

DEVELOPING INFORMATION-GAP MODELS OF UNCERTAINTY FOR TEST-ANALYSIS CORRELATION

François M. Hemez

Engineering Sciences & Applications, Weapon Response (ESA-WR)

hemez@lanl.gov

Approved for unlimited release on July 1st, 2002. LA-UR-02-4033. Unclassified.

ENGINEERING SCIENCES & APPLICATIONS – WEAPON RESPONSE

UNCLASSIFIED

Abstract

Developing Information-gap Models of Uncertainty for Test-analysis Correlation (*Approved for unlimited release on July 1st, 2002. LA-UR-02-4033. Unclassified.*)

Relying on numerical simulations, as opposed to field measurements, to analyze the structural response of complex systems requires that the predictive accuracy of the models be assessed. This activity is generally known as "model validation". Model validation requires the comparison of model predictions with test measurements at several points of the design / operational space. For example, numerical models of flutter must be validated for various combinations of fluid velocity and wing angle-of-attack. Because validation experiments become expensive when the system investigated is complex, only a few data sets are generally available. This lack of adequate representation of the design / operational space makes it questionable whether statistical models of predictive accuracy can be developed.

In this work, we focus on one aspect of model validation that consists in assessing the robustness of a decision to uncertainty. In this context, "decision" refers to assessing the accuracy of predictions and verifying that the accuracy is adequate for the purpose intended. Likewise, "uncertainty" can represent experimental variability, variability of the model's parameters but also inappropriate modeling rules in regions of the design / operational space where experiments are not available.

An alternative to the theory of probability is applied to the problem of assessing the robustness of model predictions to sources of uncertainty. The analysis technique is based on the theory of information-gap, which models the clustering of uncertain events in embedded convex sets instead of assuming a probability structure. Unlike other theories developed to represent uncertainty, information-gap does not assume probability density functions (which the theory of probability does) or membership functions (which fuzzy logic does). It is therefore appropriate in cases where limited data sets are available. The main disadvantage of information-gap is that the efficiency of sampling techniques cannot be exploited because no probability structure is assumed. Instead, the robustness of a decision with respect to uncertainty is studied by solving a sequence of optimization problems, which becomes computationally expensive as the number of decision and uncertainty variables increases.

The concepts are illustrated with the propagation of a transient impact through a layer of hyper-elastic material. The numerical model includes a softening of the hyper-elastic material's constitutive law and contact dynamics at the interface between metallic and crushable materials. Although computationally expensive, it is demonstrated that the information-gap reasoning can greatly enhance our understanding of a moderately complex system when the theory of probability cannot be applied.

ENGINEERING SCIENCES & APPLICATIONS – WEAPON RESPONSE

UNCLASSIFIED

Outline

- The Foam Impact Experiment
 - Brief Overview of Information-gap Theory
 - Implementation and Results of Info-gap Analysis
 - Perspectives for Decision-making

Hyper-foam Impact Experiments

• Physical experiments are performed to study the propagation of an impact through an assembly of metallic and crushable (foam pad) components.

Experimental Data

• Several configurations of the system are tested by varying the foam pad thickness and drop height.

Variability

• Significant variability is observed from the replicate measurements during physical testing.

Response Features

• The response features of interest are the peak acceleration (*PAC*) and the time-of-arrival (*TOA*) at output sensor 2.

SDOF Modeling

• A single degree-of-freedom (SDOF) oscillator model is developed to predict the features of interest without describing the dynamics with high-fidelity.

SCIENCES & APPLICATIONS – WEAPON RESPONSE

UNCLASSIFIED

The only source of non-linearity of the SDOF model is defined by the internal force $F_{int}(t)$.

Parameters of the SDOF Model

• The input variables that control the SDOF model are:

Variable	Description	Minimum	Maximum	Nominal
1	Foam Thickness (inch)	0.25	0.50	0.25
2	Drop Height (inch)	13.00	155.00	13.00
3	Linear stiffness (lbf/inch)	0.00	?	?
4	Damping (lbf x sec/inch)	0.00	?	?
5	Cubic stiffness (lbf/inch ³)	0.00	?	?

• Example of a cubic stiffness non-linearity:

Finite Element Modeling

• A finite element (FE) model is developed to simulate the impact dynamics with high-fidelity.

Parameters of the FE Model

• The input variables that control the FE model are:

Variable Description		Minimum	Maximum	Nominal
1	Foam Thickness (inch)	0.25	0.50	0.25
2	Drop Height (inch)	13.00	155.00	13.00
3	Angle 1 (degree)	0.00	2.00	0.50
4	Angle 2 (degree)	0.00	2.00	0.50
5	Bolt Preload (psi)	0.00	500.00	250.00
6	Stress Scaling (unitless)	0.80	1.20	1.00
7	Strain Scaling (unitless)	0.80	1.00	1.00
8	Input Scaling (unitless)	0.90	1.10	1.00
9	Friction (unitless)	0.00	1.00	0.10
10	Bulk Viscosity (unitless)	0.00	1.00	0.60

ENGINEERING SCIENCES & APPLICATIONS – WEAPON RESPONSE

UNCLASSIFIED

Predictive Accuracy Assessment

• The objective of this study is to assess the model's predictive accuracy throughout the design space.

