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Overview
• Bayesian analysis

► appropriateness for analyzing physics experiments

• Likelihood analysis
► relation to chi-squared
► estimation of parameters and their uncertainties 

• Material characterization experiments
• Data analysis using Zerilli-Armstrong model

► difficulties in matching data
► importance of expertise to obtain satisfactory result
► systematic effects, uncertainties
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Uncertainties and probabilities
• Uncertainties in parameters are 

characterized by probability 
density functions (pdf)

• Probability interpreted as 
quantitative measure of 
“degree of belief”

• This interpretation sometimes 
referred to as “subjective 
probability”

• Rules of classical probability 
theory apply
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Bayesian analysis of experimental data
• Bayesian approach

► focus is as much on uncertainties in parameters as on their 
best (estimated) value

► appropriate for Uncertainty Quantification (UQ)
► use of prior knowledge, e.g., previous experiments, 

modeling expertise, subjective 
► model checking –

does model agree with experimental evidence? 
► compatible with scientific method

• Goal is estimation of model parameters and their 
uncertainties
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Bayesian analysis of experimental data
• Bayes theorem

► where
d is the vector of measured data values 
a is the vector of parameters for model that predicts the data

► p(d | a, I) is called the likelihood (of the data given the true 
model and its parameters)

► p(a | I) is called the prior (on the parameters a)
► p(a | d, I) is called the posterior – fully describes uncertainty 

in the parameters
► I stands for whatever background information we have

about the situation, results from previous experience, 
our expertise, and the model used

( | , ) ( | , ) ( | )p I p I p I∝a d d a a
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Bayesian analysis – role of the prior
• The prior in Bayes theorem distinguishes Bayesian 

analysis from “traditional” frequentist statistics 
• The prior can be chosen to be non-informative

► examples: uniform, uniform in log, maximum entropy
► to reflect complete lack of knowledge about situation, to 

avoid biasing result 
► to be objective(?); often appropriate for physics analyses

• The prior can be chosen to be informative
► to enforce physical constraints, e.g., nonnegativity (density) 
► to incorporate information from previous experiments
► to reflect expert knowledge (elicitation process)

• Choice of prior is subject to discussion and review
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The model and parameter inference
• We write the model as

► where y is a physical quantity, which is modeled as a 
function of the independent variables x and

a represents the model parameters

• In inference, the aim is to determine:
► the parameters a from a set of n measurements di of y under 

specified conditions xi

► and the uncertainties in the parameter values

• This process is called parameter inference, model 
fitting (or regression) but often uncertainty analysis not 
done, as in parameter estimation

( , )y y= x a
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The likelihood and chi-squared
• The form of the likelihood p(d |a, I) depends on how 

we model the uncertainties in the measurements d.
• Assuming the error in each measurement di is normally 

(Gaussian) distributed with zero mean and variance of 
σi

2, and the errors are statistically independent,

where yi is the value predicted for parameter set a
• The above exponent is related to chi squared

• For this error model, likelihood is 
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Likelihood analysis
• For a non-informative flat prior, 

the posterior is proportional to the likelihood
• Given the relationship between chi-squared and the 

likelihood, posterior is

• Thus, parameter estimation based on 
maximum likelihood is equivalent to that based on 
minimum chi squared

21
2( | ) ( | ) exp( )p p χ∝ ∝ −a d d a
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Characterization of chi-squared  
• Expand vector y around y0:

• The derivative matrix is called the Jacobian, J
• Estimated parameters â minimize χ2 (MAP estimate)
• As a function of a, χ2 is quadratic in a – â

where K is the curvature matrix (aka the Hessian); 
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Parameter inference
• Posterior p(a |d, I) can be written as

• From known properties of Gaussian distribution, 
covariance matrix for parameter uncertainties is

• Thus, the chi-squared functionality provides the basis 
for inference about parameters a

• Recall assumptions:
► linearized model holds for measured quantities (y = f(x,a)) 
► meas. errors indep. & Gaussian distrib. with known variance
► uniform prior on parameters a
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Model checking – goodness of fit
• Chi-squared analysis is based on assumption that 

measurement errors Gaussian distributed, independent
• After minimum χ2 is found, one can check whether the 

value of χ2 is consistent with that assumption
• Chi-squared distribution table gives probability p for 

obtaining the observed χ2 value or higher
• Reduced chi-squared is χ2/ν, where ν is 

# degrees of freedom = # data – # parameters
• Property of χ2 distribution: p = 50% is near χ2/ν = 1
• Checks self-consistency of models used to explain data 

