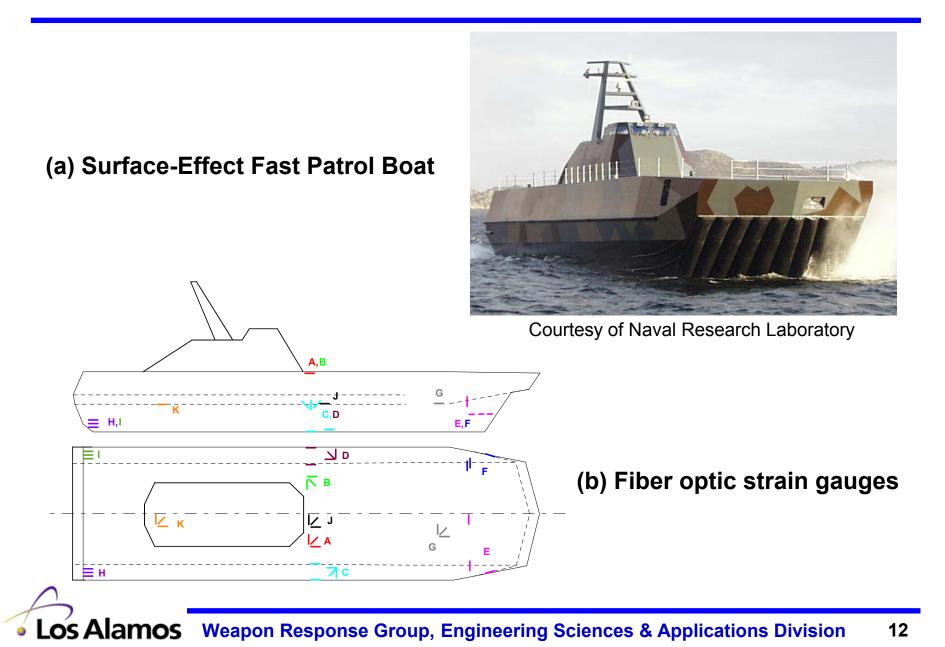


#### **Damage Localization**

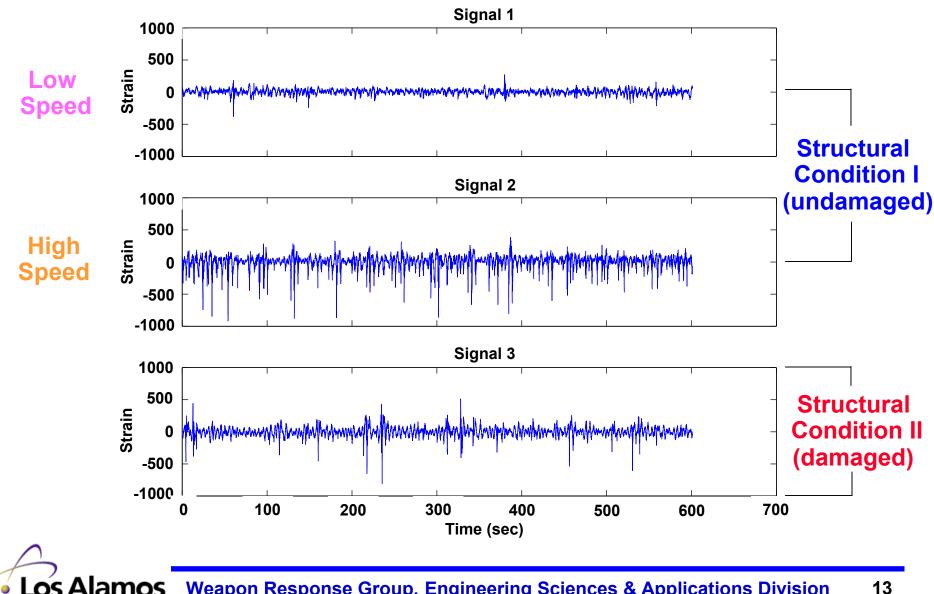


0

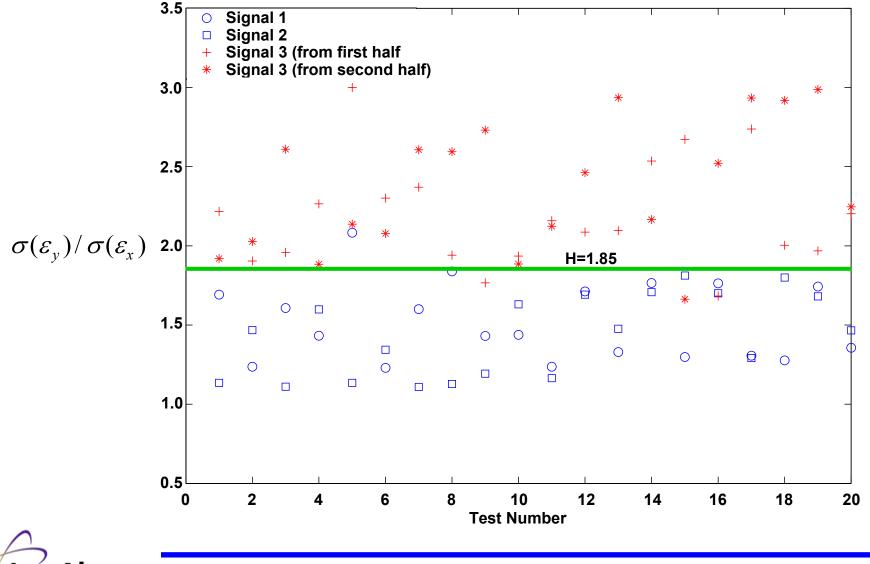
#### **Real World Application [Sohn et al. 2001]**



#### **Raw Dynamic Strain Time Series Data**

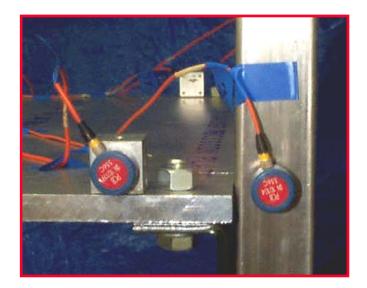


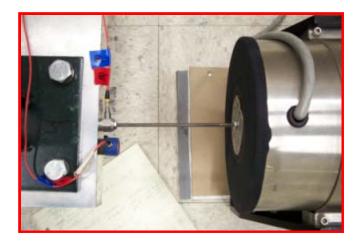
Damage Classification using  $\sigma(\varepsilon_v)/\sigma(\varepsilon_x)$ 



