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Outline
• Setting - Bayesian inference for simulation codes

– numerous continuous parameters

– expensive function evaluations

• Adjoint differentiation on basis of code
– efficiently calculates gradient of computed scalar quantity

– uses

– methods of implementation

• Hybrid Markov Chain Monte Carlo
– basic algorithm

– requires gradient of minus-log-probability

• A method to test convergence of MCMC sequence
– based on gradient of minus-log-probability
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Uses of adjoint differentiation

• Fitting large-scale simulations to data (regression):
– atmosphere and ocean models, fluid dynamics, hydrodynamic

• Reconstruction: imaging through diffusive media

• Hybrid Markov Chain Monte Carlo

• Uncertainty analysis of simulation code
– sensitivity of uncertainty variance to each contributing cause

• Metropolis-Hastings MCMC calculations
– sensitivity of efficiency (or acceptance fraction) wrt proposal

distribution parameters
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Forward and inverse probability

• Forward probability - determine uncertainties in observables
resulting from model parameter uncertainties

• Inverse probability - infer model parameter uncertainties from
uncertainties in observables; inference

Parameter
space

Experimental
observation
space

Forward probability

Inverse probability
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Initial State
Ψ(0)

Simulation

Parameters
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

- ln p(Y |Y*)
= 1/2 χ2

• Find parameters (vector α) that minimize

-ln p(Y| Y*(α)) =

• Result is maximum likelihood estimate for α 
– also known as minimum-chi-squared or least-squares solution

• Prior information used to overcome ill-posedness; Bayesian approach
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Maximum likelihood estimation by optimzation
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Maximum likelihood estimation by optimization

Initial State
Ψ(0)

Simulation

Parameters
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

- ln p(Y |Y*)
= 1/2 χ2

• Find minimum in -ln p(Y| Y*(α)) = by iteration over parameters α
• Optimization process is accelerated by using gradient-based algorithms;

therefore need gradients of simulation and measurement processes

• Adjoint differentiation facilitates efficient calculation of gradients,
i.e. derivative of scalar output ( ) wrt parameters α21
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Derivative calculation by finite differences

• Derivative for function defined as limit of ratio of finite differences:

Wish to estimate derivatives of calculated function for which there is no
analytic relation between outputs and inputs

• Numerical estimation based on
finite differences is problematical:
– difficult to choose perturbation ∆x

– # function evaluations ~
# variables

• Estimation based on functionality
implied by computer code is
more reliable

df

dx

f x f x

xx

x

x
1

0

1 1=
Æ

+ -
lim

( () )

D

D

D

Error in derivative of
sin(x) vs. ∆x at x = π/4



June 27, 2002 UQWG 9

Differentiation of sequence of transformations

A
x

B C
zy ϕ

• Data-flow diagram shows sequence of transformations A->B->C that
converts data structures x to y to z and to scalar ϕ  (forward calculation)

• Desire derivatives of ϕ wrt all components of x, assuming that ϕ is
differentiable

• Chain rule applies:

• Two choices for summation order:
– doing j before k means derivatives follow data flow (forward calculation)

– doing k before j means derivatives flow in reverse (adjoint) direction
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Adjoint Differentiation In Code Technique
ADICT

A
x

B C
zy ϕ

• For sequence of transformations that converts data structure x to scalar ϕ
• Derivatives are efficiently calculated in the reverse (adjoint) direction

• Code-based approach: logic of adjoint code is based explicitly on the
forward code or on derivatives of the forward algorithm

• Not based on the theoretical eqs., which forward calc. only approximates

• Only assumption is that ϕ is a differentiable function of x
• CPU time to compute all derivatives is comparable to forward calculation
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Level of abstraction of implementation

• One can choose to differentiate forward calculation at
various levels of abstraction
– model based

• e.g., differentiate partial differential equations and solve

• not advised because forward codes only approximates model

– module or algorithm based
• differentiate each basic algorithm (Bayes Inference Engine)

– code based
• direct interpretation of computer code (FORTRAN, C, etc.)

• automatic differentiation utilities produce derivative code(s)

– instruction based
• reverse the sequence of CPU instructions for any particular calc.
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Example of algorithm-based approach

• Bayes Inference Engine (BIE) created at LANL
– modeling tool for interpreting radiographs

– BIE programmed by creating data-flow diagram linking
transforms, as shown here for 3D reconstruction problem

• Adjoint differentiation crucial to BIE success
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3D reconstruction

Data

Frame 51 out of 100

50 ms, 4000 counts

24 views

Reconstruction
Variable intensity inside

deformable boundary
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• IR light photons in broad, retarded peak literally
“diffuse” by multiple scattering from source to detector
– time is equivalent to distance traveled

– diffusion equation models these multiply-scattered photons

– these photons do not follow straight lines

light
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Simulation of light diffusion in tissue
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Optical tomography – invert diffusion process

– for assumed distribution of diffusion coefficients (left)

– predict time-dependent output at four locations (right)

– reconstruction problem - determine image on left from
data on right
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light
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Finite-difference calculation

• Data-flow diagram shows calculation of time-dependent
measurements by finite-difference simulation

• Calculation marches through time steps ∆t

– new state Un+1 depends only on previous state Un

Diffusion,
atten. coef.