Requirements

- To generate a numerical simulation that we can trust to predict the dynamics of interest, we need to ...
 - Quantify the experimental uncertainty.
 - Quantify the modeling uncertainty.
 - Understand where the uncertainty comes from and what its effects are.
 - Make decisions: Is the model good enough?

Outline

- The Foam Impact Experiment
- Brief Overview of Information-gap Theory
 - Implementation and Results of Info-gap Analysis
 - Perspectives for Decision-making

Motivations

- How to describe uncertainty when *evidence* is not available that probability theory is adequate?
- How to describe expert judgment, scarce data sets, rare events or epistemic uncertainty (i.e., lack-ofknowledge)?
- How to interface other theories with probabilities?
- How to propagation alternate models of uncertainty through our "black-box" computational codes?

Theory of Information-gap

• Information-gap seeks to represent the *gap* between what is currently known and what is needed to make a decision.

ncertainty Level a				
	Family of nested sets: $U(u_o;a)?$ $u \mid 2u? u_o? W^{?I} u? u_o?? a',$	a?0		

• The basic principle of information-gap is to model the *clustering* of uncertain events in families of nested sets instead of assuming a probability structure.

ASC ASC Marce Marcel Ma

UNCLASSIFIED

Components of Info-gap

• The three components of info-gap analysis are the *decision model*, the *info-gap model* of uncertainty and the *performance criterion*.

Remarks

- An information-gap model includes *all possible* representations of uncertainty within the nested sets.
- Information-gap focuses on *decision making* instead of attempting to represent the uncertainty.
- Sampling cannot be taken advantage of to propagate uncertainty because no probability structure is assumed.

 Optimization is used to propagate uncertainty, which may be less efficient & rigorous (convergence?) than sampling.

Outline

- The Foam Impact Experiment
- Brief Overview of Information-gap Theory
- Implementation and Results of Info-gap Analysis
 - Perspectives for Decision-making

Engineering Application

• The objective is to identify the numerical models that best reproduce the physical measurements.

Analogy

• The *performance* of a numerical model is deemed acceptable if the model provides less than $R_C=20\%$ test-analysis correlation error.

Information-gap Analysis	Symbol	Foam Impact Application	
Decision model	y=M(q;u)	Finite element model	
Output	у	Features PAC, TOA	
Decision variables	\boldsymbol{q}	Input parameters, p_1, p_2, \dots	
Uncertainty variables	и	Input parameters, p_1, p_2, \ldots	
Horizon-of-uncertainty	a	Range of an interval	
Performance criterion	R(q;u)	Prediction error , $e = y^{Test} - y $	
Acceptance criterion	$R(q;u) < R_C$	"No more than 20% error"	

ENGINEERING SCIENCES & APPLICATIONS – WEAPON RESPONSE

UNCLASSIFIED

Information-gap Analysis — Step 1

Information-gap Models

• Examples of info-gap models used in the analysis:

- Uncorrelated intervals: $U(u_o;a)$? $\mathcal{U} \mid -?$? $\mathcal{U} : u_o$???? a?, a? 0

- Correlated intervals: $U(u_o;a)? \overset{g}{u} | \overset{g}{u} ? u_o \overset{T}{?} W^{?1} \overset{g}{u} ? u_o ?? a, a? 0$

- Hybrid probabilistic/info-gap models: $u ? N(?_u;?_{uu}),$

UNCLASSIFIED

 $U(?_{o};?_{o};a;b)??(?_{u};?_{uu})||?_{u}??_{o}|? a \text{ and } ||?_{uu}??_{o}||? b?,$ a?0, b?0

Information-gap Analysis — Step 2

• The allowable uncertainty a^* is obtained by reading the curve of performance (R^*) versus uncertainty (a) backwards, starting from the target performance R_C .

Immunity to Uncertainty

• Question of *immunity*: What is the *largest* level of uncertainty *a*^{*} that the system can sustain without sacrificing the performance requirement, *R*?*R*_{*C*}?

The immunity *a*^{*} quantifies the *adverse* effect of uncertainty on the system's performance *R*(*q*;*u*).

?*? Argmax max $R(q;u) | R(q;u) ? R_C?$??0 $U(u_0;?)$?

Opportunity Arising From Uncertainty

• Question of *opportunity*: What is the *smallest* level of uncertainty b^* that could potentially improve the performance while satisfying the requirement, $R^2R_C^2$?

Decision-making

• When the sources of uncertainty are combined, which performance can be expected and how much uncertainty can be tolerated?

Hybrid Models of Uncertainty

• Can probability and info-gap models of uncertainty be embedded?

Outline

- The Foam Impact Experiment
- Brief Overview of Information-gap Theory
- Implementation and Results of Info-gap Analysis
- Perspectives for Decision-making

