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Overview of presentation

• Introduction
– uncertainty analysis

– example - analysis of simple experiment

• General approach to analyzing single experiments
– estimation of model parameters and uncertainty assessment

• Estimating uncertainties in simulation codes

• Graphical probabilistic modeling
– analysis of numerous experiments in terms of many physical

models

– complete uncertainty analysis

• Summary
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Uncertainty assessment and Stockpile Stewardship

• Presently we rely on experts to estimate the reliability of
our weapons systems through the Enhanced Reliability
Methodology

• Eventually we will need to rely more on hydrocodes to
predict physical performance and safety of weapons

• A major challenge to NWT is to quantitatively assess
uncertainties in hydrocode predictions

• Correctness of hydrocodes will be substantiated by
comparison with legacy data and new non-nuclear
experiments

• For uncertainty assessment, we need a carefully thought
out methodology for combining old and new data and for
designing new experiments to fill in missing information
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Uncertainty analysis

• Uncertainties in model parameters are characterized by probability
density functions (pdf)

• Complete characterization of uncertainties in experiments
– incorporate “systematic” uncertainties

– include uncertainties in all experimental conditions

• Must include correlations among uncertainties

• Combine results from many (all) experiments
– reduce uncertainties in model parameters

– require consistency of models with all experiments
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Isothermal dependence of gas pressure on density
Example of simple basic physics model

• Assume linear model to
describe dependence (ideal gas)

• Determine two parameters,
intercept and slope, by
minimizing chi-squared based
on four available measurements
(standard "error" analysis)

• Use this linear model in
simulation code where pressure
of gas is needed and density is
calculated
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Isothermal dependence of gas pressure on density
Representation of uncertainties in inferred model

• Uncertainties in parameters, derived
from uncertainties in measurements,
given by Gaussian pdf in 2-D
parameter space
– correlations evidenced by tilt

– points are random draws from pdf

• Should focus on implied uncertainties
in physical phenomenon
– light lines are plausible model

realizations drawn from parameter pdf

– characterize uncertainty in dependence of
pressure vs. density
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Isothermal dependence of gas pressure on density
Importance of correlations in uncertainties

• Correlations in uncertainties are
critically important

• Plot shows random samples from
uncertainty in slope and intercept
ignoring correlations

• Uncertainties in dependence of
pressure vs. density far exceed
uncertainties in measurements
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Isothermal dependence of gas pressure on density
Uncertainties in model affect overall uncertainty

• Quadratic might account for
suspected departure from linearity
– curve constrained to go through origin

• Comparison with previous linear
model demonstrates increased
uncertainties in model outside of
density measurement range

• Conclusion: basic physics
experiments should cover full
operating range of physical
variables used by simulation code;
extrapolation increases uncertainty
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Simulation code

SimulationInitial State
Ψ(0)

Model A
α

Ψ(t)

• Simulation code predicts state of time-evolving system 
 - Ψ(t) = time-dependent state of system
 - Ψ(0) = initial state of system

• Properties of one system component described by physics model A with
parameter vector α
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Comparison of simulation with experiment

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t)
Measurement
System Model Y*(α)

Measurements, Y

- ln P(Y | Y*)
= 1/2 χ2

• Measurement system model transforms the simulated state of the physical
system Ψ(t) into measurements Y* that would be obtained in the experiment

• Mismatch to data summarized by minus-log-likelihood, -ln P(Y | Y*) =  1/2 
χ2
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Parameter estimation - maximum likelihood

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

- ln P(Y | Y*)
= 1/2 χ2

• Optimizer adjusts parameters (vector α) to minimize -ln P(Y | Y*(α))

• Result is maximum likelihood estimate for α (also known as minimum-chi-
squared solution)

• Optimization process is accelerated by using gradient-based algorithms
together with adjoint differentiation to calculate gradients of forward model
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Adjoint Differentiation of Forward Calculation

A
x

B C
zy ϕ

• Data-flow diagram shows sequence of transformations A, B, C that convert
data structure x to y to z and then scalar ϕ.

