Material model inference from experimental data

Ken Hanson

CCS-2, Methods for Advanced Scientific Simulations Los Alamos National Laboratory

This presentation available at http://www.lanl.gov/home/kmh/

October 3, 2002

UQWG

Overview

- Bayesian analysis
 - appropriateness for analyzing physics experiments
- Likelihood analysis
 - ► relation to chi-squared
 - estimation of parameters and their uncertainties
- Material characterization experiments
- Data analysis using Zerilli-Armstrong model
 - difficulties in matching data
 - importance of expertise to obtain satisfactory result
 - ► systematic effects, uncertainties

Acknowledgments

Collaborators

- Shuh-Rong Chen, MST-8
- François Hemez, ESA-WR

Discussions

- Larry Hull, Eric Ferm, DX-3
- Chris Romero, Tom Duffy, DX-7
- Paul Maudlin, T-3
- Mark Anderson, ESA-WR
- Kathy Campbell, Mike McKay, Dave Higdon, Alyson Wilson, Mike Hamada, D-1

Uncertainties and probabilities

- Uncertainties in parameters are characterized by probability density functions (pdf)
- Probability interpreted as quantitative measure of "degree of belief"
- This interpretation sometimes referred to as "subjective probability"
- Rules of classical probability theory apply

Probability density function

Parameter value

Bayesian analysis of experimental data

- Bayesian approach
 - focus is as much on uncertainties in parameters as on their best (estimated) value
 - ► appropriate for Uncertainty Quantification (UQ)
 - use of prior knowledge, e.g., previous experiments, modeling expertise, subjective
 - model checking does model agree with experimental evidence?
 - compatible with scientific method
- Goal is estimation of **model parameters and their uncertainties**

Bayesian analysis of experimental data

• Bayes theorem

$$p(\boldsymbol{a} | \boldsymbol{d}, I) \propto p(\boldsymbol{d} | \boldsymbol{a}, I) p(\boldsymbol{a} | I)$$

- ► where
 - *d* is the vector of measured data values
 - *a* is the vector of parameters for model that predicts the data
- *p*(*d* | *a*, *I*) is called the **likelihood** (of the data given the true model and its parameters)
- $p(a \mid I)$ is called the **prior** (on the parameters *a*)
- ► p(a | d, I) is called the posterior fully describes uncertainty in the parameters
- I stands for whatever background information we have about the situation, results from previous experience, our expertise, and the model used

Bayesian analysis – role of the prior

- The prior in Bayes theorem distinguishes Bayesian analysis from "traditional" frequentist statistics
- The prior can be chosen to be non-informative
 - ► examples: uniform, uniform in log, maximum entropy
 - to reflect complete lack of knowledge about situation, to avoid biasing result
 - ► to be objective(?); often appropriate for physics analyses
- The prior can be chosen to be informative
 - ► to enforce physical constraints, e.g., nonnegativity (density)
 - ► to incorporate information from previous experiments
 - ► to reflect expert knowledge (elicitation process)
- Choice of prior is subject to discussion and review

October 3, 2002

The model and parameter inference

- We write the model as y = y(x, a)
 - where y is a physical quantity, which is modeled as a function of the independent variables x and a represents the model parameters
- In inference, the aim is to determine:
 - ► the parameters *a* from a set of *n* measurements *d_i* of *y* under specified conditions *x_i*
 - ▶ <u>and</u> the uncertainties in the parameter values
- This process is called parameter inference, model fitting (or regression) but often uncertainty analysis not done, as in parameter estimation

The likelihood and chi-squared

- The form of the likelihood p(d | a, I) depends on how we model the uncertainties in the measurements *d*.
- Assuming the error in each measurement d_i is normally (Gaussian) distributed with zero mean and variance of σ_i^2 , and the errors are statistically independent,

$$p(\boldsymbol{d} \mid \boldsymbol{a}) \propto \prod_{i} \exp \left[-\frac{[d_i - y_i(\boldsymbol{a})]^2}{2\sigma_i^2} \right]$$

where y_i is the value predicted for parameter set a

• The above exponent is related to chi squared

$$\chi^2 = -2\log[p(\boldsymbol{d} \mid \boldsymbol{a})] = \sum_i \left\lfloor \frac{[d_i - y_i(\boldsymbol{a})]^2}{\sigma_i^2} \right\rfloor$$

• For this error model, likelihood is $p(\boldsymbol{d} | \boldsymbol{a}) \propto \exp(-\frac{1}{2}\chi^2)$ October 3, 2002 UQWG 9

