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Overview

• Uncertainties
represented by probabilities

use Monte Carlo to visualize and estimate uncertainties

• Example - Taylor impact test

• Approach to validation of simulation code
focus is on uncertainties in simulation predictions

conduct validation experiments at various levels of
integration of pertinent effects

• Ultimate goal: develop models that are consistent with
all experiments
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Uncertainty analysis

• Uncertainties in parameters are
characterized by probability
density functions (pdf)

• Probability interpreted as
quantitative measure of
“degree of belief”

• Rules of classical probability
theory apply

• Bayes law provides way to
update knowledge about
models as summarized in terms
of uncertainty

Pr
ob

ab
ili

ty

Parameter value



June  5, 2001 SEM Conf. 4

Forward and inverse probability

• Forward probability - determine uncertainties in observables 
resulting from model parameter uncertainties

• Inverse probability - infer model parameters and their uncertainties
from uncertainties in observables

Parameter
space

Experimental
observation
space

Forward probability

Inverse probability
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Monte Carlo technique

• Monte Carlo -
numerical technique to
do probabilistic
calculations

draw values from prob.
density function (pdf)

use these values in
numerical calculation

• Figure shows histogram
of 100 parameter values
randomly drawn from
Gaussian pdf
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Monte Carlo technique

• Represent probability density function by a set of
numbers drawn randomly from it

consider a parameter space of n dimensions represented by
vector x
probability density function (pdf), p(x)

draw a sequence of random samples {xk} from it

• Allows evaluation of expectation values
for K samples,

〈 f(x)〉 = ∫ f(x) q(x) dx  ≅  (1/K) Σk  f(xk)

typical use is to calculate mean 〈x〉  and variance 〈(x - 〈x〉)2〉
of pdf
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Schematic view of simulation code

Simulation
engine

Initial State
Ψ(0)

Model A
α

Ψ(t)

• Simulation code predicts state of time-evolving system 
Ψ(t) = time-dependent state of system

• Requires as input
 Ψ(0) = initial state of system

description of physics behavior of each system component; e.g.,
physics model A with parameter vector α (e.g., constitutive relations)

• Simulation engine solves the dynamical equations (PDEs)
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Simulation of plausible simulation predictions

Simulation
engine

Initial State
{Ψ (0)}

Model A
{α}

{Ψ(t)}

• Generate plausible predictions for known uncertainties in
parameters and initial conditions

• Monte Carlo method
run simulation code for each random draw from pdf for α,  p(α  |.), and
initial state,  p(Ψ(0) |.)

simulation outputs represent plausible set of predictions, {Ψ(t)}

plausible set of
predicted dynamic
states of system

plausible set of
initial states of

system
plausible set of
parameter vectors α
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Uncertainty in predictions

• Estimate by propagating through simulation code
parameter samples drawn from joint posterior distribution
of all parameters describing constituent physics models

• Assumptions about simulation code:
appropriate physics modules included

simulation uncertainties dominated by uncertainties in physics
modules, which can be determined through carefully designed
experiments (validation issue)

numerically accurate (verification issue)

• Other stochastic effects may be included
variability in material properties, e.g., densities, grain structure

chaotic behavior
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Taylor impact test

• Propel cylinder into rigid flat
plate

• Measure profile of deformed
cylinder

• Deformation depends on
cylinder dimensions

impact velocity

plastic flow behavior of material at
high strain rate

• Useful for
determining parameters in material-
flow model

validating simulation code
(including material model)
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Stress-strain relation

• Johnson-Cook model
for rate-dependent
strength and plasticity

• Parameters can be
determined from
Hopkinson bar
measurements
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Taylor test simulations
• Simulate Taylor impact test

Abaqus FEM code

Johnson-Cook model for rate-dependent
strength and plasticity

   (4 parameters)

ignore anisotropy, fracture effects

cylinder: high-strength steel
               15-mm dia, 38-mm long

impact velocity = 350 m/s

• Effective strain reaches 250% 17 µs 33 µs 50 µs
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Monte Carlo example - Taylor test
• Use MC technique to

propagate uncertainties
through deterministic
simulation code

Assume uncertainty in each
parameter in Johnson-Cook
model (20-40%)