#### **A Moment Resisting Frame Structure Model**

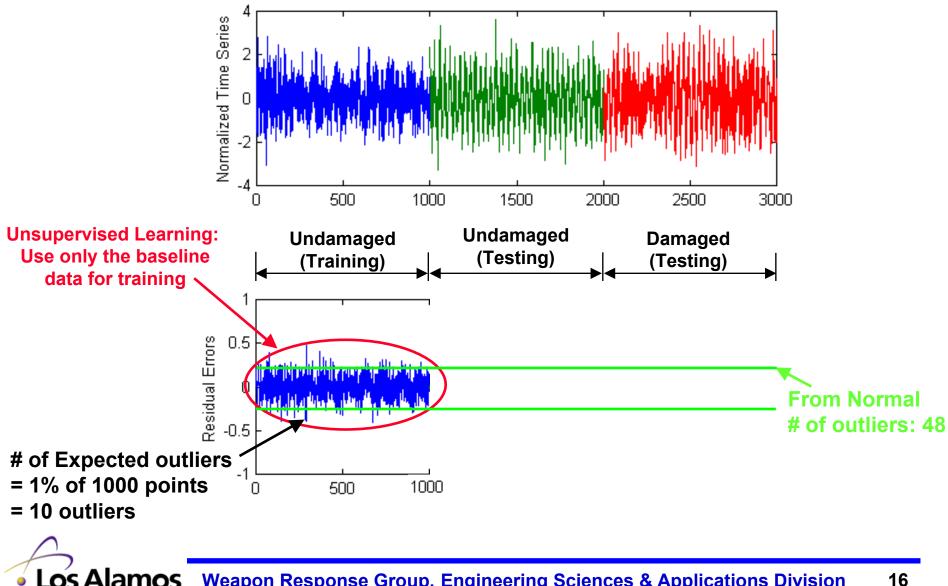






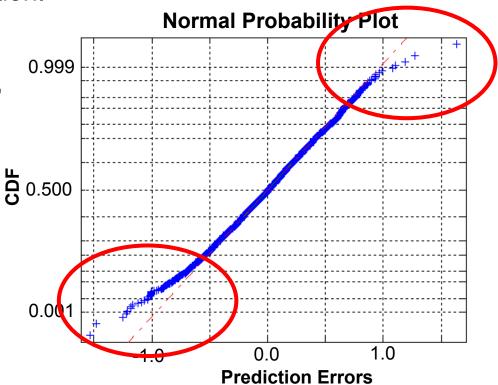


#### **Establishment of Decision Boundaries**



### **Normality Assumption of Data**

- Let's look at the baseline prediction errors to see whether they have a normal distribution or not.
- A normal probability plot graphically assesses whether the data come from a normal distribution.
- If the data are normal, the plot will be linear. Otherwise, there would be curvature in the plot.
- The central population of data seems to fit to the normal distribution well, but the tails do not.



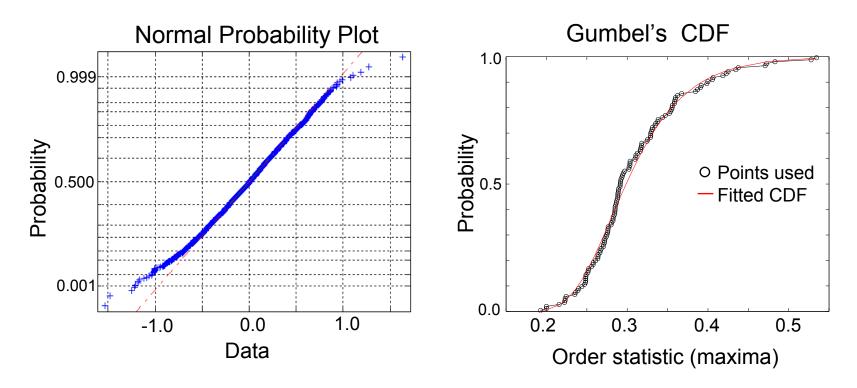
- In general, the distribution type of the parent data is unknown, and there are infinite numbers of candidate distributions.
- There are only three types of distributions for extreme (maximum or minimum) values regardless the distribution type of the parent data [Fisher and Tippett, 1928].
- That means, the model selection for the extreme values becomes much easier, because there are only three models to choose. (Gumbel, Weibull, Frechet distributions)

#### **Feasible Cumulative Density Functions for Maxima**

From Castillo [1988]:

