Inference about the plastic behavior of materials from experimental data

Ken Hanson

CCS-2, Continuum Dynamics Los Alamos National Laboratory

This presentation available at http://www.lanl.gov/home/kmh/

March 8-11, 2004

Conference on Sensitivity Analysis of Model Output

LA-UR-04-1853

- Understanding physics simulations codes
 - employ hierarchy of experiments, from basic to fully integrated
 - role of Bayesian analysis improve knowledge of models with each new experiment
- Analysis of experimental data to infer parameters of Preston-Tonks-Wallace plasticity model for tantalum
 - characterize uncertainties in measurement data
 - ► estimate PTW parameters and their uncertainties
 - demonstrate importance of including correlations

Bayesian analysis in context of physics simulations

- Goal describe uncertainties in simulations
 - physics submodels
 - experimental (set up and boundary) conditions
 - ► calculations (grid size, ...)
- Use best knowledge of physics processes
 - rely on expertise of physics modelers and experimental data
- Bayesian foundation
 - focus is as much on uncertainties in parameters as on their best value
 - use of prior knowledge, e.g., previous experiments and expert judgement
 - model checking; does model agree with experimental data?

Bayesian uncertainty analysis

- Uncertainties in parameters are characterized by probability density functions (pdf)
- Probability interpreted as quantitative measure of "degree of belief"
- This interpretation sometimes called "subjective probability"
- Rules of classical probability theory apply

Parameter value

Schematic view of simulation code

- Simulation code predicts state of time-evolving system $\Psi(t)$
- Requires as input
 - $\Psi(0) = \text{initial state of system}$
 - description of physics behavior of each system component;
 e.g., physics model A with parameter vector α (e.g., constitutive relations)
- Simulation engine solves the dynamical equations (PDEs)
- Uncertainty in $\Psi(t)$ derive from uncertainties in $\Psi(0)$, A, α , and calculational errors

Simulation code predicts measurements

- Simulation code predicts state of time-evolving system $\Psi(t) = time-dependent$ state of system
- Model of measurement system yields predicted measurements
- Measurements provide insight about simulation models
- Comparison of experimental to predicted measurements forms basis for inference about simulation code and submodels

Analysis of hierarchy of experiments

- Information flow in analysis of series of experiments
- Bayesian calibration
 - analysis of each experiment updates model parameters (represented as A, B, C, etc.) and their uncertainties, consistent with previous analyses
 - information about models accumulates

Graphical probabilistic modeling

 β_1

Propagate uncertainty through analyses of two experiments

- First experiment determines
 α, with uncertainties given by
 p(α | Y₁)
- Second experiment not only determines β but also refines knowledge of α
- Outcome is joint pdf in α and β, p(α, β|Y₁,Y₂) (correlations important!)

 $p(\boldsymbol{\alpha} | \mathbf{Y}_{1}) p(\boldsymbol{\beta})$ $p(\mathbf{Y}_{2} | \boldsymbol{\alpha}, \boldsymbol{\beta})$ $p(\boldsymbol{\alpha}, \boldsymbol{\beta} | \mathbf{Y}_{1}, \mathbf{Y}_{2})$

 $\frac{\left| \begin{array}{c} p(\alpha, \beta | \mathbf{Y}_{1}, \mathbf{Y}_{2}) \right|}{\alpha_{1}} \right|$

Uncertainty quantification for simulation codes

- Goal is to develop an uncertainty model for the simulation code by comparison to experimental measurements
 - determine and quantify sources of uncertainty
 - uncover potential inconsistencies of submodels with expts.
 - possibly introduce additional submodels, as required
- Recursive process
 - aim is to develop submodels that are consistent with all experiments (within uncertainties)
 - a hierarchy of experiments helps substantiate submodels over wide range of physical conditions
 - each experiment potentially advances our understanding

Taylor impact test

- Propel cylinder into rigid plate
- Measure profile of deformed cylinder
- Deformation depends on
 - ► cylinder dimensions
 - ► impact velocity
 - plastic flow behavior of material at high strain rate
- Useful for
 - validating simulation code (including material model)
 - improving knowledge of parameters in material-behavior model

Taylor impact test experiment

- Taylor impact test specimen
 - ▶ high-strength steel, HSLA 100
 - ► room temperature, 298 °K
 - impact velocity = 245.7 m/s
 - dimensions, final/initial length 31.84 mm / 38 mm diameter 12.00 mm / 7.59 mm
 - experiment performed by MST-8

