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Overview

* Understanding physics simulations codes
» employ hierarchy of experiments, from basic to fully integrated

» role of Bayesian analysis - improve knowledge of models with
each new experiment

 Statistical analysis — use of chi squared
» treatment of systematic uncertainties

* Analysis of experimental data to infer parameters of
Preston-Tonks-Wallace plasticity model for tantalum
» characterize uncertainties in measurement data
» estimate PTW parameters and their uncertainties

» check model by drawing Monte Carlo samples from posterior
distribution and comparing to data

» demonstrate importance of including correlations
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Bayesian analysis in context of physics simulations

* Opverall goal - describe uncertainties in simulations
» physics submodels
» experimental (set up and boundary) conditions
» calculations (grid size, ...)

* Use best knowledge of physics processes

» rely on expertise of physics modelers and experimental data

* Bayesian foundation

» focus 1s as much on uncertainties in parameters as on their
best value

» use of prior knowledge, e.g., previous experiments and expert
judgment

» model checking; does model agree with experimental data?
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Bayesian uncertainty analysis

Uncertainties in parameters are
characterized by probability
density functions (pdf)

Probability interpreted as
quantitative measure of
“degree of belief”

This interpretation sometimes Parameter value
called “subjective probability”

Probability

Rules of classical probability
theory apply
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Analysis of hierarchy of experiments

Basic

Partially
Integrated

Fully
Integrated

* Information flow in analysis of series of experiments

* Bayesian calibration —

» analysis of each experiment updates model parameters (represented as A,
B, C, etc.) and their uncertainties, consistent with previous analyses

» information about models accumulates
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Graphical probabilistic modeling

Propagate uncertainty through analyses of two experiments

p(a) @p(alYl) mp(a,BIYp Y))
p(B)

* First experiment determines B
1

p(a|Y) p(B)
__AL

r A\

o, with uncertainties given by
p(a | Yl) / )
« Second experiment not only : p(Y,|a, B)

determines 3 but also refines
knowledge of a by Bayes law

* Outcome is joint pdf in a and pa, BIY, Y)

Ba p(aa B | YI,YZ)
(correlations important!)

o

May 13, 2004 Uncertainty Quantification Working Group Seminar 6



Uncertainty quantification for sitmulation codes

* Goal 1s to develop an uncertainty model for the
simulation code by comparison to experimental
measurements

» determine and quantify sources of uncertainty
» uncover potential inconsistencies of submodels with expts.

» possibly introduce additional submodels, as required

* Recursive process

» aim 1s to develop submodels that are consistent with all
experiments (within uncertainties)

» a hierarchy of experiments helps substantiate submodels over
wide range of physical conditions

» cach experiment potentially advances our understanding
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Hierarchy of experiments - plasticity

Basic characterization experiments —
measure stress-strain relationship at
specific stain and strain rate

T fixed

» quasi-static — low strain rates

» Hopkinson bar — medium strain rates

Partially integrated expts. - Taylor test

» covers range of strain rates

log(strain rate)

Hopkinson

» extends range of physical conditions ® ® < (uasi-static

Full integrated experiments Strain
» mimic application as much as possible

» may involve extrapolation of operating range;
introduces addition uncertainty

» integrated expts. can help reduce model uncertainties in
their operating range; may expose model deficiencies
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Determination of PTW parameters

Goal 1s to assign plausible and defensible values to
PTW parameters and their uncertainties

Make use of data from quasi-static and Hopkinson-bar
experiments (material-characterization experiments)

Process:

» estimate uncertainties in data based on statistical analysis and
expertise of material scientists

» translate experimental uncertainties into uncertainties in
PTW parameters

» seek feedback and guidance from experts; try to capture their
beliefs in overall uncertainty analysis; build consensus
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PTW model for plastic deformation

* Preston-Tonks-Wallace model
describes plastic behavior of metals s ranam, 7= 300k aysar= 1025

1000 T
» provides stress o (or s) as function of  ooof

plastic strain £, for wide range of 800
strain rate and temperature o

D
o
o

» nonlinear, analytic formulation

Stress, ¢ (MPa)
iy [9)]
o o
t? j=)