- For a non-informative **flat prior**, the posterior is proportional to the likelihood
- Given the relationship between chi-squared and the likelihood, posterior is

$$p(\boldsymbol{a} | \boldsymbol{d}) \propto p(\boldsymbol{d} | \boldsymbol{a}) \propto \exp(-\frac{1}{2}\chi^2)$$

 Thus, parameter estimation based on maximum likelihood is equivalent to that based on minimum chi squared

Characterization of chi-squared

- Expand vector \boldsymbol{y} around \boldsymbol{y}^0 : $y_i = y_i(x_i, \boldsymbol{a}) = y_i^0 + \sum_j \frac{\partial y_i}{\partial a_j} \Big|_{a^0} (a_j - a_j^0) + \cdots$
- The derivative matrix is called the *Jacobian*, **J**
- Estimated parameters \hat{a} minimize χ^2 (MAP estimate)
- As a function of a, χ^2 is quadratic in $a \hat{a}$

$$\chi^2(a) = \frac{1}{2} \left(a - \hat{a} \right)^{\mathrm{T}} K \left(a - \hat{a} \right) + \chi^2(\hat{a})$$

where *K* is the curvature matrix (aka the *Hessian*);

$$\begin{bmatrix} \boldsymbol{K} \end{bmatrix}_{jk} = \frac{\partial^2 \chi^2}{\partial a_j \partial a_k} \bigg|_{\hat{a}} = \boldsymbol{J} \boldsymbol{J}^{\mathrm{T}}$$

October 3, 2002

UQWG

Parameter inference

- Posterior $p(\boldsymbol{a} | \boldsymbol{d}, I)$ can be written as $p(\boldsymbol{a} | \boldsymbol{d}) = \frac{1}{\det[\boldsymbol{C}] (2\pi)^{n/2}} \exp\left[-\frac{1}{2} (\boldsymbol{a} - \hat{\boldsymbol{a}})^{\mathrm{T}} \boldsymbol{C}^{-1} (\boldsymbol{a} - \hat{\boldsymbol{a}})\right]$
- From known properties of Gaussian distribution, covariance matrix for parameter uncertainties is $cov(a) = \langle (a - \hat{a})(a - \hat{a})^T \rangle \equiv C = 2K^{-1}$
- Thus, the chi-squared functionality provides the basis for inference about parameters *a*
- Recall assumptions:
 - ► linearized model holds for measured quantities (y = f(x,a))
 - ▶ meas. errors indep. & Gaussian distrib. with known variance
 - ▶ uniform prior on parameters *a*

October 3, 2002

UQWG

Model checking – goodness of fit

- Chi-squared analysis is based on assumption that measurement errors Gaussian distributed, independent
- After minimum χ^2 is found, one can check whether the value of χ^2 is consistent with that assumption
- Chi-squared distribution table gives probability p for obtaining the observed χ^2 value or higher
- Reduced chi-squared is χ²/ν, where ν is
 # degrees of freedom = # data # parameters
- Property of χ^2 distribution: p = 50% is near $\chi^2/\nu = 1$
- Checks self-consistency of models used to explain data (weakly)

Model checking – goodness of fit

- Check of chi-squared value only weakly confirms validity of models used
- Chi-squared value depends on numerous factors:
 - assumption that errors follow Gaussian distribution and are statistically independent
 - proper assignment of standard deviation of errors
 - correctness of model used to calculate measured quantity
 - measurements correspond to calculated quantity (proper measurement model)
- Thus, a reasonable chi-squared *p* value does not necessarily mean everything is OK, because there may be compensating effects

Analysis of multiple data sets

• To combine the data from multiple data sets into a single analysis, the combined likelihood is

$$p_{all}(\boldsymbol{d} \mid \boldsymbol{a}) \propto \prod_{k} p(\boldsymbol{d}_{k} \mid \boldsymbol{a})$$

where $p(d_k | a, I)$ is likelihood from kth data set

- assumes the uncertainties in different data sets are statistically independent
- Thus, because $\chi^2 = -2\log[p(d | a)]$, just add χ^2 s from each data set

$$\chi^2_{all} = \sum_k \chi^2_k$$

Inclusion of Gaussian priors

- To include priors, use Bayes theorem $p(a | d, I) \propto p(d | a, I) p(a | I)$
- For a Gaussian prior on a parameter *a*

$$p(a \mid I) = \frac{1}{\sigma_a (2\pi)^{1/2}} \exp\left[-\frac{\left(a - \tilde{a}\right)^2}{2\sigma_a^2}\right]$$

where \tilde{a} is the default value for *a* and σ_a^2 is the assumed variance

• The minus-log-posterior for the parameter *a* is $-\log p(a \mid d, I) = \varphi(a) = \frac{1}{2}\chi^{2} + \frac{\left(a - \tilde{a}\right)^{2}}{2\sigma_{a}^{2}}$