• Derivatives of ϕ with respect to x are efficiently calculated in the reverse
(adjoint) direction.

• CPU time to compute all derivatives is comparable to forward calculation

• One may need to keep intermediate data structures to evaluate derivatives

• Code based: logic of adjoint code derivable from forward code

∂
∂
ϕ
x

∂
∂
ϕ
y

∂
∂
ϕ
z
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Analysis of single experiment

• Likelihood
– p(Y | Y*) = probability of measurements Y given the values Y* predicted

by experiment simulation.  (NB: Y* depends on α)

• The pdf describing uncertainties in model parameter vector α,
called posterior:
– p(α  | Y)       p(Y | Y*) p(α)         (Bayes law)

– p(α) is prior; summarizes previous knowledge of α
– “best” parameters estimated by maximizing p(α | Y) 

(called Maximum A Posteriori solution)

– uncertainties in α are fully characterized by p(α | Y)

∝
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Parameter uncertainties via MCMC

• Posterior p(α | Y) provides full uncertainty distribution for α
• Markov Chain Monte Carlo (MCMC) algorithm generates a

random sequence of parameters that sample p(α | Y)
– results in plausible set of parameters {α}

– representative of uncertainties

– second moments of parameters can be used to estimate covariance matrix C

• MCMC advantages
– can be applied to any pdf, not just Gaussians

– automatic marginalization over nuisance variables

• MCMC disadvantage
– potentially calculationally demanding
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Markov Chain Monte Carlo

α2

Prob(α1, α2)
accepted step
rejected step

α1

• Metropolis algorithm:
– draw trial step from symmetric

pdf, i.e.,  T(∆α) =  T(-∆α)

– accept or reject trial step

– simple and generally applicable

– relies only on calculation of
target pdf for any α

– works well for many
parameters

Generates sequence of random samples from an arbitrary
probability density function
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Parameter uncertainties via MCMC

Initial State
{Ψ(0)}

Simulation

Model A
{α}

Ψ(t)
Measurement
System Model

MCMC

Measurements, Y

- ln P(Y | Y*)
= 1/2 χ2

- ln P(α | Y)

• Markov Chain Monte Carlo (MCMC) algorithm generates a random
sequence of parameters that sample posterior probability of parameters for
given data Y, P(α | Y), which yields plausible set of parameters {α}.

• Must include uncertainty in initial state of system, {Ψ(0)}

Y*(α)
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Reconstruction with several
plausible boundaries

Data flow diagram in BIE

Uncertainty analysis with Bayes Inference Engine
Represents general paradigm for analyzing an experiment

• Problem of reconstruction from just two radiographs solved with Bayes
Inference Engine (BIE) using deformable boundary

• Markov Chain Monte Carlo generates set of plausible solutions, whose
fluctuations characterize uncertainty in boundary localization, by drawing
random samples from posterior probability distribution
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Simulation of plausible predictions -
characterizes uncertainty in prediction

SimulationInitial State
Ψ(0)

Model A
{α}

{Ψ(t)}

• Generates plausible predictions for known uncertainties in parameters
– {Ψ(t)} = plausible sets of dynamic state of system

– {α} = plausible sets of parameter vector α
• Use Monte Carlo method - run simulation code for each random draw from

posterior for α, P(α |.), to obtain set of predictions {Ψ(t)}
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Uncertainty in predictions

• Estimate by propagating through simulation code a set of
parameter samples drawn from joint posterior distribution
of all parameters describing constituent physics models

• Assumptions about simulation code:
– appropriate physics modules included

– simulation uncertainties dominated by uncertainties in physics
modules, which can be determined through carefully designed
experiments (validation issue)

– numerically accurate (verification issue)

• Other stochastic effects in simulation may be included later
– variability in densities

– chaotic behavior
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Plausible outcomes for many models

