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Overview

• Bayes Inference Engine (BIE)
– interactive tool for radiographic analysis; data-flow diagram

– based on “transformation” modules

– adjoint differentiation incorporated in modules

• Tomographic reconstruction - inverse problem
– approach data fitting as optimization problem

• Optical tomography
– solve time-dependent diffusion of IR light using adj. diff.

– amenable to modular approach

• Hamiltonian MCMC requires gradient
– is very efficient when combined with adjoint differentiation
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Design Goals for Bayes Inference Engine

• Develop capability to accurately model radiographs
– forward simulation model to include previously ignored

radiographic effects (cone beam, tilt, spectrum, blur)

– interactive, flexible, and adaptable model-building tool

– must handle complex, nonlinear models

• Allow optimization of models to match radiographs
– fast nonlinear optimization wrt many parameters

• Bayesian framework
– solve ill-posed inverse (reconstruction) problems

– uncertainty analysis



June 18-20, 2001 SAMO 2001 4

Advanced features of the BIE

• Advanced image/object models
– models constructed using interactive graphical interface

– geometric description of regions via deformable models

– variable density models for interior of each region

• Quasi-Newton gradient-based optimization
– maximize posterior to obtain MAP estimate

– Adjoint Differentiation In Code Technique (ADICT)

• Bayesian uncertainty analysis
– Markov Chain Monte Carlo (MCMC)

– posterior stiffness
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Object-oriented design

• OO design is crucial to BIE success
– flexibility in developing simulation models

– easy to construct data-flow diagram; can reverse flow

– encourages simplified approach to algorithm construction
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BIE Canvas

– Analyst interacts with
BIE through the
canvas

– Desired module is
selected from list in
GlyphManager

– Module placed on
canvas; needed
parameters set via
pop-up panel
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Graphical programming: data-flow diagram

– Analyst connects
modules together to
create data-flow
diagram

– Objective is to create a
model that accurately
simulates the
radiographic process
and matches the data

– Data flowing through
connections typically
consist of large data
structures, e.g., images
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Create noisy projection data

– Create noisy projections of object whose boundary is
defined in terms of geometric model

– Output of each module can be displayed

Define
Boundary

Convert to
Image

Take
Projections

Add
Gaussian

Noise

AA BB CC
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– Outputs from data-flow diagram

Create noisy projection data

Object
Boundary

Vertical
Projection

Grayscale
Image

Horizontal
Projection

AA

CC

BB
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Some design aspects of the BIE

• Modules provide functionality
– each module transforms input data to obtain output data

– created at run time (real-time instantiation)

– interactive or “live”; mouse click to
• view input and output data or set parameters

– Model-View-Controller paradigm
• function - displayed icon - response to mouse/keyboard

– self contained, autonomous units
• only responds to queries (messages)

• Connections provide the logic of sequence of transforms
– link each module to its input and output modules
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BIE modules are autonomous agents

• Each BIE module
– responsible for its own calculation (and its adjoint)

– responds to requests from modules connected to its output

– in turn, asks its input modules for their outputs

• No need for supervision to choreograph calculations

• Facilitated by OO design

• Reverse flow of data is easy (needed for adjoint differentiation)
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– Maximum posterior estimate obtained by optimization

– Gradients calculated by adjoint differentiation

MAP reconstruction of object boundary

Prior probability of boundary
Vary boundary to minimize ϕ

Define
boundary

Input
projection data

Compare
to data

- log Likelihood = χ2/2

ϕ = - log
Posterior
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– Maximum posterior estimate obtained by optimization

MAP reconstruction of object boundary

Boundary of
original object

Reconstructed
object

(grayscale image)
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ADICT
Adjoint Differentiation In Code Technique

A
x

B C
zy ϕ

• For sequence of transformations that converts data structure x to scalar ϕ
• Derivatives      are efficiently calculated in the reverse (adjoint) direction

• Code-based approach: logic of adjoint code is based explicitly on the
forward code or on derivatives of the forward algorithm

• Not based on the theoretical eqs., which forward calc. only approximates

• Only assumption is that ϕ is a differentiable function of x

x∂
∂ϕ

y∂
∂ϕ

z∂
∂ϕ

x∂
∂ϕ

All derivatives computed in time comparable to forward calculation
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Prior probability of boundary
Vary boundary to minimize ϕ

Define
boundary

Input
projection data

Compare
to data

- log Likelihood = χ2/2

ϕ = - log
Posterior

– Red arrows show forward flow of data for simulation

– Green arrows show reverse flow required for adjoint calculation

– Optimizer (lower right) requests gradient from GeometricObject

Adjoint differentiation - reverse data flow
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Adjoint differentiation in time-dependent
diffusion calculation

• Adjoint differentiation calculation precisely reverses
direction of forward calculation

• Each forward data structure has an associated derivative
– where Un propagates forward,         goes backward

nU∂
∂ϕ

)( 2
2

1 χϕ =
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Optical tomographic reconstruction

• Measurements consist of 4 input pulse locations, 4 detector locations
(intensity measured vs. time)

• Reconstruction based on
– conjugate-gradient optimization of 4000 pixel values to obtain best match

to light-diffusion data and adjoint differentiation

Reconstruction
(64 X 64 pixels)

Original diffusion-coef. image
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Modular approach to diffusion calculation
• Each box represents a computational module

– there are just a few different types of modules (reuse!)

– each module can be decomposed into set of submodules

• Sequence of time steps obtained by connecting modules

• This scenario suggests programming paradigm
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Modular approach to diffusion calculation
• Suggests building a toolkit to

– simulate code

– collection of modules to create simulation code

– build in adjoint differentiation into each module

– programming consists of connecting modules together

– adjoint differentiation is automatic

– gradient-based optimization
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MCMC - problem statement

• Parameter space of n dimensions represented by vector x

• Given an “arbitrary” target probability density function
(pdf), q(x), draw a set of random samples {xk} from it

• Only requirement is that, given x, one be able to evaluate
Cq(x), where C is an unknown constant;
thus, q(x) need not be normalized

• Although focus here is on continuous variables, MCMC
applies to discrete variables as well
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Use of MCMC in Bayesian data analysis

Simulation

Model A
{x}

Measurement
System Model

MCMC

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

- log(likelihood)
= - ln p(x | Y)

• - log(likelihood) value is result of calculation; function of model
parameters x

• Markov Chain Monte Carlo (MCMC) algorithm draws random samples
of x from posterior probability  p(x|Y)

• Produces plausible set of parameters {x}, which can be used to
characterize posterior distribution, e.g., in terms of mean and
covariance matrix

Y*(x)
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Hamiltonian MCMC
• MCMC efficiency

versus number
dimensions
–  Hamiltonian method:

drops little with n

– Metropolis method:
drops as 0.3/n

• Hamiltonian method
much more efficient at
high dimensions

• But, only if gradients
calculated using
adjoint differentiation

Hamiltonian

Metropolis

Multidimensional isotropic Gaussians
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