Taylor test simulations

- Simulation of Taylor impact test
 - cylinder: high-strength steel, HSLA100, 15-mm dia, 38-mm long, room temperature
 - impact velocity = 247 m/s
 - ► CASH Lagrangian code (X-7)
 - Zerilli-Armstrong model for ratedependent strength and plasticity
 - ► ignore anisotropy, fracture effects
- Effective total strain exceeds 100%
- Temperature rises more than 400 °C

HSLA 100 247 m/s, 298°K

Hierarchy of experiments - plasticity

- Basic characterization experiments measure stress-strain relationship at specific stain and strain rate
 - ► quasi-static low strain rates
 - ► Hopkinson bar medium strain rates
- Partially integrated expts. Taylor test
 - ► covers range of strain rates
 - extends range of physical conditions
- Full integrated experiments
 - mimic application as much as possible
 - may involve extrapolation of operating range; introduces addition uncertainty
 - integrated expts. can help reduce model uncertainties in their operating range; may expose model deficiencies

Analysis of hierarchy of experiments

- Series of experiments to determine plastic behavior of a metal
- Information flow shown for analysis sequence
- Bayesian calibration
 - analysis of each experiment updates model parameters and their uncertainties, consistent with previous experiments
 - information about models accumulates throughout process

PTW model for plastic deformation

- Preston-Tonks-Wallace model describes plastic behavior of metals
 - provides stress σ (or s) as function of plastic strain ε_p for wide range of strain rate and temperature
 - nonlinear, analytic formulation
- 7 parameters (for low strain rates) plus material-specific constants
- PTW model based on dislocation mechanics model
 - does not include effects of anisotropy or material history

The model and parameter inference

- We write the model as y = y(x, a)
 - where y is a vector of physical quantities, which is modeled as a function of the independent variables vector x and a represents the model parameters vector
- In inference, the aim is to determine:
 - ► the parameters *a* from a set of *n* measurements *d_i* of *y* under specified conditions *x_i*
 - ► <u>and</u> the uncertainties in the parameter values
- This process is called parameter inference, model fitting (or regression), however, uncertainty analysis is often not done, only parameters estimated

Likelihood analysis

• When the errors in each measurement are Gaussian distributed and independent, likelihood is related to chi squared: $p(\boldsymbol{d} \mid \boldsymbol{a}) \propto \exp(-\frac{1}{2}\chi^2) = \exp\left\{-\frac{1}{2}\sum_{i}\left[\frac{[\boldsymbol{d}_i - \boldsymbol{y}_i(\boldsymbol{a})]^2}{\sigma_i^2}\right]\right\}$

• χ^2 is quadratic in the parameters a

$$\chi^{2}(\boldsymbol{a}) = \frac{1}{2} (\boldsymbol{a} - \hat{\boldsymbol{a}})^{\mathrm{T}} \boldsymbol{K} (\boldsymbol{a} - \hat{\boldsymbol{a}}) + \chi^{2}(\hat{\boldsymbol{a}})$$

- where \hat{a} is the parameter vector at minimum χ^2 and *K* is the curvature matrix (aka the *Hessian*)
- The covariance matrix for the uncertainties in the estimated parameters is

$$\operatorname{cov}(\boldsymbol{a}) \equiv \left\langle (\boldsymbol{a} - \hat{\boldsymbol{a}})(\boldsymbol{a} - \hat{\boldsymbol{a}})^{\mathrm{T}} \right\rangle \equiv \boldsymbol{C} = 2\boldsymbol{K}^{-1}$$

Characterization of chi-squared

- Expand vector \boldsymbol{y} around \boldsymbol{y}^0 : $y_i = y_i(x_i, \boldsymbol{a}) = y_i^0 + \sum_j \frac{\partial y_i}{\partial a_j} \Big|_{a^0} (a_j - a_j^0) + \cdots$
- The derivative matrix is called the *Jacobian*, *J*
- Estimated parameters \hat{a} minimize χ^2 (MAP estimate)
- As a function of a, χ^2 is quadratic in $a \hat{a}$ $\chi^2(a) = \frac{1}{2} (a - \hat{a})^T K (a - \hat{a}) + \chi^2(\hat{a})$
 - ▶ where *K* is the curvature matrix (aka the *Hessian*);

$$\begin{bmatrix} \boldsymbol{K} \end{bmatrix}_{jk} = \frac{\partial^2 \chi^2}{\partial a_j \partial a_k} \Big|_{\hat{a}}; \quad \boldsymbol{K} = \boldsymbol{J} \boldsymbol{\Lambda} \boldsymbol{J}^{\mathrm{T}}; \quad \boldsymbol{\Lambda} = \mathrm{diag}(\sigma_1^{-2}, \sigma_2^{-2}, \sigma_3^{-2}, ...)$$