SimulationInitial State
{Ψ(0)}

Model A
{α}

{Ψ(t)}

Model B
{β}

• Integrated simulation code predicts plausible results for known
uncertainties in initial conditions and material models
– {Ψ(t)} = plausible sets of dynamic state of system

– {Ψ(0)} = plausible sets of initial state of system

– {α} = plausible sets of parameter vector α for material A

– {β} = plausible sets of parameter vector β for material B
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Simulation code
 Predicts state of time-evolving physical system

PDE
Solver

C

Ψ(t)

• Future state of system Ψ(t)
predicted from initial state Ψ(0)

• Code consists of two parts:
– PDE solver computes basic

dynamical equations

– models for material behavior

• To determine accuracy of Ψ(t)
– determine accuracy of PDE solver

(verification)

– determine effects of uncertainties in
material models on Ψ(t) (validation)

Ψ(0)

D

A B
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Uncertainty in simulation predictions

• Assumptions about simulation code:
– appropriate physics modules included

– simulation uncertainties dominated by uncertainties in physics
modules, which can be determined through carefully designed
experiments (validation issue)

– numerically accurate (verification issue)

• Other stochastic effects in simulation may be included later
– variability in densities

– chaotic behavior
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Validation Experiments
 Full validation requires hierarchy of experiments

• Basic experiments determine
elemental physics models

• Partially integrated experiments
involve combinations of two or
more elemental models

• Fully integrated experiments
require complete set of models
needed to describe final
application of simulation code

C

PDE
Solver

Ψ(t)Ψ(0)

D

BA

PDE
Solver

Ψ(t)Ψ(0)

A

PDE
Solver

Ψ(t)Ψ(0)

BA
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Analysis of many experiments involving
several models

• Objective - combine results from many (all) experiments thereby reducing
uncertainties in model parameters
– include correlations among uncertainties, which are crucial but often neglected

– require consistency of final models with all experiments

• Solution - link probabilistic analyses depicted by graphical representation
– cumulative probabilistic analysis based on Bayes' law to optimally combine data

– copes with complexity of analyzing large number of experiments

– clearly displays logic and dependencies of analyses
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Graphical probabilistic modeling

• Analysis of experimental data Y
improves on prior knowledge
about parameter vector α

• Bayes law:
p(α | Y) ~ p(Y | α) p(α)
(posterior ~ likelihood x prior)

• Use bubble to represent effect of
analysis based on data Y

• In terms of logs:  - ln p(α | Y) =
- ln p(Y | α) - ln p(α) + constant

p(α | Y)
Y α

p(α)

α1

α2

p(α)

p(α | Y)

p(Y | α)
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Graphical probabilistic modeling

p(α | Y1)
Exp. 1 α Exp. 2 α β

p(α, β | Y1, Y2)

Output of second bubble:
         p(α, β | Y1, Y2) ~ p(Y1, Y2 | α, β) p(α, β)      (Bayes law)
                                 ~ p(Y2 | α, β) p(β) p(α | Y1 )  

                  (likelihood 2 x prior(β) x posterior 1)

                                    ~ p(Y2 | α, β) p(β) p(Y1 | α) p(α)

(likelihood 2 x prior(β) x likelihood 1 x prior(α))

Summary: Action of bubble is to multiply input pdfs by
likelihood from experiment to get output joint pdf

p(α)

p(β)
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Use of logarithms of probabilities

• In terms of log-probability, Bayes law becomes:
  - ln p(α | Y) = - ln p(Y | α) - ln p(α) + constant

• Parameters are estimated by minimizing - ln p(α | Y)

• Gaussian approximation of probability:
- ln p(α) = φ = φ0 + (α − α0)T K (α − α0) ,

where K is the curvature or second derivative matrix of φ (aka
Hessian) and α0  is the position of the minimum in φ

