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Overview
• Understanding physics simulations codes

► employ hierarchy of experiments, from basic to fully integrated
► role of Bayesian analysis - improve knowledge of models with 

each new experiment
• Statistical analysis – use of chi squared

► treatment of systematic uncertainties
• Analysis of experimental data to infer parameters of 

Preston-Tonks-Wallace plasticity model for tantalum
► characterize uncertainties in measurement data 
► estimate PTW parameters and their uncertainties
► check model by drawing Monte Carlo samples from posterior 

distribution and comparing to data
► demonstrate importance of including correlations
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Bayesian analysis in context of physics simulations
• Overall goal - describe uncertainties in simulations

► physics submodels
► experimental (set up and boundary) conditions
► calculations (grid size, …)

• Use best knowledge of physics processes
► rely on expertise of physics modelers and experimental data

• Bayesian foundation
► focus is as much on uncertainties in parameters as on their 

best value
► use of prior knowledge, e.g., previous experiments and expert 

judgment
► model checking; does model agree with experimental data? 
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Bayesian uncertainty analysis
• Uncertainties in parameters are 

characterized by probability 
density functions (pdf)

• Probability interpreted as 
quantitative measure of 
“degree of belief”

• This interpretation sometimes 
called “subjective probability”

• Rules of classical probability 
theory apply
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Analysis of hierarchy of experiments

Exp. 1 A

Exp. 2 A B  

Exp. 3 C Exp. 6
A B 
C D

Exp. 4 D

Partially 
integrated

Fully 
integrated

Basic

Exp. 5 C D  

• Information flow in analysis of series of experiments
• Bayesian calibration –

► analysis of each experiment updates model parameters (represented as A, 
B, C, etc.) and their uncertainties, consistent with previous analyses

► information about models accumulates
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Graphical probabilistic modeling
Propagate uncertainty through analyses of two experiments

α1

β1

p(α | Y1) p(β)

p(α, β |Y1, Y2)

p(Y2 | α, β )

• First experiment determines 
α, with uncertainties given by 
p(α |Y1)

• Second experiment not only 
determines β but also refines 
knowledge of α by Bayes law

• Outcome is joint pdf in α and
β, p(α, β |Y1,Y2) 
(correlations important!)

p(α | Y1)
Exp. 1 α Exp. 2 α β

p(α, β |Y1, Y2)p(α)

p(β)
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Uncertainty quantification for simulation codes
• Goal is to develop an uncertainty model for the 

simulation code by comparison to experimental 
measurements
► determine and quantify sources of uncertainty
► uncover potential inconsistencies of submodels with expts.
► possibly introduce additional submodels, as required

• Recursive process
► aim is to develop submodels that are consistent with all 

experiments (within uncertainties)
► a hierarchy of experiments helps substantiate submodels over 

wide range of physical conditions 
► each experiment potentially advances our understanding
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Hierarchy of experiments - plasticity 
• Basic characterization experiments –

measure stress-strain relationship at 
specific stain and strain rate 
► quasi-static – low strain rates
► Hopkinson bar – medium strain rates

• Partially integrated expts. - Taylor test
► covers range of strain rates
► extends range of physical conditions

• Full integrated experiments 
► mimic application as much as possible
► may involve extrapolation of operating range;  

introduces addition uncertainty
► integrated expts. can help reduce model uncertainties in 

their operating range; may expose model deficiencies
lo
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Determination of PTW parameters
• Goal is to assign plausible and defensible values to 

PTW parameters and their uncertainties
• Make use of data from quasi-static and Hopkinson-bar 

experiments (material-characterization experiments) 
• Process:

► estimate uncertainties in data based on statistical analysis and
expertise of material scientists

► translate experimental uncertainties into uncertainties in 
PTW parameters

► seek feedback and guidance from experts; try to capture their 
beliefs in overall uncertainty analysis; build consensus 
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PTW model for plastic deformation
• Preston-Tonks-Wallace model 

describes plastic behavior of metals
► provides stress σ (or s) as function of 

plastic strain εp for wide range of 
strain rate and temperature

► nonlinear, analytic formulation

• 8 parameters (for low strain rates) 
plus material-specific constants

• PTW model based on dislocation 
mechanics model
► does not include effects of anisotropy 

or material history
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The model and parameter inference
• We write the model as

► where y is a vector of physical quantities, which is modeled 
as a function of the independent variables vector x and
a represents the model parameters vector