Motivating example

- Problem statement
 - design containment vessel using high-strength steel, HSLA 100
 - ► one design criterion relates to wall penetration by schrapnel
 - predict degree of wall penetration by specified projectile
 - estimate uncertainty in this prediction to estimate safety factor
- Our present goal is to determine for HSLA 100 the parameters and their uncertainties for the Zerilli-Armstrong plastic strength model for
 - ► strains up to fracture for use at
 - ► room temperature
 - high strain rates
- These conditions match the intended application

HSLA 100

- Material under study is the high-strength, low-alloy steel designated as HSLA 100
 - used in critical structural applications
- Manufacture of this steel is done under tight specifications
 - composition is certified and uniform
 - properties should be quite reproducible
- For most metals, processing can affect properties of the material
 - processing often involves rolling of billets into sheets and subsequent heat treatment

Stress-strain relation for plastic deformation

• Zerilli-Armstrong model describes strain rate- and temperature-dependent plasticity in terms of stress σ (or *s*) as function of plastic strain ε_p

$$\sigma = \alpha_1 + \alpha_5 \varepsilon_p^{\alpha_6} + \alpha_2 \exp\left[\left(-\alpha_3 + \alpha_4 \log \frac{\partial \varepsilon_p}{\partial t}\right)T\right]$$

- Six parameters -
 - ► 2 parameters ($\alpha_5 \& \alpha_6$) specify dependence of stress on strain
 - 4 remaining parameters specify additive offset as function of temperature and strain rate
- Z-A formula based on dislocation mechanics model
 - may not hold for all experimental conditions

Material characterization experiments

- Quasi-static experiments
 - subject material specimen to tension or compression
 - measure force and corresponding sample length
 - convert to true stress and true strain
- Hopkinson-bar experiments
 - send shock wave into thin disc of material
 - ▶ measure length of specimen as a function of time
 - interpret in terms of true stress and true strain at a calculated strain rate using simulation code
 - correct measured temperature of specimen for work done on sample, assuming adiabatic process

Quasi-static experiments

- Data from quasi-static compression experiments tend to be of high quality
- Systematic uncertainties in the basic measurements should be very small
- Example shows data at room temperature
 - elastic region
 - ► yield stress
 - ► plastic region
- Error bars shown are 1% or ~ 10 Mpa
 - error bars seem too large!

[†]data supplied by S-R Chen, MST-8

UQWG

Hopkinson-bar experiments

- Data from Hopkinson-bar experiments tend to be of medium quality
- Systematic uncertainties in the basic measurements should be small
- Observe artifacts in the data
 - arise from reflected shocks
 - should exclude these
- Must reply on simulation code to calculate strain rate
- Error bars shown are 2% or ~20 MPa
 - plausible uncertainty level

[†]data supplied by S-R Chen, MST-8

Fit ZA model to all data

- 7 data sets at various strain rates and temperatures
- Fit to all data above elastic region or after first bump in Hopkinson-bar data
- Model does not reproduce stress-strain curves at high and low temperatures
- Fit is far from expt. measurements for target conditions of room temp., high strain rate
- Uncertainties are highly correlated

[†]data supplied by S-R Chen, MST-8

October 3, 2002

UQWG

Monte Carlo from posterior

- Use Monte Carlo technique to draw random ZA parameter vectors from their uncertainty distribution
- Plot corresponding curves for room temperature, high strain rate and compare to measurements
- Conclude that the parameters inferred from last slide do not plausibly represent the data for target conditions

Refine analysis to accommodate data

- Need to improve analysis for intended operating conditions (moderate strain, high strain rate, and room temperature)
- Approach is
 - limit the data for high and low temps to low strain region (<0.06); reasoning is that dislocation mechanics behavior at high strain values is clearly different than at room temperature, but would like to capture behavior near yield points.
 - can not just ignore these data they are needed to determine temp and strain rate dependence in ZA model
 - strain rate dependence seen in experimental data do not conform with ZA model, or any other smoothly varying model
 - inclusion of sample-to-sample uncertainties into analysis accomodates these differences
 - ► treat sample-to-sample variability as systematic uncertainty

Repeated experiments

- Repeated experiments
 - stability of apparatus
 - indication of random component of error
 - may or may not indicate systematic error
- Figure shows curves obtained from four samples taken from random positions in thick plate
- Sample-to-sample rms deviation is around 20 MPa at strain of 0.1
- Treat this variability as systematic uncertainty