Draw value for each of four
parameters from its assumed
Gaussian pdf

Run Abaqus code for each set of
parameters

• Figure shows range of
variation in predicted cylinder
shape

NESSUS/Abaqus
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Comparison with experiment

• Suppose we do an
experiment that replicates
the conditions of the
simulation and measure
the profile after impact

• Quantitative comparison
of simulation prediction
with experimental data
must take into account
uncertainties in both

NESSUS/Abaqus
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Visualization of uncertainty

• Problem inherently difficult for numerous variables,
especially for fields, e.g., stress or strain vs. (x, y, z, t)

• With Monte Carlo, use normal tools to visualize
simulation

view several plausible realizations from MC sequence

view MC sequence as video loop (for field at fixed time)
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Inference
• May want to make inference about quantities that have not

been directly measured
stress

pressure

temperature

• Use validation experiment to update info about model
capture info in terms of uncertainties

uncertainties indicate degree of confidence in prediction

attempt to develop model that is consistent with ALL available
experiments Inference - unmeasured quantities, new situations,
conditions
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Issues
• Hierarchy of experiments

basic - designed to isolate and characterize a basic physical phenomenon
at single

partially integrated - involves more complex combination of phenomena,
e.g., multiple materials, varying conditions, complex geometry, ...

fully integrated - attempt to approach application conditions

• inference - use validation experiment to update info about model
capture info in terms of uncertainties

uncertainties indicate degree of confidence in prediction

attempt to develop model that is consistent with ALL available
experiments

• Ultimate goal Combine results from many (all) experiments
reduce uncertainties in model parameters

require consistency of models with all experiments
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Validation Experiments
 Full validation requires hierarchy of experiments

• Basic experiments determine
individual physics models

• Partially integrated experiments
involve combinations of two or
more elemental models

• Fully integrated experiments
require complete set of models
needed to describe final
application of simulation code

C

PDE
Solver

Ψ(t)Ψ(0)

D

BA

PDE
Solver
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PDE
Solver

Ψ(t)Ψ(0)

BA



June  5, 2001 SEM Conf. 19

Hierarchy of experiments

Exp. 1 A

Exp. 2 A B

Exp. 3 C Exp. 5
A B
C D

Exp. 4 D

Partially
integrated

Fully
integrated

Basic

• Information flow in analysis of series of experiments

• Information about models accumulates
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Hierarchy of experiments - plasticity
• Hierarchy of experiments

basic - Hopkinson bar
measures stress-strain relationship at

specific stain and strain rate

partially integrated - Taylor test
covers range of strain rates

  may extend range of physical conditions

full integrated - application dependent
• pressure vessel

• bumper rail

• automobile crash test
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Forward and inverse probability

• Model inference
if uncertainties in measurements are smaller than prediction uncertainties in
that arise from parameter uncertainties,
one may be able to reduce uncertainties in parameters

conditional on prediction uncertainties being dominated by uncertainties in
parameters and not by those in experimental set up

highlights importance of good experimental technique

Parameter
space

Experimental
spaceForward probability

Inverse probability

Prediction
uncertainty

Measurement
uncertainty

Inferred
uncertainty

Original
uncertainty
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Forward probability

• Uncertainties introduced by experimental conditions
increase uncertainties in prediction

• Experimental uncertainties:
geometry, initial and boundary conditions

material specifications - density, composition, grain structure

Parameter
space

Measurement
space

Experimental
uncertainties
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Inverse probability or inference

• Uncertainties introduced by experimental conditions
increase uncertainties in inferred model parameters

• Experimental uncertainties:
geometry, initial and boundary conditions

material specifications - density, composition, grain structure

Parameter
space

Measurement
space

Experimental
uncertainties
Experimental
uncertainties
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Comparison of simulation with experiment

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t)
Measurement
System Model Y*(α)

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

• Measurement system model transforms the simulated state of the
physical system Ψ(t) into measurements Y* that would be
obtained in the experiment