• Jacobian useful for finding min. χ^2 , i.e., optimization

Advanced analysis

- Analysis of multiple data sets
 - To combine the data from multiple, independent data sets into a single analysis, the combined chi squared is

$$\chi^2_{all} = \sum_k \chi^2_k$$

- where $p(d_k | a, I)$ is likelihood from *k*th data set
- Include Gaussian priors through Bayes theorem $p(a | d, I) \propto p(d | a, I) p(a | I)$
 - ► For a Gaussian prior on a parameter \boldsymbol{a} $-\log p(\boldsymbol{a} | \boldsymbol{d}, I) = \varphi(\boldsymbol{a}) = \frac{1}{2}\chi^2 + \frac{(\boldsymbol{a} - \tilde{\boldsymbol{a}})^2}{2\sigma_a^2}$
 - where \tilde{a} is the default value for a and σ_a^2 is assumed variance

Material-characterization experiments

- Data from **quasi-static** compression experiments tend to be of high quality
 - rms 'noise' $\approx 0.1\%$
 - thin data set to limit undue influence in likelihood
- Data from **Hopkinson-bar** experiments tend to be of medium quality
 - rms 'noise' $\approx 1\%$
- Observe artifacts in the data
 - arise from reflected shocks
 - ► need to account for these

Hopkinson bar measurements

- Hopkinson-bar data are degraded by oscillations, caused by reflected shocks and bar oscillations
- Treat these fluctuations as a random process with a high degree of correlation from point to point
- Subtract low-order polynomial from data to get fluctuations from smooth dependence

Conference on Sensitivity Analysis or wooder Output

Hopkinson bar measurements

Treat Hop-bar fluctuations as a correlated Gaussian process; covariance given by

$$\operatorname{cov}(\boldsymbol{y}, \boldsymbol{y}') \propto \exp\left\{-\left[\frac{\boldsymbol{x}-\boldsymbol{x}'}{\lambda}\right]^p\right\}$$

- where x is independent variable, strain
- determine correlation length λ and exponent *p* from data
- $p \approx 2; \lambda \approx 0.002$ (about 4 samples)
- Realization of random process ۲ shows behavior similar to data fluctuations
- Thin data set to avoid giving data ulletundue weight in likelihood

0.02

0.04

Strain

0.06

0.1

0.08

Repeated experiments

- Repeated experiments
 - stability of apparatus
 - indication of random component of error
 - may or may not indicate systematic error
- Figure shows curves obtained from four samples taken from different lots
- Sample-to-sample rms dev. $\approx 8\%$
- Treat this variability as a **systematic uncertainty** common to each specimen
- Represents an uncertainty in initial state

[†]data supplied by S-R Chen, MST-8

March 8-11, 2004

Conference on Sensitivity Analysis of Model Output

Types of uncertainties in measurements

- Two major types of errors
 - ► random error different for each measurement
 - in repeated measurements, get different answer each time
 - often assumed to be statistically independent, but often aren't
 - ► systematic error same for all measurements within a group
 - component of measurements that remains unchanged
 - for example, caused by error in calibration or zeroing
- Nomenclature varies
 - ▶ physics random error and systematic error
 - ► statistics random and bias
 - metrology standards (NIST, ASME, ISO) random and systematic uncertainties (now)

Types of uncertainties in measurements

- Simple example measurement of length of a pencil
 - ► random error
 - interpolation between ruler tick marks
 - ► systematic error

March 8-11, 2004

- accuracy of ruler's calibration; manufacturing defect, temperature, ...
- Parallax in measurements
 - reading depends on how person lines up pencil tip
 - random or systematic error?

depends on whether measurements always made by same person in the same way or made by different people

Fit PTW model to measurements

Analysis of quasi-static and Hopkinson bar measurements[†]

- PTW model for rate- and temperature-dependent plasticity
- Parameters estimated from Hopkinson bar measurements and quasistatic tests
- Full uncertainty analysis include 3% systematic uncertainty in offset of each data set (8 + 7 parms)
- ~ 6 iter., ~ 100 func. evals.