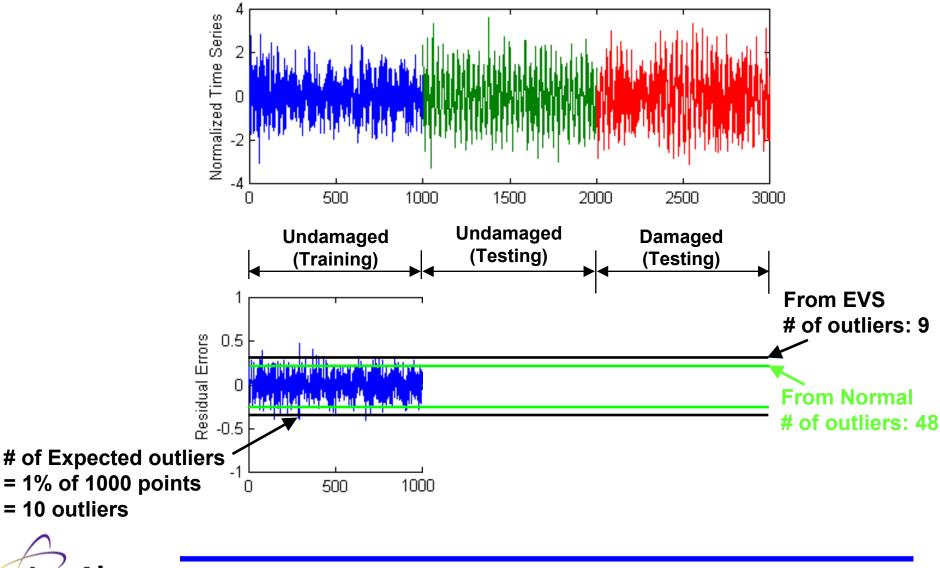
• Gumbel 
$$F(x) = \exp\left[-\exp\left(-\frac{x-\lambda}{\delta}\right)\right] -\infty < x < \infty, \delta > 0$$
  
• Weibull:  $F(x) = \begin{cases} 1 & \text{if } x \ge \lambda \\ \exp\left[-\left(\frac{\lambda-x}{\delta}\right)^{\beta}\right] & \text{otherwise} \end{cases}$   
• Frechet:  $F(x) = \begin{cases} \exp\left[-\left(\frac{\delta}{x-\lambda}\right)^{\beta}\right] & \text{if } x \ge \lambda \\ 0 & \text{otherwise} \end{cases}$ 

#### **Fitting to Gumbel Distribution**



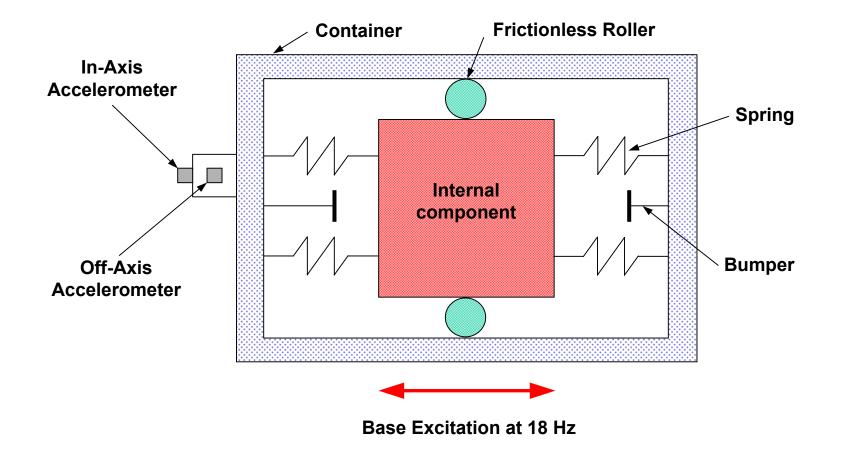
- Divide the original times series with 8192 data points into 128 time series with 64 points.
- Compute the maximum value from each block and fit the 128 maxima to a Gumbel distribution.