» 8 parameters (for low strain rates)
plus material-specific constants 200}

100¢

« PTW model based on dislocation s e
mechanics model

Strain, ¢
» does not include effects of anisotropy
or material history

W
o
o

May 13, 2004 Uncertainty Quantification Working Group Seminar 10



The model and parameter inference

* We write the model as
y=y(x.a)
» where y 1s a vector of physical quantities, which 1s modeled

as a function of the independent variables vector x and
a represents the model parameters vector

* In inference, the aim 1s to determine:

» the parameters a from a set of » measurements d; of y under
specified conditions x;

» and the uncertainties in the parameter values
* This process is called parameter inference, model

fitting (or regression); however, uncertainty analysis
1s often not done, only parameters estimated
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Inference — Bayes rule

* We wish to infer the parameters a of a model M, based
on data d

e Use Bayes rule, which gives the posterior:
plald,MI)xp(d|a M]I) pla|MI)

» where [ represents general information that we have about the
situation

» p(d | a, M, I) 1s the likelihood, the probability of the observed
data, given the parameters, model, and general info

» p(a| M, I) 1s the prior, which represents what we know about
the parameters exclusive of the data

* Note that inference requires specification of the prior
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Likelihood analysis — chi squared

* When the errors in each measurement are Gaussian
distributed and independent, likelihood 1s related to chi

squared: : VT
1 p(d|a)OCeXp(—%Z ):exp{% ‘ |:[ i (.:zz(a)] j|}

i

2 is often approximately quadratic in the parameters a
A\ T A A
r(@)=%(a—a) K(a—a)+ y°(a)
» where d is the parameter vector at minimum y? and

K 1s the curvature matrix (aka the Hessian)

* The covariance matrix for the uncertainties in the
estimated parameters 1s

cov(a) = <(a —a)a— &)T> =C=2K"
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Characterization of chi-squared

Expand vector y around y°, and approximate:
oy,
7 oa,

0
(a,—a;)+--
0

Vi :yi(xiaa) :yl_o +

a

The derivative matrix 1s called the Jacobian, J
Estimated parameters @ minimize y> (MAP estimate)
As a function of a, y¥? is approximately quadratic in @ — @
7’ (a) = %(a —&)TK(a —&)+;(2(&)
» where K 1s the curvature matrix (aka the Hessian);

(K], =%

* - da j0a, |~
Jacobian useful for finding min. ¥?, i.e., optimization

. K=JAJ"; A=diag(o;”, 0>, 05, ...)
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Advanced analysis

* Analysis of multiple data sets

» to combine the data from multiple, independent data sets into
a single analysis, the combined chi squared 1s

2 2
Xal = Z Xk
k
» where p(d, | a, ) 1s the likelithood from Ath data set

 Include Gaussian priors through Bayes theorem
plald,I)«c p(d|a,l)plall)

» for a Gaussian prior on a parameter a, \2
(,-4,)

2

—log p(a|d,I)=p(a)=1 "+
2aj

» where dj 1s the default value for a; and sz 1s assumed variance
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Material-characterization experiments

« Data from quasi-static g
. . | Ta, 300 °K, 0.1 st
compression experiments tend
to be of high quality .
» rms ‘noise’ =~ 0.1% i :m_ . | §5
» thin data set to limit undue 320_ Quasi-static
influence 1n likelihood o
« Data from Hopkinson-bar
experiments tend to be of vl Ta 300 °K. 1300 5
medium quality | e
» rms ‘noise’ ~ 1% ¢ 'x-/‘ .
* (bserve artifacts in the data o) AR 0
» arise from elastic-wave dispersion :: i x - Hopkinson bar
» need to account for these :: Y -., o |

Strain
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Repeatability of quasi-static experiments

Low-Carbon Steel

Low-carbon steel — has very 700

consistent properties 600}

Figures show quasi-static g™

measurements for four samples g zzz

Data after subtracting smooth 2 500 lf

curve shown in bottom figure 100}

For each run: % X 03 5
» rms dev. = 0.2 MPa (0.04%) 4 e o
» random, independent “noise” 7 -

From run-to-run: % of A
» rms dev. = 3 MPa (0.6%) D] Vg wﬁ“

Sets lower limit on precision of J T |

quasi-static tests .