U = light
intensity

distribution

Measurements
on periphery
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Adjoint differentiation in diffusion calculation

• Adjoint differentiation calculation precisely reverses
direction of forward calculation

• Each forward data structure has an associated derivative
– where Un propagates forward, goes backward

nU∂
∂ϕ )( 2

2

1 χϕ =

Optical tomographic
reconstruction –
determine image of light
diffusion characteristics
from measurements of
how will IR light passes
through tissue

Diffusion,
atten. coef.

U = light
intensity

distribution

Measurements
on periphery
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Reconstruction of simple phantom

• Measurements
– section is (6.4cm)2, 0.7 < D < 1.4 cm2ns-1 (µabs = 0.1 cm-1)

– 4 input pulse locations (middle of each side)

– 4 detector locations; intensity measured every 50 ps for 1 ns

• Reconstructions on 64 x 64 grid from noisy data (rmsn = 3%)

• Conjugate-gradient optimization algorithm

p = 1.1 p = 2
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Reconstruction of Infant’s Brain I
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Automatic differentiation tools
• Several tools exist for automatically differentiating

codes; various capabilities, e.g., forward or reverse
(adjoint) differentiation, handling of large codes, etc.
– FORTRAN 77 (90 under development)

• ADIFOR (reverse mode)

• TAMC (reverse mode)

• TAPENADE (reverse mode)

– C (C++ under development)
• ADIC

• ADOL-C (reverse mode)

– MATLAB
• ADMAT

• Very active area of development
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MCMC for simulations

Simulation

Parameters
{x}

MCMC

Measurements, Y

-ln p(Y |Y*)
= 1/2 χ2

- ln p(x |Y)

• - log(likelihood) distribution is result of calculation;
function of parameters x

• Markov Chain Monte Carlo (MCMC) algorithm draws random samples
of x from posterior probability p(x|Y)

• Produces plausible set of parameters {x}; therefore model realizations

Calc. Meas., Y*(x)

* 2
2

2

1

2

( )i i

i

y yχ
σ
−=∑



June 27, 2002 UQWG 22

MCMC - problem statement

• Parameter space of n dimensions represented by vector x

• Draw a set of samples {xk} from a given “arbitrary”
target probability density function (pdf), q(x)

• Only requirement typically is that one be able to
evaluate Cq(x) for any given x, where C is an unknown
constant; that is, q(x) need not be normalized

• Although focus here is on continuous variables, MCMC
applies to discrete variables as well
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Uses of MCMC

• Permits evaluation of the expectation values of functions
of x, e.g.,

〈 f(x)〉 = ∫ f(x) q(x) dx ≅ (1/K) Σk f(xk)
– typical use is to calculate mean 〈x〉 and variance 〈(x - 〈x〉)2〉

• Useful for evaluating integrals, such as the partition
function for properly normalizing the pdf

• Dynamic display of sequences provides visualization of
uncertainties in model and range of model variations

• Automatic marginalization; when considering any subset
of parameters of an MCMC sequence, the remaining
parameters are marginalized over (integrated out)
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Metropolis Markov Chain Monte Carlo

x2

Probability(x1, x2)
accepted step
rejected step

x1

• Metropolis algorithm:
– draw trial step from

symmetric pdf, i.e.,
t(∆x) = t(-∆x)

– accept or reject trial step

– simple and generally
applicable

– requires only calculation of
target pdf, q(x), for any x

Generates sequence of random samples from an
arbitrary probability density function
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Metropolis algorithm

• Select initial parameter vector x0

• Iterate as follows: at iteration number k
(1) create new trial position x* = xk + ∆x ,

where ∆x is randomly chosen from t(∆x)
(2) calculate ratio r = q(x*)/q(xk)
(3) accept trial position, i.e. set xk+1 = x*

if r ≥ 1 or with probability r, if r < 1
otherwise stay put, xk+1 = xk

• Only requires computation of q(x) (with arbitrary
normalization)

• Creates Markov chain since xk+1 depends only on xk
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Gibbs algorithm

• Vary only one component
of x at a time

• Draw new value of xj from
conditional pdf

q(xj| x1 x2... xj-1 xj+1... )

• Cycle through all
components

x2

Probability(x1, x2)

x1
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• Called hybrid method because it alternates Gibbs &
Metropolis steps (better called “Hamiltonian” method?)