• In inference, the aim is to determine:
► the parameters a from a set of n measurements di of y under 

specified conditions xi

► and the uncertainties in the parameter values

• This process is called parameter inference, model 
fitting (or regression); however, uncertainty analysis 
is often not done, only parameters estimated

( , )y y x a=
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Inference – Bayes rule  
• We wish to infer the parameters a of a model M, based 

on data d
• Use Bayes rule, which gives the posterior:

► where I represents general information that we have about the 
situation

► p(d | a, M, I) is the likelihood, the probability of the observed 
data, given the parameters, model, and general info

► p(a | M, I) is the prior, which represents what we know about 
the parameters exclusive of the data

• Note that inference requires specification of the prior

( | ) ( | ) ( | )a d d a  a∝p ,M,I p ,M, I p M,I
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Likelihood analysis – chi squared  
• When the errors in each measurement are Gaussian 

distributed and independent, likelihood is related to chi 
squared:

• χ2 is often approximately quadratic in the parameters a

► where â is the parameter vector at minimum χ2 and
K is the curvature matrix (aka the Hessian)

• The covariance matrix for the uncertainties in the 
estimated parameters is

( ) ( )2 2T1
2 ˆ ˆ ˆ( ) ( )χ χ= − − +a a a K a a a

2

2
21

2
1
2

[ ( )]( | ) exp( ) exp ad a
σ

χ −
−

⎧ ⎫⎡ ⎤
∝ − = ⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
∑ i i

i i

d yp

1Tˆ ˆcov( ) ( )( ) 2a a a a a C K −≡ − − ≡ =
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Characterization of chi-squared  
• Expand vector y around y0, and approximate:

• The derivative matrix is called the Jacobian, J
• Estimated parameters â minimize χ2 (MAP estimate)
• As a function of a, χ2 is approximately quadratic in a – â

► where K is the curvature matrix (aka the Hessian);

• Jacobian useful for finding min. χ2, i.e., optimization

( ) ( )2 2T1
2 ˆ ˆ ˆ( ) ( )χ χ= − − +a a a K a a a

0 0

0
( , ) ( )i

i i i i j j
j j a
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a

∂
= = + − +
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T; ; diag( , , , ...)
ˆ

K K JΛJ Λχ σ σ σ− − −∂
= = =

∂ ∂jk
j ka a a
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Advanced analysis
• Analysis of multiple data sets 

► to combine the data from multiple, independent data sets into 
a single analysis, the combined chi squared is 

► where p(dk | a, I) is the likelihood from kth data set

• Include Gaussian priors through Bayes theorem  

► for a Gaussian prior on a parameter aj

► where ãj is the default value for aj and σj
2 is assumed variance 

2 2
all k

k
χ χ= ∑
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Material-characterization experiments
• Data from quasi-static

compression experiments tend 
to be of high quality
► rms ‘noise’ º 0.1%
► thin data set to limit undue 

influence in likelihood

• Data from Hopkinson-bar
experiments tend to be of 
medium quality
► rms ‘noise’ º 1%

• Observe artifacts in the data
► arise from elastic-wave dispersion
► need to account for these

Hopkinson bar

Quasi-static

Ta, 300 °K, 0.1 s-1

5%

5%

Ta, 300 °K, 1300 s-1
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Repeatability of quasi-static experiments
• Low-carbon steel – has very 

consistent properties 
• Figures show quasi-static 

measurements for four samples
• Data after subtracting smooth 

curve shown in bottom figure 
• For each run:

► rms dev. ≈ 0.2 MPa (0.04%)
► random, independent “noise”

• From run-to-run: 
► rms dev. ≈ 3 MPa (0.6%)

• Sets lower limit on precision of 
quasi-static tests

†data supplied by S-R Chen, MST-8
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Repeatability of Hopkinson-bar experiments
• Figures show Hopkinson-bar 

measurements obtained with three 
low-carbon steel samples
► observe fluctuations in measurements
► produced by elastic waves reverberating in 

the sample
► appear “random” in nature

• Data after subtracting smooth curve 
shown in bottom figure 

• For each run:
► rms dev. ≈ 12 MPa (1.8%)
► highly correlated fluctuations

• Run-to-run variation is much smaller
• Treat fluctuations as a random process; 

characterize process for each run
†data supplied by S-R Chen, MST-8

curves offset by 30 MPa
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Hopkinson-bar measurements 
• Hopkinson-bar data are degraded 

by fluctuations, caused by elastic 
wave dispersion

• Treat these fluctuations as coming 
from a random process with a 
high degree of correlation from 
point to point