#### **Establishment of Decision Boundaries**



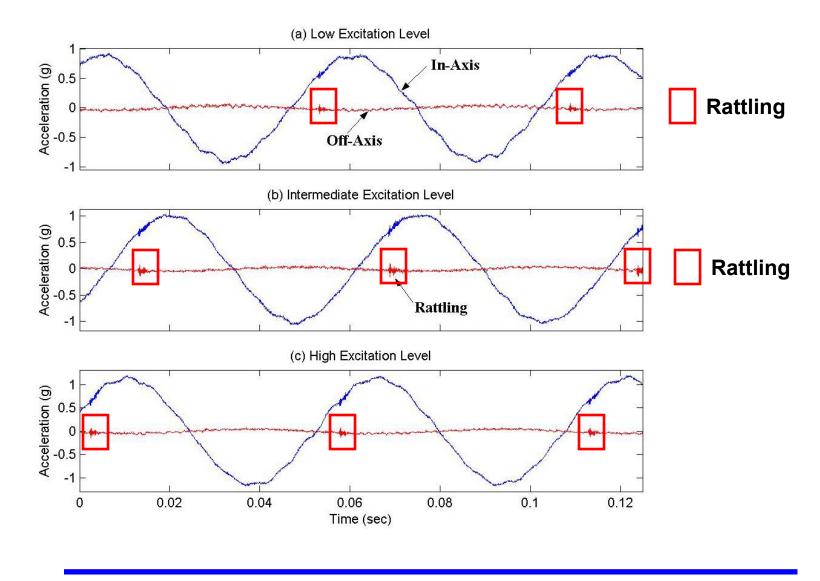
**Los Alamos** Weapon Response Group, Engineering Sciences & Applications Division 21

#### **Detection of Rattling**





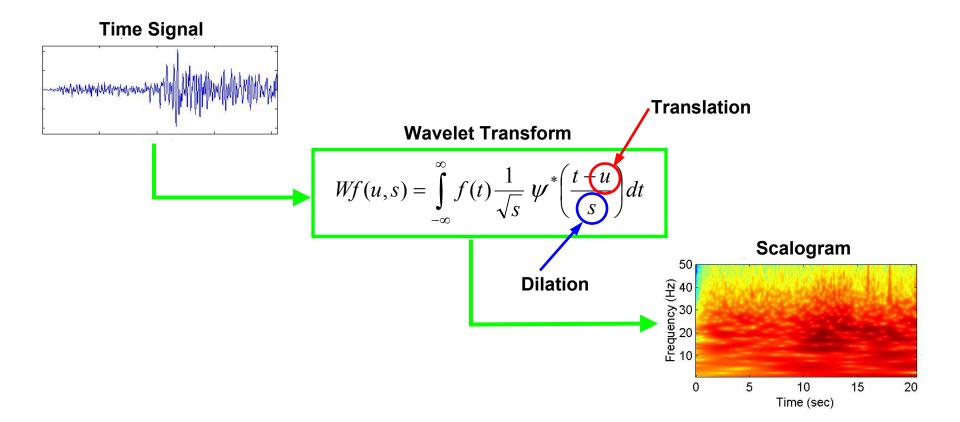
#### **Acceleration Response**



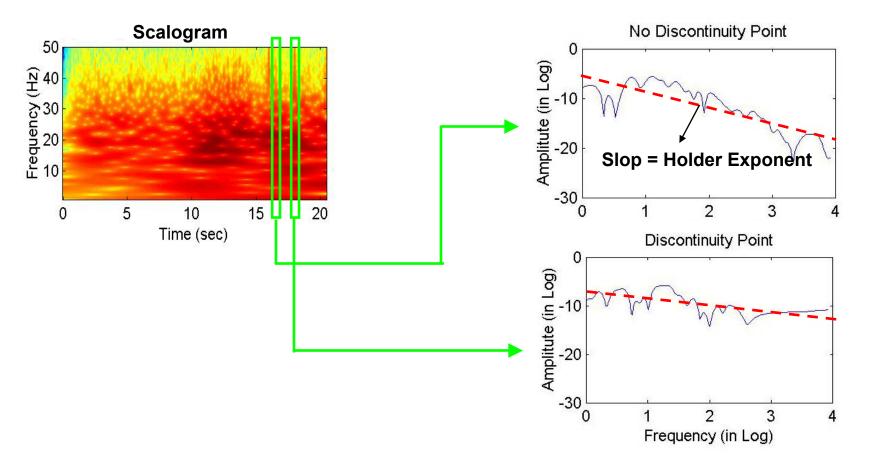
**Los Alamos** Weapon Response Group, Engineering Sciences & Applications Division 23