(weakly)
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Model checking – goodness of fit
• Check of chi-squared value only weakly confirms 

validity of models used
• Chi-squared value depends on numerous factors:

► assumption that errors follow Gaussian distribution and are 
statistically independent

► proper assignment of standard deviation of errors
► correctness of model used to calculate measured quantity
► measurements correspond to calculated quantity (proper 

measurement model)

• Thus, a reasonable chi-squared p value does not 
necessarily mean everything is OK, because there may 
be compensating effects
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Analysis of multiple data sets
• To combine the data from multiple data sets into a 

single analysis, the combined likelihood is 

where p(dk |a, I) is likelihood from kth data set
► assumes the uncertainties in different data sets are 

statistically independent

• Thus, because                                    , just add χ2s from 
each data set

2 2
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k
χ χ=∑
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[ ]2 2 log ( | )pχ = − d a
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Inclusion of Gaussian priors
• To include priors, use Bayes theorem  

• For a Gaussian prior on a parameter a

where ã is the default value for a and σa
2 is the 

assumed variance
• The minus-log-posterior for the parameter a is
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Motivating example
• Problem statement

► design containment vessel using high-strength steel, HSLA 100
► one design criterion relates to wall penetration by schrapnel
► predict degree of wall penetration by specified projectile
► estimate uncertainty in this prediction to estimate safety factor

• Our present goal is to determine for HSLA 100 the 
parameters and their uncertainties for the Zerilli-
Armstrong plastic strength model for 
► strains up to fracture for use at 
► room temperature
► high strain rates 

• These conditions match the intended application 
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HSLA 100
• Material under study is the high-strength, low-alloy steel

designated as HSLA 100
► used in critical structural applications

• Manufacture of this steel is done under tight 
specifications 
► composition is certified and uniform
► properties should be quite reproducible

• For most metals, processing can affect properties of the 
material
► processing often involves rolling of billets into sheets and 

subsequent heat treatment
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Stress-strain relation for plastic deformation
• Zerilli-Armstrong model describes strain rate- and 

temperature-dependent plasticity in terms of 
stress σ (or s) as function of plastic strain εp

• Six parameters -
► 2 parameters (α5 & α6) specify dependence of stress on strain
► 4 remaining parameters specify additive offset as function of 

temperature and strain rate

• Z-A formula based on dislocation mechanics model
► may not hold for all experimental conditions

6
1 5 2 3 4exp log p

p T
t

α ε
σ α α ε α α α

  ∂
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Material characterization experiments
• Quasi-static experiments

► subject material specimen to tension or compression
► measure force and corresponding sample length 
► convert to true stress and true strain

• Hopkinson-bar experiments 
► send shock wave into thin disc of material
► measure length of specimen as a function of time
► interpret in terms of true stress and true strain at a calculated 

strain rate using simulation code
► correct measured temperature of specimen for work done on 

sample, assuming adiabatic process
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Quasi-static experiments
• Data from quasi-static 

compression experiments 
tend to be of high quality

• Systematic uncertainties in 
the basic measurements 
should be very small 

• Example shows data at 
room temperature 
► elastic region
► yield stress
► plastic region

• Error bars shown are 1% or 
~ 10 Mpa
► error bars seem too large! 

†data supplied by S-R Chen, MST-8
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Hopkinson-bar experiments
• Data from Hopkinson-bar 

experiments tend to be of 
medium quality

• Systematic uncertainties in 
the basic measurements 
should be small 

• Observe artifacts in the data
► arise from reflected shocks
► should exclude these

• Must reply on simulation 
code to calculate strain rate

• Error bars shown are 2% or 
~20 MPa
► plausible uncertainty level

†data supplied by S-R Chen, MST-8
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Fit ZA model to all data
• 7 data sets at various 

strain rates and 
temperatures

• Fit to all data above elastic 
region or after first bump 
in Hopkinson-bar data

• Model does not reproduce 
stress-strain curves at high 
and low temperatures

• Fit is far from expt. 
measurements for target 
conditions of room temp., 
high strain rate

• Uncertainties are highly 
correlated †data supplied by S-R Chen, MST-8
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Monte Carlo from posterior
• Use Monte Carlo technique 

to draw random ZA 
parameter vectors from 
their uncertainty 
distribution

• Plot corresponding curves 
for room temperature, high 
strain rate and compare to 
measurements

• Conclude that the 
parameters inferred from 
last slide do not plausibly 
represent the data for target 
conditions
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Refine analysis to accommodate data 
• Need to improve analysis for intended operating conditions 

(moderate strain, high strain rate, and room temperature)
• Approach is

► limit the data for high and low temps to low strain region (<0.06);
reasoning is that dislocation mechanics behavior at high strain values is 
clearly different than at room temperature, but would like to capture 
behavior near yield points.