• Analyze by subtracting low-order 
polynomial from data to get 
fluctuations from smooth 
dependence
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Hopkinson-bar measurements
• Treat Hop-bar fluctuations as a 

correlated Gaussian process; 
covariance given by

► where x is independent variable, strain
► determine correlation length l and 

exponent p from data
► p @ 2; l @ 0.002  (about 4 samples)

• Realization of random process 
shows behavior similar to data 
fluctuations

• Thin data set to avoid giving data 
undue weight in likelihood

cov( , ) exp
px xy y

λ
⎧ ⎫′−⎪ ⎪⎡ ⎤′ ∝ −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

Realization from random process

Fluctuations in actual data
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Hopkinson-bar fluctuations
• Determine parameters of the 

Gaussian random process by 
minimizing the log-likelihood, 
given by

where C is a function of p and λ

► where x is independent variable (strain)
► minimum at l @ 0.0018 ± 0.0002 

(about 4 samples) for fixed p = 2
► similar analysis determines p = 2

( )
( ) ( )-1T1 1

2 2

ln ( | , ( ))

ln(det( ))

y x

y y C y y C

λ− =

′ ′− − +

p p

cov( , ) exp
px xy y

λ
⎧ ⎫′−⎪ ⎪⎡ ⎤′ ∝ −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
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Hopkinson-bar measurements
• Figure shows all data from 

Gaussian random process and 
thinned subset of points (red), 
taking every fourth point

• Figure at lower right shows 
uncertainty in average of n samples:
► dashed line is for uncorrelated noise
► solids lines for actual correlated noise 

(far right), and for data thinned by 
factor of two and four

• Effect of thinning data is to make 
samples less correlated; which is 
more appropriate when using 
standard expression for chi-squared 

Realization from random process
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Repeated experiments for tantalum
• Repeated experiments

► stability of measurements
► indication of random 

component of error
► may or may not indicate 

systematic error
• Figure shows curves 

obtained from four samples 
taken from different lots

• Sample-to-sample rms dev. 
≈ 8%

• Treat this variability as a
systematic uncertainty
common to each tantalum 
specimen/data set

†data supplied by S-R Chen, MST-8

repeated quasi-static expts
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Types of uncertainties in measurements
• Two major types of errors

► random error – different for each measurement
• in repeated measurements, get different answer each time
• often assumed to be statistically independent, but often aren’t

► systematic error – same for all measurements within a group
• component of measurements that remains unchanged
• for example, caused by error in calibration or zeroing 

• Nomenclature varies 
► physics – random error and systematic error
► statistics – random and bias
► metrology standards (NIST, ASME, ISO) –

random and systematic uncertainties (now)   
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Types of uncertainties in measurements
• Simple example – measurement of length of a pencil

► random error
• interpolation between ruler tick marks

► systematic error 
• accuracy of ruler’s calibration;

manufacturing defect, temperature, …

• Parallax in measurements
► reading depends on how 

person lines up pencil tip  
► random or systematic error? 

depends on whether measurements
always made by same person in the
same way or made by different people 

0 321 4cm
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Incorporating systematic effects (1)
• Fit straight line 

y = a + b x
to measurements of y, mi

• Figure shows fit to10 data points, 
each with si = 0.2

• “Best” fit by minimizing χ2:

• Assumptions
► measurements are independent
► standard errors in are known (si) 
► no systematic effects

Fit straight line to data

2
2
data

i
χ

σ
⎛ ⎞−
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y m
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Incorporating systematic effects (2)
• Uncertainties in the parameters a 

can be determined from the 
curvature matrix of χ2

• The covariance matrix is

• Upper figure shows quasi-random 
samples from (Gaussian) posterior, 
which gives parameter uncertainties 

• Lower figure shows straight lines 
for 12 quasi-random samples, 
compared to the original data
► variability ~ uncertainty

[ ]
2 2

ˆ
K χ∂

=
∂ ∂jk

j ka a a

12C K −=
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Incorporating systematic effects (3)
• Suppose all the data are uncertain to within 

an addition offset ∆, with a known 
uncertainty σ∆ = 0.3

• Include this systematic effect by writing χ2

as

• Follow standard procedure
► minimize χ2 to estimate parameters a, b, 

and ∆
► estimate covariance matrix by inverting 

curvature matrix (including all variables)
• Random samples from posterior, shown in 

figure, exhibit the expected increase in 
uncertainty about the inferred line 

Error bar in middle of plot shows 
uncertainty in offset of all points

2 2
2

i
χ

σ σ ∆
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Incorporating systematic effects (4)
• Repeat previous exercise for 1000 

data points with and without 
systematic uncertainty

• Plots show random samples from 
posterior

• With no offset uncertainty
► the effect of data averaging is to reduce 

uncertainties in line parameters by factor 
of 10 [                    ]