- Definition: The Holder Exponent is a measure of the regularity of the signal. The regularity of the signal is the number of continuous derivatives that the signal possesses.
- Objective: Identify discontinuity in signals that can be caused by certain types of damage.
- Application: Examples of damage that might induce discontinuity into the dynamic response signal include:
  - Opening and closing of cracks
  - A loose joint that is allowing contact (rattle) to occur

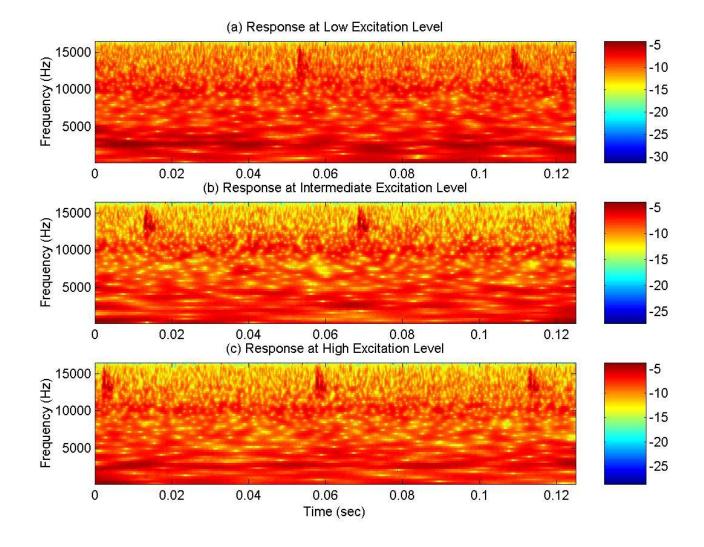
#### **Holder Exponent Analysis**



#### **Holder Exponent Analysis**

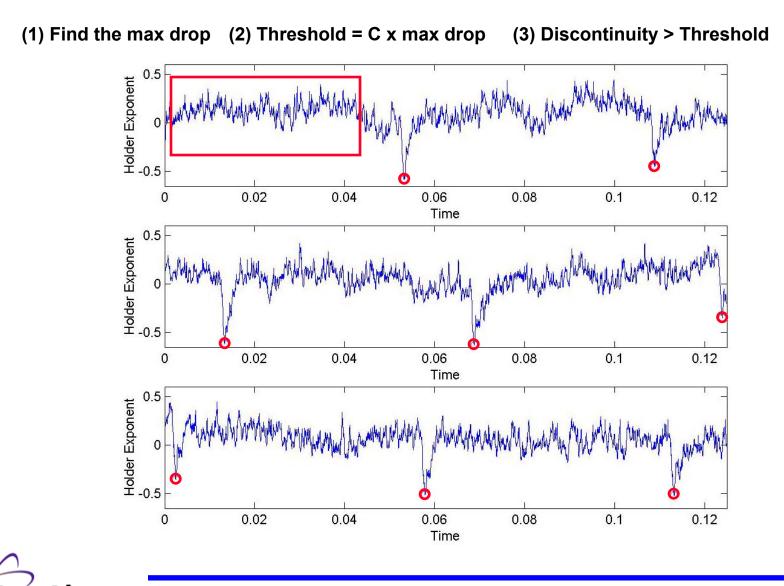


#### **Scalogram from Wavelet Transform**



#### **Los Alamos** Weapon Response Group, Engineering Sciences & Applications Division 27

#### **Holder Exponent Analysis**



0

## Summary

- Cast structural health monitoring problems in the framework of statistical pattern recognition.
- Developed various signal-based damage detection algorithms.
- Embed damage detection algorithms into on-board microprocessors.
- Address data normalization issue explicitly.
- Decision making is based on rigorous statistical modeling.
- Provide a suite of data interrogation algorithms for structural health monitoring in the format of GUI software called DIAMOND II (patent pending).