► can not just ignore these data – they are needed to determine temp and 
strain rate dependence in ZA model

► strain rate dependence seen in experimental data do not conform with 
ZA model, or any other smoothly varying model

► inclusion of sample-to-sample uncertainties into analysis accomodates
these differences

► treat sample-to-sample variability as systematic uncertainty
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Repeated experiments
• Repeated experiments

► stability of apparatus
► indication of random 

component of error
► may or may not indicate 

systematic error
• Figure shows curves 

obtained from four samples 
taken from random 
positions in thick plate

• Sample-to-sample rms
deviation is around 
20 MPa at strain of 0.1

• Treat this variability as
systematic uncertainty

†data supplied by S-R Chen, MST-8



October 3, 2002 UQWG 27

Repeated experiments
• Figure shows curves from 

four samples 
► nearly identical response for 

two taken from nearby 
position and tested together 
(red and green dashed lines)

► but disagree with previous 
tests on samples from 
different stock, perhaps 
caused by different processing

• Observe sample-to-sample 
differences of around 
20 MPa for strains > 0.03

• Treat this variability as
systematic uncertainty †data supplied by S-R Chen, MST-8
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Types of uncertainties in measurements
• Two major types of errors

► random error – different for each measurement
• in repeated measurements, get different answer each time
• often assumed to be statistically independent, but often aren’t

► systematic error – same for each measurement within a group
• component of measurements that remains unchanged
• for example, caused by error in calibration or zeroing 

• Nomenclature varies 
► physics – random error and systematic error
► statistics – random and bias
► metrology standards (NIST, ASME, ISO) –

random and systematic uncertainties (now)   
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Types of uncertainties in measurements
• Simple example – measurement of length of a pencil

► random error
• interpolation between ruler tick marks

► systematic error 
• accuracy of ruler’s length;

manufacturing defect, temperature, …

• Parallax
► reading depends on how 

person lines up pencil tip  
► random or systematic error? 

depends on whether measurements
always made by same person in the
same way or made by different people 

0 321 4cm
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Include offsets for each data set
• Represent offset of kth data set with a parameter ∆k

• Treat offset as systematic effect for each curve, but as 
random effect when combining curves

• Information about ∆k is a prior – Gaussian distributed
• Assume that most probable value of ∆k is zero and that 

uncertainty distribution has an rms deviation of σk

• Then, the posterior is

• For HSLA 100 analysis, we have 7 data sets and ZA 
model has 6 parameters; thus 13 variables in fit

2
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Fit ZA model to selected data

†data supplied by S-R Chen, MST-8

• Use data above elastic 
region or after first bump 
in Hopkinson-bar data

• Additionally, restrict data 
at high and low temps. to 
low strain (near yield 
point)

• Add offset parameter for 
each curve to represent 
sample-to-sample 
variation

• Fit reasonably represents 
data for target conditions 
of room temp., high strain 
rate
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Monte Carlo sampling from posterior
• Use Monte Carlo technique 

to draw random ZA 
parameter vectors from 
their uncertainty 
distribution

• Plot corresponding curves 
for room temperature, high 
strain rate and compare to 
measurements

• Conclude that parameters 
and their uncertainties 
inferred from last slide 
plausibly represent the data 
for target conditions
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Monte Carlo example - Taylor test
• Use MC technique to 

propagate uncertainties 
through deterministic 
simulation code 
► Draw value for each of four 

parameters from its assumed 
Gaussian pdf

► Run Abaqus code for each 
set of parameters

• Figure shows range of 
variation in predicted 
cylinder shape

Initial NESSUS/Abaqus results

High-strength steel HSLA 100
260 m/s impact velocity
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Taylor test experiment
• Taylor impact test specimen

► high-strength steel HSLA 100
► impact velocity = 245.7 m/s
► dimensions, final/initial

length      31.84 mm / 38 mm
diameter  12.00 mm  / 7.59 mm
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Future work
• Demonstrate how model inference can be done through 

analysis of Taylor experiments using a simulation code
• Hierarchical Bayesian modeling

► use distributions for unknown parameters, e.g., priors on 
variance in systematic errors (as opposed to specific, fixed 
values)

► infer all parameters and their uncertainties from data & priors
► provides more flexibility in modeling uncertainties

• Develop statistical approach to minimize uncertainty 
for targeted range of variables

• Application to other materials and strength models  
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