PTW curves include adiabatic heating effect for high strain rates

[†]data supplied by S-R Chen, MST-8

March 8-11, 2004

Conference on Sensitivity Analysis of Model Output

PTW parameters and their uncertainties

Parameters +/- rms error:

 $\begin{array}{l} y_0 &= 0.0123 \pm 0.0006 \\ y_\infty &= 0.00164 \pm 0.00004 \\ s_0 &= 0.0164 \pm 0.0007 \\ s_\infty &= 0.00308 \pm 0.00005 \\ \kappa &= 0.91 \pm 0.08 \\ \gamma &= (2.4 \pm 2.0) \times 10^{-6} \\ \theta &= 0.0145 \pm 0.0002 \end{array}$

Minimum chi-squared fit yields estimated PTW parms. and rms errors, including correlation coefficients, which are crucially important!

Correlation coefficients

	У ₀	y_{∞}	s ₀	\mathbf{S}_{∞}	К	γ	θ
y_0	1	0.186	0.988	0.400	0.687	-0.464	-0.182
y_{∞}	0.186	1	0.208	0.913	0.142	0.022	-0.140
s_0	0.988	0.208	1	0.432	0.713	-0.496	-0.299
\mathbf{S}_{∞}	0.400	0.913	0.432	1	0.443	-0.263	-0.257
К	0.687	0.142	0.713	0.443	1	-0.935	-0.119
γ	-0.464	0.022	-0.496	-0.263	-0.935	1	0.087
θ	-0.182	-0.140	-0.299	-0.257	-0.119	0.087	1

Monte Carlo sampling of PTW uncertainty

- Use Monte Carlo technique draw random samples from complete uncertainty distribution for PTW parameters
- Display stress-strain curve for each parameter set (at three temps)
- Conclude that fit faithfully represents data and their errors
- This procedure confirms the analysis and model

Importance of including correlations

Monte Carlo draws from uncertainty distribution, done correctly with full covariance matrix (left) and incorrectly (right), by neglecting off-diagonal terms in covariance matrix

MC without correlations

March 8-11, 2004

Conference on Sensitivity Analysis of Model Output

Future work: Taylor impact experiment

- Next step in plan to validate PTW model is to proceed to next level of hierarchy of experiments
- Analyze data from Taylor impact experiments
 - ▶ need to use simulation code
 - ► use posterior distribution from foregoing analysis as prior
 - determine posterior distribution for Taylor data
 - check consistency with Taylor data
 - check consistency with prior
 - resolve discrepancies or cope with model deficiencies
- Then proceed to analysis of more complex experiments, which extend the operating range, e.g., flyer -impact experiments

Plausible simulation predictions (forward)

- Generate plausible predictions for known uncertainties in parameters and initial conditions
- Monte Carlo method
 - run simulation code for each random draw from pdf for α , $p(\alpha|.)$, and initial state, $p(\Psi(0)|.)$
 - simulation outputs represent plausible set of predictions, $\{\Psi(t)\}$
 - advanced sampling methods useful to reduce number of calcs needed
 - Latin Hypercube, Centroidal Voronoi Tessellations, etc.

Summary

- Physics simulations codes
 - employ hierarchy of experiments, from basic to fully integrated
 - role of Bayesian analysis improve knowledge of models with each new experiment
- Analysis of experimental data to infer parameters of Preston-Tonks-Wallace plasticity model for tantalum
 - ► characterize uncertainties in measurement data
 - ► estimate PTW parameters and their uncertainties
 - demonstrate importance of including correlations

Bibliography

- "Uncertainty quantification of simulation codes based on experimental data,"
 K. M. Hanson and F. M. Hemez, *Proc. AIAA Aerospace Conf.* (2003)
- "A framework for assessing confidence in simulation codes," K. M. Hanson and F. M. Hemez, *Experimental Techniques* 25, pp. 50-55 (2001); application of uncertainty quantification to simulation codes with Taylor test as example
- "A framework for assessing uncertainties in simulation predictions," K. M. Hanson, *Physica D* 133, pp. 179-188 (2000); an integrated approach to determining uncertainties in physics modules and their effect on predictions
- "Inversion based on complex simulations," K. M. Hanson, *Maximum Entropy* and Bayesian Methods, pp. 121-135 (Kluwer Academic, 1998); describes adjoint differentiation and its usefulness in simulation physics
- "Uncertainty assessment for reconstructions based on deformable models," K. M. Hanson et al., *Int. J. Imaging Syst. Technol.* 8, pp. 506-512 (1997); use of MCMC to sample posterior

These and related papers available at http://www.lanl.gov/home/kmh/