• Covariance matrix, C = <(α − α0)(α − α0)T>, 
is inverse of K:  C = K-1

• Likelihood for Gaussian measurement uncertainties is    
  -ln P(Y | Y*) =  1/2 

χ2 = 1/2 Σ {(y i - y* i)/σi} 2
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Gaussian probabilities
Lead to simplified combination of pdfs

• In terms of log-probability, Bayes law, gives posterior as:
- ln p(α | Y) = - ln p(Y | α) - ln p(α) + constant

• Bayes law for Gaussians, 
- ln p(α | Y) = φ = φ0 + (α − α0)T K0 (α − α0) = 
 (α − αL)T KL (α − αL) + (α − αP)T KP (α − αP)  + const.,
where subscripts L & P correspond to likelihood & prior

• Curvature matrix of posterior is: K0 = KL + KP

• Covariance matrix of posterior is:C0 = K0
-1 = [KL + KP]-1

• Estimated parameters are:α0  =  K0
-1 [αL KL + αP KP]
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Graphical probabilistic modeling
Propagate uncertainty through a sequence of analyses

α1

β1

p(α | Y1) p(β)

p(α, β | Y1, Y2)

p(Y2 | α, β )

• First experiment determines α, with
uncertainties given by p(α | Y1)

• Second experiment not only
determines β but also refines
knowledge of α

• Outcome is joint pdf in α and β,
p(α, β | Y1,Y2) (NB: correlations)

p(α | Y1)
Exp. 1 α Exp. 2 α β

p(α, β | Y1, Y2)p(α)

p(β)



March 18, 1999

Uncertainty Quantification Workshop
30

UNCLASSIFIED

UNCLASSIFIED

Graphical probabilistic modeling

• Diagrams useful for complete analysis of many
experiments related to several models
– displays logic

– explicitly shows dependencies

– organizational tool when many modelers and experimenters are
involved

• Result is full joint probability for all parameters based on
all previously analyzed experiments
– uncertainties in all parameters, including their correlations, which

are crucially important
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Example of analysis of several experiments

Exp. 1 α

Exp. 2 α β

p(α β γ δ | Y1 Y2 Y3 Y4 Y5)
Exp. 3 γ Exp. 5

α β
γ δ

Exp. 4 δ

Output of final analysis is full joint probability for all
parameters based on all experiments

p(α)

p(γ)

p(β)

p(δ)
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Need to avoid double counting of data

Exp. 1 α

Exp. 2 α β

p(α β γ | 1 2 3 4)

Exp. 3

Exp. 4 α β γ

Outputs of analyses of both Exps. 2 and 3 make use of output
of Expt. 1 and prior on β.  This repetition must be avoided in
overall posterior calculation through dependency analysis:

- ln p(α β γ | 1 2 3 4) =  - ln p(1 | α) - ln p(α) - ln p(2 | α β) - ln p(β)
- ln p(3 | α β) - ln p(4 | α β γ) - ln p(γ) + constant

p(β)

p(α)

p(β)
p(γ)

α β
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Model checking
Check that model is consistent with all experimental data

• Important part of any analysis

• Check consistency of full
posterior wrt. each of its
contributions.

• Example shown at right:
– likelihoods from Exps. 1 and 2 are

consistent with each other

– however, Exp. 2 is inconsistent with
posterior (dashed) from all exps.

– inconsistency must be resolved in
terms of correction to model and/or
interpretation of experiment

α1

α2 1

2
3

4
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Summary

• A methodology has been presented to combine experimental
results from many experiments relevant to several basic physics
models in the context of a simulation code

• Many challenges remain
– systematic experimental uncertainties (effects common to many data)

– detection and resolution of inconsistencies between experiments and
simulation code

– inclusion of other sources of uncertainty: material inhomogeneity,
chaotic or turbulent behavior
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Proposal

• Propose building application to implement this approach
– database of experiments showing links between analyses

– logically consistent inferences about models based on all information

– natural way to understand limits to parameter adjustment to match data
from fully integrated experiments