0 005 01 015 02 025 03
True Strain

fdata supplied by S-R Chen, MST 8
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Repeatability of Hopkinson-bar experiments

* Figures show Hopkinson-bar
measurements obtained with three
low-carbon steel samples

» observe fluctuations in measurements

» produced by elastic waves reverberating in
the sample

» appear “random’ in nature

« Data after subtracting smooth curve
shown 1n bottom figure

e For each run:
» rms dev. = 12 MPa (1.8%)
» highly correlated fluctuations

e Run-to-run variation i1s much smaller

« Treat fluctuations as a random process;
characterize process for each run
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True Stress (MPa)

Stress Fluctuations (MPa)

Hopkinson Bar - Low-Carbon Steel

800
700} ;
600} ! ;
500} ¢ ;
400}
300F
200f
100§
00 0.05 01 0.15
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100 . ,
curves offset by 30 MPa
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W ANY A
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tdata supplied by S-R Chen, MST-8
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Hopkinson-bar measurements

« Hopkinson-bar data are degraded
by fluctuations, caused by elastic
wave dispersion

» Treat these fluctuations as coming
from a random process with a
high degree of correlation from
point to point

« Analyze by subtracting low-order
polynomial from data to get
fluctuations from smooth
dependence
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Stress (MPa)

Stress (MPa)

650
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0

650
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0.04
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Hopkinson-bar measurements

Fluctuations in actual data

« Treat Hop-bar fluctuations as a
correlated Gaussian process;
covariance given by

, x_xr p
cov(y,y') o exp —[ P }

» where x is independent variable, strain

Residual Stress (MPa)
o

» determine correlation length A and k poro o o e o

Strain

exponent p from data Realization from random process
» p=2;1=0.002 (about 4 samples)

» Realization of random process
shows behavior similar to data

10F

Sk

oF

A Stress (MPa)

fluctuations
« Thin data set to avoid giving data
undue weight in likelihood

Strain
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Hopkinson-bar fluctuations

* Determine parameters of the )
Gaussian random process by
minimizing the log-likelihood,
given by

~In(p(1| p,p(x))) =
L(y-y) €' (y-)+1in(det(C))

log-likelihood
s 8

(=]
T

where C 1s a function of p and A

, x—x' p b
cov(y,y)ocexp{—[ P } } o}

» where x 1s independent variable (strain)

» minimum at A = 0.0018 = 0.0002
(about 4 samples) for fixed p =2

» similar analysis determines p = 2

likelihood
o
>

o
'S
T

o
)

(=]

iy

1.5 ] 2 25
~ x10°

May 13, 2004 Uncertainty Quantification Working Group Seminar 21



Hopkinson-bar measurements

Realization from random process

* Figure shows all data from 15
Gaussian random process and
thinned subset of points (red),
taking every fourth point

-
(=]

n
T
EN
T

=]

A d
-"’..‘ .

]
o
T

« Figure at lower right shows
uncertainty in average of n samples:

Flucuations in stress (MPa)

L
o

)
4

A
3]

0.02 0.04 0.06 0.08 0.1
Strain

o

» dashed line 1s for uncorrelated noise

—_
o

» solids lines for actual correlated noise RMS deviation of average (MPa)
(far right), and for data thinned by
factor of two and four

B0 O o
£

« Effect of thinning data 1s to make
samples less correlated; which 1s
more appropriate when using
standard expression for chi-squared

RMS error in average
L8]

M)

10 10’ 10
Number of samples
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Repeated experiments for tantalum

Repeated experiments
» stability of measurements 500

» 1ndication of random

component of error 400

» may or may not indicate
systematic error
Figure shows curves
obtained from four samples
taken from different lots

Sample-to-sample rms dev.
~ 8%

Treat this variability as a
systematic uncertainty
common to each tantalum
specimen/data set

w
>
[—]

True Stress (MPa)
[ 3%
=]
[=—]

o
=4
<

repeated quasi-static expts

298K, 0.001/s e

ses?
-l =
-----
--.
="
N

>~ | Tantalum "A"
====Tantalum "B"
= - == Tantalum "C" i
Tantalum "D"