• Associate with each parameter xi a momentum pi

• Define a Hamiltonian (sum of potential and kinetic
energy):

H = ϕ(x) + Σ pi
2/(2 mi) ,

where ϕ = -log (q(x))

• Objective is to draw samples from new pdf:
q'(x, p) µ exp(- H(x, p)) = q(x) exp(-Σ pi

2/(2 mi))

• Samples {xk} from q'(x, p) represent draws from q(x)
because p dependence marginalized out

Hybrid MCMC method
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Hybrid algorithm

xi

pi

k

k+1

k+2

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant H, follow by Metropolis
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• Gibbs step: randomly sample momentum distribution

• Follow trajectory of constant H using leapfrog algorithm:

where τ is leapfrog time step.

• Repeat leapfrog a predetermined number of times

• Metropolis step: accept or reject on basis of H at beginning and
end of H trajectory

Hamiltonian algorithm
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• Gibbs step - easy because draws are from uncorrelated
Gaussian

• H trajectories followed by several leapfrog steps permit
long jumps in (x, p) space, with little change in H
– specify total time = T ; number of leapfrog steps = T/τ
– randomize T to avoid coherent oscillations

– reverse momenta at end of H trajectory to guarantee that it is
symmetric process (condition for Metropolis step)

• Metropolis step - no rejections if H is unchanged

• Adjoint differentiation efficiently provides gradient

Hybrid algorithm implementation
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2D isotropic Gaussian distribution

Long H trajectories - shows ellipses
when σ1 = σ2 = 1, m1 = m2=1

Randomize length of H trajectories
to obtain good sampling of pdf
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2D correlated Gaussian distribution

• 2D Gaussian pdf with high correlation (r =0.95)

• Length of H trajectories randomized
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MCMC Efficiency
– Estimate of a quantity from its samples from a pdf q(v)

– For N independent samples drawn from a pdf, variance in estimate:

– For N samples from an MCMC sequence with target pdf q(v)

where η is the sampling efficiency

– Thus, iterations needed for one statistically independent sample

– Let v = variance because aim is to estimate variance of target pdf
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n-D isotropic Gaussian distributions

• MCMC efficiency
versus number
dimensions
– Hamiltonian method:

drops little

– Metropolis method:
goes as 0.3/n

• Hybrid (Hamiltonian)
method much more
efficient at high
dimensions

• Assumes gradient eval.
costs same as function

Hybrid

Metropolis
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A new convergence test statistic
• Variance integral

by integration by parts and
– limits are typically ±∞ and last term is usually zero

– thus, integrals are equal

• Form ratio of integrals, computed from samples xk from p(x)

• R tends to be less than 1 when p(x) not adequately sampled
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2D non-isotropic Gaussian distribution

• Nonisotropic Gaussian target pdf: σ1 = 4, σ2 = 1, m1 = m2=1

• Randomize length of H trajectories to get random sampling

• Convergence; does sequence actually sample target pdf?
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Convergence - 2D nonisotropic Gaussians

• Non-isotropic Gaussian target pdf: σ1= 4, σ2= 1, m1= m2= 1
– control degree of pdf sampling by using short leapfrog steps (τ = 0.2)

and Tmaxmax = 2

• Test statistic R < 1 when estimated variance is deficient

R(1)
R(2)est. var(2)

est. var(1)/16
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16D correlated Gaussian distribution

• 16D Gaussian pdf related to smoothness prior based on
integral of L2 norm of second derivative

• Efficiency/(function evaluation) =
2.2% with Hybrid (Hamiltonian) algorithm
0.11% or 1.6% with Metropolis; w/o & with covar. adapt.
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MCMC - Issues

• Identification of convergence to target pdf
– is sequence in thermodynamic equilibrium with target pdf?

– validity of estimated properties of parameters (covariance)

• Burn in
– at beginning of sequence, may need to run MCMC for

awhile to achieve convergence to target pdf

• Use of multiple sequences
– different starting values can help confirm convergence

– natural choice when using computers with multiple CPUs

• Accuracy of estimated properties of parameters
– related to efficiency, described above
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Conclusions

• Adjoint differentiation provides efficient calculation of
gradient of scalar function of many variables
– optimization (regression)

– MCMC, especially hybrid method (other possible uses exist)

• Hybrid method
– based on Hamiltonian dynamics

– efficiency for isotropic Gaussians is about 7% per function
evaluation, independent of number of dimensions

– much better efficiency than Metropolis for large dimensions
provided gradient can be efficiently calculated

• Convergence test based on gradient of -log(probability)
– tests how well MCMC sequence samples full width of target pdf
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