• Mismatch with data summarized by minus-log-likelihood,
-ln p(Y | Y*) =  1/2 

χ2

• Inference - determine parameters from Y, p(α|Y) with Bayes law

Forward model
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Parameter estimation - maximum likelihood

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

• Optimizer adjusts parameters (vector α) to minimize -ln p(Y |Y*(α))

• Result is maximum likelihood estimate for α (also known as minimum-
chi-squared solution)

• Optimization process is accelerated by using gradient-based algorithms
along with adjoint differentiation to calculate gradients of forward model
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Parameter uncertainties via MCMC

Initial State
{Ψ(0)}

Simulation

Model A
{α}

Ψ(t)
Measurement
System Model

MCMC

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

- ln p(α  | Y)

• Markov Chain Monte Carlo (MCMC) algorithm generates a random
sequence of parameters that sample posterior probability of
parameters for given data Y,  p(α | Y), which yields plausible set of
parameters {α}.

• Must include uncertainty in initial state of system, {Ψ(0)}

Y*(α)
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Analysis of many experiments involving
several models

• Objective - combine results from many (all) experiments
thereby reducing uncertainties in model parameters

include correlations among uncertainties, which are crucial but often
neglected

require consistency of final models with all experiments

• Solution - link probabilistic analyses depicted by graphical
representation

cumulative probabilistic analysis based on Bayes’ law to optimally
combine data

copes with complexity of analyzing large number of experiments

clearly displays logic and dependencies of analyses
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Graphical probabilistic modeling

• Analysis of experimental data Y
improves on prior knowledge about
parameter vector α

• Bayes law:
   p(α | Y) ~ p(Y | α) p(α)
(posterior ~ likelihood x prior)

• Use bubble to represent effect of
analysis based on data Y

p(α  | Y)
Y α

p(α)

α1

α2

p(α)

p(α  | Y)

p(Y | α)



June  5, 2001 SEM Conf. 29

Graphical probabilistic modeling
Propagate uncertainty through analyses of two experiments

α1

β1

p(α  | Y1) p(β)

p(α, β | Y1, Y2)

p(Y2 | α, β )

• First experiment determines
α, with uncertainties given by
p(α  | Y1)

• Second experiment not only
determines β but also refines
knowledge of α

• Outcome is joint pdf in α and
β, p(α, β | Y1,Y2) (NB:
correlations)

p(α  | Y1)
Exp. 1 α Exp. 2 α β

p(α, β | Y1, Y2)p(α)

p(β)
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Example of analysis of several experiments

Exp. 1 α

Exp. 2 α β

p(α β γ δ | Y1 Y2 Y3 Y4 Y5)
Exp. 3 γ Exp. 5 α β

γ δ

Exp. 4 δ

p(α)

p(γ)

p(β)

p(δ)

• Output of final analysis is full joint probability for all parameters
based on all experiments

• Use of Gaussian pdfs simplifies process
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Model checking
Check model consistent with all experimental data

• Important part of any analysis

• Check consistency of full
posterior wrt. each of its
contributions.

• Example shown at right:
likelihoods from Exps. 1 and 2 are
mutually consistent

however, Exp. 2 is inconsistent with
posterior (dashed) from all exps.

inconsistency must be resolved in
terms of correction to model and/or
interpretation of experiment

α1

α2 1

2
3

4
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Graphical probabilistic modeling

• Diagrams useful for complete analysis of many
experiments related to several models

displays logic

explicitly shows dependencies

organizational tool when many modelers and
experimenters are involved

• Result is full joint probability for all parameters
based on all previously analyzed experiments

uncertainties in all parameters, including their
correlations, which are crucially important



June  5, 2001 SEM Conf. 33

Summary

• A methodology has been presented to combine
experimental results from many experiments relevant
to several basic physics models in the context of a
simulation code

• Many challenges remain
systematic experimental uncertainties (effects common to
many data)

identification and resolution of inconsistencies between
experiments and simulation code

inclusion of other sources of uncertainty: material
inhomogeneity, chaotic or turbulent behavior, numerical
computation
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