0 0.05 0.1 0.15 0.2 0.25
True Strain

fdata supplied by S-R Chen, MST-8
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Types of uncertainties 1n measurements

* Two major types of errors

» random error — different for each measurement
* in repeated measurements, get different answer each time

« often assumed to be statistically independent, but often aren’t
» systematic error — same for all measurements within a group
« component of measurements that remains unchanged
 for example, caused by error in calibration or zeroing
* Nomenclature varies
» physics — random error and systematic error

» statistics — random and bias

» metrology standards (NIST, ASME, ISO) —
random and systematic uncertainties (now)
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Types of uncertainties 1n measurements

» Simple example — measurement of length of a pencil

» random error
* interpolation between ruler tick marks

» systematic error

 accuracy of ruler’s calibration;
manufacturing defect, temperature, ...

 Parallax in measurements

» reading depends on how
personlinesuppenciltip |||||||||||1||||||||||2||||||||||3||||||||||4

0 cm

» random or systematic error?

depends on whether measurements
always made by same person in the
same way or made by different people
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Incorporating systematic effects (1)

Fit straight line
y=a-+bx
to measurements of y, m; *

Fit s, , =020,0__=0.00
data sys

Figure shows fit to10 data points,
each with o, = 0.2

“Best” fit by minimizing y?:

2
Xia =Z(yi_m’)

i O;

l

Assumptions Fit straight line to data
» measurements are independent

» standard errors in are known (0,

» no systematic effects
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Incorporating systematic effects (2)

Uncertainties in the parameters a
can be determined from the
curvature matrix of y?
2 2
(K], =%
Oa ;0a, P

The covariance matrix is

C=2K"

Upper figure shows quasi-random
samples from (Gaussian) posterior,

for 12 quasi-random samples, C
compared to the original data ="

05

» variability ~ uncertainty )

Fits, . =0.20;6__=0.00
data sys
0.8

0.7f

0.6f

“0 02 04 06 08 1
a

Fit s, , =020,0__=0.00
data sys

3.
which gives parameter uncertainties |

Lower figure shows straight lines > 2
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Incorporating systematic effects (3)

Suppose all the data are uncertain to within
an addition offset A, with a known
uncertainty Op— 0.3 Fit s, =020;5__=0.30

Include this systematic effect by writing Xz
as

Follow standard procedure

» minimize y? to estimate parameters a, b,
and A

» estimate covariance matrix by inverting
curvature matrix (including all variables)

Error bar in middle of plot shows
uncertainty in offset of all points

Random samples from posterior, shown in
figure, exhibit the expected increase in
uncertainty about the inferred line

May 13, 2004 Uncertainty Quantification Working Group Seminar 28



Incorporating systematic effects (4)

Repeat previous exercise for 1000
data points with and without
systematic uncertainty

Plots show random samples from
posterior

With no offset uncertainty

» the effect of data averaging is to reduce
uncertainties in line parameters by factor

of 10 [=+/1000/10 ]
With offset uncertainty (o, = 0.3)

» slope of lines has same uncertainty as
above

» offset of lines 1s subject to uncertainty in
systematic offset

Systematic uncertainties impose
lower limit on inference

May 13, 2004

4

3.5
3t
2.5

Fit: Sya

=0.20;6__=0.00
ta SYS

with no offset uncertainty

Fit: Sya

=020;6__ =030
ta SYS

with offset uncertainty
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Fit PTW model to measurements

Preliminary fit (7a) to quasi-static and Hopkinson bar meas.

e Assuming for random
standard errors
» quasi-static: 0.5% (simple)
» quasi-static: 2% (reloaded)
» Hop-bar: 1% to 2.4%

* Include 3% systematic
uncertainty 1n offset of each
data set (7 + 7 parms)

* x*/DOF = 383/174 data;
largest discrepancy for
473 K (pulls down slope)
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True Stress (MPa)

