Random Fields as An Alternative to Monte Carlo and **Analytical Methods for Uncertainty and Reliability Analyses**

LANL UQWG 2/21/02 (+)

David Robinson Risk and Reliability Analysis Dept http://reliability.sandia.gov/crax/robin.html 505-844-5883

Sandia National Laboratories

Outline

- Structural Reliability Analysis Methods
- Field Analysis Methodology
 - Spatial Estimation of Response Function
 - Failure Probability Estimation
- Generation of Samples
 - Pseudo-MC
 - Quasi-MC
 - Comparison
- Test Cases
- Stockpile applications

Structural Reliability Methods

- Analytical Methods
 - general procedure:
 - » iterative selection of samples from unknown performance function
 - » regression methods to approximate performance function
 - » search technique to find most probable point(s)
 - no info regarding sample points (success/failure) is used
- Sampling Methods
 - general procedure:
 - » sample of observations from unknown performance function
 - » success/failure evaluation at each point
 - no info on performance function is used in analysis
- Importance sampling lies between these extremes and therefore utilizes more information in making probability estimates offering one explanation as to why IS methods are so efficient
- Proposed Approach Field Analysis Method
 - also lies between the extremes and can be used with any sampling method, including importance sampling, to improve efficiency
 - utilizes spatial statistics to probabilistically characterize the likelihood of any point being the success or failure region

Spatial Estimation of Response Function

- Assumptions:
 - Underlying response model fixed but unknown function of random variables

$$Z(\mathbf{s}) = Z(x_1, x_2, \dots, x_d)$$

- Z(s) can be <u>locally</u> characterized by a linear combination of known functions:

$$Z(\mathbf{s}) = \sum_{i=1}^{p+1} f_{i-1}(\mathbf{s})\beta_{i-1} + \delta(\mathbf{s})$$

- where: $\delta(\mathbf{s})$ is an intrinsically stationary random process, $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ is a vector of unknown parameters and $f_i(\mathbf{s})$ are an independent set of known functions, i.e $x_1^0, x_1^1, x_1x_2, x_1^2, \dots$
- Expected value and covariance of Z(s) can be estimated:

$$E[Z(\mathbf{s})] = m$$
$$E\{[Z(\mathbf{s}) - m][Z(\mathbf{s} + \mathbf{h}) - m]\} = C(\mathbf{s}, \mathbf{s} + \mathbf{h}) = C(|\mathbf{h}|)$$

• A specific form must be chosen for C(h), however the analysis is very robust to the particular form chosen

Spatial Estimation of Response Function (cont.)

 An estimate the mean of the response at any particular point in the design space is composed of a linear combination of neighboring observations

$$\hat{Z}(\mathbf{s}_o) = \sum_{i=1}^N \lambda_i Z(\mathbf{s}_i)$$

where the weights are found from:

$$\mathbf{w} = \left(\lambda_1, \lambda_2, \dots, \lambda_N, -\beta_0, -\beta_1, \dots, -\beta_p\right)^T = \mathbf{K}^{-1}\mathbf{c}$$

given:

$$\mathbf{c} = \left(C(\mathbf{s}_o - \mathbf{s}_1), \dots, C(\mathbf{s}_o - \mathbf{s}_N), f_0(\mathbf{s}_o), \dots, f_p(\mathbf{s}_o)\right)^T$$
$$\mathbf{K} = \begin{cases} C(\mathbf{s}_i - \mathbf{s}_j), & i = 1, \dots, N; \quad j = 1, \dots, N \\ f_{j-1-N}(\mathbf{s}_i), & i = 1, \dots, N; \quad j = N+1, \dots, N+p+1 \\ 0, & i = N+1, \dots, N+p+1; \quad j = N+1, \dots, N+p+1 \end{cases}$$

An estimate of the variance of the response at any point can then be estimated: $\sigma_e^2(\mathbf{s}_o) = C(0) - \mathbf{w}^T \mathbf{c}$

Failure Probability Estimation

- At each point on the response surface an estimate of the mean and variance of the estimation error is now available
- Under the assumption of a Gaussian error process, it is possible to estimate the probability that any selected point is a member of either the success or failure region

$$\Pr\{Z(\mathbf{s}_i) < z_{crit} \mid \mathbf{S} = \mathbf{s}_i\} = \Phi\left(\frac{Z_{crit} - \mu(\mathbf{s}_i)}{\sigma(\mathbf{s}_i)}\right)$$

 If N points are selected then an estimate of the probability of failure is given by:

$$p_f = \frac{\sum_{i=1}^{N} \Phi\left(\frac{Z_{crit} - \mu(\mathbf{s}_i)}{\sigma(\mathbf{s}_i)}\right)}{N}$$

Pseudo-random Sampling

- Monte Carlo 0
 - developed in nuclear weapons programs in the 1940's
 - let $I^s = [0,1]^s$ be a *s*-dimensional cube and let $f(\mathbf{t})$ be defined on I^s

 - let $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$ be a pseudo-random sample of N points from I^s Given these samples Monte Carlo analysis provides an approximation of a continuous average with discrete average

$$\int_{I^{s}} f(\mathbf{t}) d\mathbf{t} \approx \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_{i})$$

- **PLUS**:
 - » sampling can be conducted sequentially (easy to add new samples)
 - » error bounds not dependent on dimension $s = O(N^{-1/2})$
- **MINUS:**
 - Probabilistic error bounds depends on equidistribution of sample points in **»**
 - » no methodical method of constructing sample to achieve error bound, therefore
 - rate of convergence is very slow **»**

