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Overview

Bayes Inference Engine (BIE)
— Interactive tool for radiographic analysis, data-flow diagram
— based on “transformation” modules
— adjoint differentiation incorporated in modules
Tomographic reconstruction - inverse problem
— approach data fitting as optimization problem
Optical tomography
— solve time-dependent diffusion of IR light using adj. diff.
— amenable to modular approach
Hamiltonian MCMC requires gradient
— Isvery efficient when combined with adjoint differentiation
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Design Goals for Bayes Inference Engine

o Develop capahility to accurately model radiographs

— forward simulation model to include previously ignored
radiographic effects (cone beam, tilt, spectrum, blur)

— Interactive, flexible, and adaptable model-building tool
— must handle complex, nonlinear models

* Allow optimization of models to match radiographs
— fast nonlinear optimization wrt many parameters

e Bayesian framework
— solveill-posed inverse (reconstruction) problems
— uncertainty analysis

June 18-20, 2001 SAMO 2001 3



Advanced features of the BIE

« Advanced image/object models
— models constructed using interactive graphical interface
— geometric description of regions via deformable models
— variable density models for interior of each region
e Quasi-Newton gradient-based optimization
— maximize posterior to obtain MAP estimate
— Adjoint Differentiation In Code Technique (ADICT)
e Bayesian uncertainty analysis
— Markov Chain Monte Carlo (MCMC)
— posterior stiffness
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Object-oriented design

OO designiscrucia to BIE success
— flexibility in developing simulation models
— easy to construct data-flow diagram; can rever se flow
— encourages simplified approach to algorithm construction
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BlIE Canvas
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Graphical programming: data-flow diagram

— Analyst connects
modules together to
create data-flow
diagram
Objectiveisto create a
model that accurately
simulates the
radiographic process
and matches the data
Data flowing through
connections typically
consist of large data
structures, e.g., Images

June 18-20, 2001

SAMO 2001

AbsoluteValue
CalculateChangeBoundingBox
ChangeBoundingBox
Cos

Exponential
ImageMass
InnerProduct

Log

Power
ReverseRows
ScalarAdd
ScalarMultiply




Create noisy projection data

— Create noisy projections of object whose boundary is
defined in terms of geometric model

— Output of each module can be displayed

Add

Define Convert to Take Gaussian
Boundary Image Projections Noise
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Create noisy projection data

— Outputs from data-flow diagram
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Boundary
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Some design aspects of the BIE

e Modules provide functionality
— each module transforms input data to obtain output data
— created at run time (real-time instantiation)

— Interactive or “live”; mouse click to
 view input and output data or set parameters

— Model-View-Controller paradigm
« function - displayed icon - response to mouse/keyboard

— salf contained, autonomous units
 only responds to queries (messages)

« Connections provide the logic of sequence of transforms
— link each module to its input and output modules
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BlE modules are autonomous agents

Each BIE module

— responsible for its own calculation (and its adjoint)
— responds to requests from modules connected to its output
— Inturn, asksits input modules for their outputs

No need for supervision to choreograph calculations
Facilitated by OO design
Reverse flow of datais easy (needed for adjoint differentiation)
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MAP reconstruction of object boundary

— Maximum posterior estimate obtained by optimization
— Gradients calculated by adjoint differentiation
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MAP reconstruction of object boundary

— Maximum posterior estimate obtained by optimization

Boundary of
original object

Reconstructed
object
(grayscale image)
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ADICT
Adjoint Differentiation In Code Technique

X y Z
—> ——> —> 0)
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99 99 99
0X oy 0z
For sequencg of transformations that converts data structure x to scalar ¢
Derivatives a—f are efficiently calculated in the reverse (adjoint) direction

Code-based approach: logic of adjoint code is based explicitly on the
forward code or on derivatives of the forward algorithm

Not based on the theoretical egs., which forward calc. only approximates
Only assumption isthat ¢ isadifferentiable function of x

All derivatives computed in time comparable to forward calculation
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Adjoint differentiation - reverse data flow

— Red arrows show forward flow of datafor ssmulation
— Green arrows show reverse flow required for adjoint calculation
— Optimizer (lower right) requests gradient from GeometricObject
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Adjoint differentiation In time-dependent
diffusion calculation

o Adjoint differentiation calculation precisely reverses
direction of forward calculation

e Each forward data structure has an associated derivative

— where U, propagates forward,
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Optical tomographic reconstruction

Original diffusion-coef. image Reconstruction
‘L? (64 X 64 pixels)

v

* Measurements consist of 4 input pulse locations, 4 detector locations
(intensity measured vs. time)
» Reconstruction based on

— conjugate-gradient optimization of 4000 pixel values to obtain best match
to light-diffusion data and adjoint differentiation
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Modular approach to diffusion calculation

» Each box represents a computational module
— there are just afew different types of modules (reuse!)
— each module can be decomposed into set of submodules

e Sequence of time steps obtained by connecting modules
 This scenario suggests programming paradigm

D, U,
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Modular approach to diffusion calculation

e Suggests building atoolkit to
— simulate code
— collection of modules to create simulation code
— build in adjoint differentiation into each module
— programming consists of connecting modul es together
— adjoint differentiation is automatic
— gradient-based optimization
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MCMC - problem statement

Parameter space of n dimensions represented by vector x
Given an “arbitrary” target probability density function
(pdf), q(x), draw a set of random samples{x,} from it

Only requirement is that, given X, one be able to evaluate
Cq(x), where C is an unknown constant;
thus, g(x) need not be normalized

Although focus here is on continuous variables, MCMC
appliesto discrete variables as well
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Use of MCMC in Bayesian data analysis

Measurements, Y

M easurement A0y [

' ' — —> =1 X2
Simulation System Model [y () 1, X

- log(likelihood)

=-Inp(x|Y
M?c)iglA vave P P(X[Y)

e -log(likelihood) valueisresult of calculation; function of model
parameters x

 Markov Chain Monte Carlo (MCMC) algorithm draws random samples
of x from posterior probability p(x|Y)

* Produces plausible set of parameters { x}, which can be used to
characterize posterior distribution, e.g., in terms of mean and

covariance matrix
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Hamiltontan MCMC

 MCMC efficiency Multidimensional isotropic Gaussians
versus number

dimensions

— Hamiltonian method:
drops little with n

— Metropolis method:
drops as 0.3/n
e Hamiltonian method
much more efficient at

10—15 R o R TR o R

Metropolis

Efficiency/Function Evaluation

10 E
high dimensions :
e But, only if gradients sl
calculated us Nng 1 10 100 1000 10000
adjoint differentiation ‘og{Bimension)
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