• With offset uncertainty (σ∆ = 0.3)
► slope of lines has same uncertainty as 

above
► offset of lines is subject to uncertainty in 

systematic offset
• Systematic uncertainties impose 

lower limit on inference

with no offset uncertainty

with offset uncertainty

1000 /10=
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Fit PTW model to measurements

• Assuming for random 
standard errors
► quasi-static: 0.5% (simple)
► quasi-static: 2% (reloaded)
► Hop-bar: 1% to 2.4%

• Include 3% systematic 
uncertainty in offset of each 
data set (7 + 7 parms)

• χ2/DOF = 383/174 data;
largest discrepancy for 
473 K (pulls down slope)

Preliminary fit (7a) to quasi-static and Hopkinson bar meas.

†data supplied by S-R Chen, MST-8

PTW curves include adiabatic 
heating effect for high strain rates

fit7a
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Fit PTW model to measurements

• Assuming for random 
standard errors
► quasi-static: 0.5%
► quasi-static: 2% (reloaded)
► Hop-bar: 1% to 2.4%

• Include 3% systematic 
uncertainty in offset of 
each data set (6 + 7 parms)

• ~ 4 iter., ~ 65 func. evals.

• χ2/DOF  = 214/142 data;
largest discrepancy for 
298 K, 0.1/s data set

†data supplied by S-R Chen, MST-8

PTW curves include adiabatic 
heating effect for high strain rates

fit7d

Final fit (7d) to quasi-static and Hopkinson bar measurements
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PTW parameters and their uncertainties
Parameters +/- rms error:

θ = 0.0080 ± 0.0004
k = 0.68 ± 0.06

-ln(γ)  = 11.5 ± 0.8    
y0 = 0.0092 ± 0.0005
y¶ = 0.00147 ± 0.00011
s0 = 0.0176 ± 0.0032
s¶ = 0.00358 ± 0.00018

θ k -ln(γ) y0 y¶ s0 s¶
θ 1     -0.180  -0.108  -0.113  -0.283   -0.817   0.211 
k -0.180     1        0.716   0.596   0.644    0.292   0.580

-ln(γ) -0.108   0.716     1        0.046   0.111    0.105   0.171
y0 -0.113   0.596   0.046      1       0.502    0.282   0.477 
y¶ -0.283   0.644   0.111   0.502      1        0.350   0.640
s0 -0.817   0.292   0.105   0.282   0.350       1      -0.278  
s¶ 0.211   0.580   0.171   0.477   0.640   -0.278      1 

Correlation coefficients

Minimum chi-squared fit yields 
estimated PTW parms. and rms errors, 
as well as correlation coefficients, 
which are crucially important!

Fixed parms:

p = 4
y1 = 0.012

y2 = 0.4
b = 0.23
ap = 0.48

G0 = 722 MPa
Tmelt = 3290 ºK
r = 16.6 g/cm2
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Monte Carlo sampling of PTW uncertainty
• Use Monte Carlo technique to draw random samples from complete 

uncertainty distribution for PTW parameters
• Display stress-strain curve for each parameter set (at three specimen 

conditions)
• Conclude that fit faithfully represents data and their errors
• This procedure confirms the analysis and model (model checking)

Blow up 
of data 
region
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Importance of including correlations

• Monte Carlo draws from uncertainty distribution, done 
correctly with full covariance matrix (left) and incorrectly by 
neglecting off-diagonal terms in covariance matrix (right) 

MC with correlations MC without correlations
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Future work: Taylor impact experiment
• Next step in plan to validate PTW model is to proceed to 

next level of hierarchy of experiments
• Analyze data from Taylor impact experiments

► need to use simulation code 
► use posterior distribution from foregoing analysis as prior
► determine posterior distribution for Taylor data
► check consistency with Taylor data
► check consistency with prior
► resolve discrepancies or cope with model deficiencies 

• Then proceed to analysis of more complex experiments, 
which extend the operating range, e.g., flyer -impact 
experiments
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