Tantalum - PTW fit7a
1200 r T T
1000 /4 77K; 0.001/s  [52/13]
800
298 K; 1300/s  [46/29]
600} ! y
[ PWERRS
ooooooooooooooooooooooooo ! e ppt et N
400F ! oAl
W 673 K; 2600/s  [21/27]
| M K:3000/s  [68/31]
200"
O 1 L L L
0 0.2 0.4 0.6 0.8 1
True Strain
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Fit PTW model to measurements

Final fit (7d) to quasi-static and Hopkinson bar measurements

Assuming for random
standard errors

- . 1000k / 77 K; 0.001/s
» quasi-static: 0.5% ‘

Tantalum - PTW fit7d

1200

» quasi-static: 2% (reloaded) g 800}
> Hop—bar: 1% to 24% g 600-,,«""' 298 K; 1300/s
Include 3% systematic e A LT |
= 400F e?eiK; 2600/s

-
%
-
"
"
Y
Y
1Y
%
&
S

uncertainty in offset of
cach data set (6 + 7 parms)

2471073 K; 3900/s

200"

~ 4 1ter., ~ 65 func. evals. % 02 02 06 08 1

True Strain
2 _ .
X“/DOF =214/142 data; PTW curves include adiabatic

largest discrepancy for heating effect for high strain rates

298 K, 0.1/s data set ,
fdata supplied by S-R Chen, MST-8
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PTW parameters and their uncertainties

Parameters +/- rms error:

0 =0.0080 £ 0.0004
k =0.68+0.06

In(y) =11.5+0.8

Yo = 0.0092 £+ 0.0005
V., = 0.00147 +0.00011

Minimum chi-squared fit yields

estimated PTW parms. and rms errors,

s, = 0.0176 + 0.0032
s = 0.00358 £ 0.00018

Correlation coefficients

as well as correlation coefficients,
which are crucially important!

0
0 1

(0]

k  -0.180
In(y) -0.108 0.716
yo -0.113 0.596 0.046 1
y_ -0.283 0.644 0.111 0.502 1
s, -0.817 0.292 0.105 0.282 0.350
s. 0211 0.580 0.171 0.477 0.640

K

-In(y) vy, Yoo

-0.180 -0.108 -0.113 -0.283

1

0.716 0.596 0.644
1 0.046 0.111
0.502

So Seo
-0.817 0.211
0.292 0.580
0.105 0.171
0.282 0.477
0.350 0.640

1 -0.278
-0.278 1

Fixed parms:

p=4
y;=0.012
y,=04
£=0.23
a,=0.48
G, =722 MPa
T, ..=3290°K

p=16.6 g/cm?
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Monte Carlo sampling of PTW uncertainty

Use Monte Carlo technique to draw random samples from complete
uncertainty distribution for PTW parameters

Display stress-strain curve for each parameter set (at three specimen
conditions)

Conclude that fit faithfully represents data and their errors
This procedure confirms the analysis and model (model checking)

1200 —

600 |
E 800t
Eé L
8 gooft 400} Blow up
ﬁ i ,cfﬂpé Of data
E 400¢ H _______ el

region

" 1073 K; 3900/s

B -
= S~
BT
R H -

P o

AT

R

-y

ey

&5

200

OD 0.2 0.4 0.6 0.8 1

True Strain
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Importance of including correlations

* Monte Carlo draws from uncertainty distribution, done
correctly with full covariance matrix (left) and incorrectly by
neglecting off-diagonal terms in covariance matrix (right)

MC with correlations MC without correlations
1200 - - - - 1200
1000} 1000}
= — e
800} © |
< e
9 il » T
& 600 & BO0fgd
5 g s
> 400} S 400k
- ~ 1073 K; 3900/s = e
200 00k
0 - . : : 0 - . : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
True Strain True Strain
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Future work: Taylor impact experiment

* Next step 1n plan to validate PTW model 1s to proceed to
next level of hierarchy of experiments

* Analyze data from Taylor impact experiments
» need to use simulation code
» use posterior distribution from foregoing analysis as prior
» determine posterior distribution for Taylor data
» check consistency with Taylor data
» check consistency with prior
» resolve discrepancies or cope with model deficiencies

* Then proceed to analysis of more complex experiments,
which extend the operating range, ¢.g., flyer -impact
experiments
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