[†]data supplied by S-R Chen, MST-8

Repeated experiments

- Figure shows curves from four samples
 - nearly identical response for two taken from nearby position and tested together (red and green dashed lines)
 - but disagree with previous tests on samples from different stock, perhaps caused by different processing
- Observe sample-to-sample differences of around 20 MPa for strains > 0.03
- Treat this variability as **systematic uncertainty**

[†]data supplied by S-R Chen, MST-8

UQWG

Types of uncertainties in measurements

- Two major types of errors
 - ► random error different for each measurement
 - in repeated measurements, get different answer each time
 - often assumed to be statistically independent, but often aren't
 - ► systematic error same for each measurement within a group
 - component of measurements that remains unchanged
 - for example, caused by error in calibration or zeroing
- Nomenclature varies
 - ► physics random error and systematic error
 - ► statistics random and bias
 - metrology standards (NIST, ASME, ISO) random and systematic uncertainties (now)

Types of uncertainties in measurements

- Simple example measurement of length of a pencil
 - ► random error
 - interpolation between ruler tick marks
 - ► systematic error
 - accuracy of ruler's length; manufacturing defect, temperature, ...
- Parallax
 - reading depends on how person lines up pencil tip
 - random or systematic error?

depends on whether measurements always made by same person in the same way or made by different people

Include offsets for each data set

- Represent offset of *k*th data set with a parameter Δ_k
- Treat offset as **systematic effect** for each curve, but as random effect when combining curves
- Information about Δ_k is a prior Gaussian distributed
- Assume that most probable value of Δ_k is zero and that uncertainty distribution has an rms deviation of σ_k
- Then, the posterior is

$$-\log p(a \mid d, I) = \varphi(a) = \frac{1}{2} \sum_{k} \chi_{k}^{2} + \frac{1}{2} \sum_{k} \frac{\Delta_{k}^{2}}{\sigma_{k}^{2}}$$

• For HSLA 100 analysis, we have 7 data sets and ZA model has 6 parameters; thus 13 variables in fit

2

Fit ZA model to selected data

- Use data above elastic region or after first bump in Hopkinson-bar data
- Additionally, restrict data at high and low temps. to low strain (near yield point)
- Add offset parameter for each curve to represent sample-to-sample variation
- Fit reasonably represents data for target conditions of room temp., high strain rate

[†]data supplied by S-R Chen, MST-8

UQWG

Monte Carlo sampling from posterior

- Use Monte Carlo technique to draw random ZA parameter vectors from their uncertainty distribution
- Plot corresponding curves for room temperature, high strain rate and compare to measurements
- Conclude that parameters and their uncertainties inferred from last slide plausibly represent the data for target conditions

October 3, 2002

Monte Carlo example - Taylor test

- Use MC technique to propagate uncertainties through deterministic simulation code
 - Draw value for each of four parameters from its assumed Gaussian pdf
 - Run Abaqus code for each set of parameters
- Figure shows range of variation in predicted cylinder shape

Initial NESSUS/Abaqus results

High-strength steel HSLA 100 260 m/s impact velocity

Taylor test experiment

- Taylor impact test specimen
 - ▶ high-strength steel HSLA 100
 - impact velocity = 245.7 m/s
 - dimensions, final/initial
 length 31.84 mm / 38 mm
 diameter 12.00 mm / 7.59 mm

Future work

- Demonstrate how model inference can be done through analysis of Taylor experiments using a simulation code
- Hierarchical Bayesian modeling
 - use distributions for unknown parameters, e.g., priors on variance in systematic errors (as opposed to specific, fixed values)
 - ▶ infer all parameters and their uncertainties from data & priors
 - provides more flexibility in modeling uncertainties
- Develop statistical approach to minimize uncertainty for targeted range of variables
- Application to other materials and strength models

Bibliography

- Data Analysis: A Bayesian Tutorial, D. S. Sivia (Clarendon, 1996); excellent introduction to Bayesian analysis for physicists & engineers
- Data Reduction and Error Analysis for the Physical Sciences,
 P. R. Bevington and D. K. Robinson (Boston, WCB/McGraw-Hill, 1992); good summary of conventional data analysis for physical scientists and engineers
- "A framework for assessing confidence in simulation codes," K. M. Hanson and F. M. Hemez, *Experimental Techniques* 25, pp. 50-55 (2001); application of uncertainty quantification to simulation codes with Taylor test as example
- "A framework for assessing uncertainties in simulation predictions,"
 K. M. Hanson, *Physica D* 133, pp. 179-188 (2000); integrated approach to determining uncertainties in physics modules and their effect on predictions

Last two papers available at http://www.lanl.gov/home/kmh/