Pseudo-random Sampling

- Latin Hypercube Sampling
 - also based on pseudo-random sampling
 - form of stratified sampling in which the samples are 'forced' to be dispersed across the support space
 - number of samples dictates the number of regions
 - PLUS:
 - » significant reduction in number of samples compared to traditional MC
 - MINUS:
 - » samples do not provide good uniformity across I^s
 - » samples can not be generated sequentially

Quasi-random Sampling

- Quasi-random sample is commonly referred to as a low-discrepancy sequence
- Low discrepancy sequence is one that places sample points nearly uniformly in the sample space of interest
- Low-discrepancy \rightarrow low integration error
- <u>Deterministic</u> error bounds $O(N^{-1}(\log N)^{k-1})$
- Variety of sequences
 - Halton (simple, leaped, RR2)
 - Hammersley
 - Fauer
 - Sobol

Simple Halton Sequence

 Defined in s-dimensional space by using s prime bases to generate a sequence of N quasi-random vectors

$$x_n = (\Phi_{b_1}(n), \Phi_{b_2}(n), ..., \Phi_{b_s}(n)), \qquad n = 1, 2, ..., N$$

where the radix inverse function is defined:

$$\Phi_{b_j}(n) = 0.n_0 n_1 \cdots n_s = n_0 b_j^{-1} + n_1 b_j^{-2} + \dots + n_s b_j^{-s-1}$$
$$= \sum_{i=0}^s n_i b_j^{-i-1}$$

• Integer coefficients $n_i (0 \le n_i \le b_j)$ result from expansion of integer n in base b_i :

$$n = n_s n_{s-1} \cdots n_2 n_1 n_0 = n_0 + n_1 b_j + n_2 b_j^2 + \cdots + n_s b_j^s$$
$$= \sum_{i=0}^s n_i b_j^i$$
National Laboratories

LANL UQWG 2/21

andia

Example

Halton sequence for N=6, s=3

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
n	$b_1 = 2$	$b_2 = 3$	$b_3 = 5$
1	0.5	0.333333	0.2
2	0.25	0.666667	0.4
3	0.75	0.111111	0.6
4	0.125	0.444444	0.8
5	0.625	0.777778	0.04
6	0.375	0.222222	0.24

Example

Halton sequence for N=12, s=3

n	x ₁ b ₁ =2	x ₂ b ₂ =3	x ₃ b ₃ =5	n	$\begin{array}{c} x_1 \\ b_1 = 2 \end{array}$	x ₂ b ₂ =3	x ₃ b ₃ =5
1	0.5	0.333333	0.2	7	0.875	0.555556	0.44
2	0.25	0.666667	0.4	8	0.0625	0.888889	0.64
3	0.75	0.111111	0.6	9	0.5625	0.037037	0.84
4	0.125	0.444444	0.8	10	0.3125	0.37037	0.08
5	0.625	0.777778	0.04	11	0.8125	0.703704	0.28
6	0.375	0.222222	0.24	12	0.1875	0.148148	0.48

Discrepancy

Comparisons

Example 1:
$$g_1 = \beta \sqrt{n} - \sum_{i=1}^n U_i$$

Comparisons

Example 6: $g_6 = X_1 + 2X_2 + 2X_3 + X_4 - 5X_5 - 5X_6$ + $0.001\sum_{i=1}^{6} \sin(100X_i)$

q-MC Discussion

- <u>Overall</u> the Halton Leaped quasi-Monte Carlo sampling proved to have lower mean estimation error and/or have faster convergence
- There were unique cases where LHS was better however:
 - primarily for very small samples and
 - repeated samples were inconclusive (sometimes better/worse)
- Major benefit of Halton-type sequences was the ability to sequentially add samples as results converged - this is not possible with LHS
- Performance function evaluation is becoming computationally burdensome (100K processor hours for single evaluation)
- Ability to reduce the number of samples and sequentially sample is becoming critical

Test Cases

• Test Cases (all treated as 'black boxes - no derivative info used)

- Case 1:
$$Z_1(x_1, x_2) = 2x_2 + (x_1x_2) - (x_1 - 1)^2 - 2$$

with:
 $X_1 \sim Ln(\mu = 3, \sigma = 1.5)$
 $X_2 \sim Ln(\mu = 3, \sigma = 2.25)$

- Case 2:

$$Z_2(x_1, x_2, x_3, x_4) = k_1 \sqrt{\frac{12x_1 x_3^2}{x_2 x_4^{k_2}}}$$

where: $k_1 = 3.52, k_2 = 4.0$

Random Variable	Mean	Coefficient of Variation	
<i>x</i> ₁	10000000	0.03	
<i>x</i> ₂	0.00025	0.05	
<i>x</i> ₃	0.980	0.05	
<i>x</i> ₄	20.0	0.05	

Sample Generation

- Sample Generation
 - quasi-Monte Carlo
 - use of Halton sequence permits iterative generation of samples
 - could use importance sampling methods to focus new samples, but was not beneficial in these two test cases

Intermediate Results - Case 1

(based on only first 20 samples)

MPP Location and Resampling

 Probability-based identification of the location of MPP(s) can be accomplished by combining the likelihood function and the spatial PDF of the random field

• Resampling can then be biased in the area of the MPP locations similar to the approach used in various importance sampling methods

Results - Case 1 and Case 2

LANL UQWG 2/21

Conclusions

- Good things:
 - For all test cases investigated thus far, the new method requires significantly fewer function evaluations in comparison with traditional analytically-based FORM/SORM methods
 - The number of function evaluations is not dependent on the dimension of the design space
 - Without sampling bias, the number of function evaluations will always be less than or equal to the number required for a full quasi-Monte Carlo evaluation and pseudo-MC methods such as LHS
- Bad things:
 - New method can run into numerical problems in the far extremes of the design space

Cassandra Project

