Uncertainties in tomographic reconstructions based on Bayesian geometric models

Ken Hanson, CCS-2, LANL Greg Cunningham, DX-3, LANL

Presentation available under http://home.lanl.gov/kmh/

LANL Radiographic S&A Workshop

Overview

- Bayesian approach to model-based analysis
- Example tomographic reconstruction from two views
- Deformable geometric models
- Bayes Inference Engine a radiographic modeling tool
- Maximum a posteriori (MAP) reconstruction
- Sampling from probability density functions
 - Markov Chain Monte Carlo (MCMC) technique
 - ▷ probabilistic interpretation of priors
- Estimation of uncertainty in reconstructed shape
 - ▷ Use of MCMC to sample posterior
 - Hard truth approach probe model stiffness

Bayesian approach to model-based analysis

- Models
 - used to analyze physical world
 - parameters inferred from data
- Bayesian analysis
 - uncertainties in parameters described by probability density functions (pdf)
 - prior knowledge may be incorporated
 - quantitatively and logically consistent methodology for making inferences
 - ▷ open ended approach
 - can incorporate new data
 - can extend models and choose between alternatives

Bayesian viewpoint

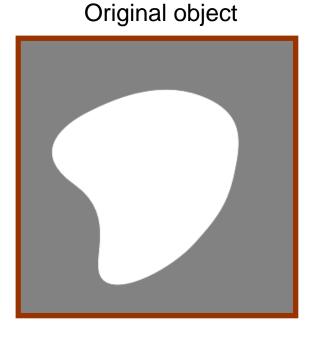
- Focus on probability distribution functions (pdf)
 - uncertainties in estimates more central than the estimates themselves
- Bayes law: $p(\mathbf{a}|\mathbf{d}) \sim p(\mathbf{a}) p(\mathbf{d}|\mathbf{a})$
 - \triangleright where **a** is parameter vector and **d** represents data
 - ▷ pdf before experiment, $p(\mathbf{a})$ (called *prior*)
 - ▷ modified by pdf describing experiments, $p(\mathbf{d}|\mathbf{a})$ (*likelihood*)
 - ▷ yields pdf summarizing what is known, $p(\mathbf{a}|\mathbf{d})$ (*posterior*)
- Experiment should provide decisive information
 - ▷ posterior much narrower than prior

Bayesian model building

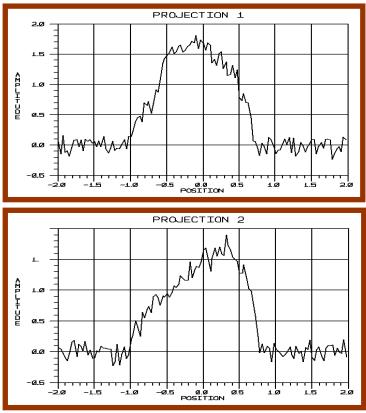
- Steps in model building
 - ▷ choose how to model (represent) object
 - assign priors to parameters based on what is known beforehand
 - For given measurements, determine model with highest posterior probability (MAP)
 - > assess uncertainties in model parameters
- Higher levels of inference
 - ▷ assess suitability of model to explain data
 - ▷ if necessary, try alternative models and decide among them

Example - tomographic reconstruction

- Problem reconstruct object from two projections
 - ▷ 2 orthogonal, parallel projections (128 samples in each view)
 - Gaussian noise;
 rms-dev 5% of proj. max



Two orthogonal projections with 5% rms noise



LANL Radiographic S&A Workshop

Prior information in reconstruction

- Assumptions about object
 - ▷ object density is uniform
 - ▷ abrupt change in density at edge
 - boundary is relatively smooth
- Object model
 - object boundary deformable geometric model
 - relatively smooth
 - interior has uniform density (known)
 - ▷ exterior density is zero
 - ▷ only variables are those describing boundary

Deformable geometric models

- Natural to describe objects in terms of their boundaries
- In data analysis aim is to balance
 - ▷ internal energy ε : measure of deformation
 - ▷ external energy, e.g. χ^2 : measure of mismatch to data
- Constrain smoothness based on curvature κ
 - ▷ deformation energy, e.g., $\epsilon \sim \int \kappa^2 ds$, for curve
 - ▷ controls number of degrees of freedom of curve
- Analogy to elastic materials rods, sheets

Tomographic reconstruction from two views

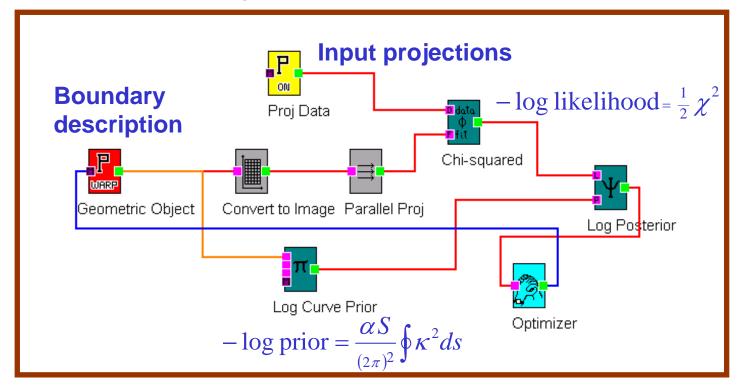
- Data consist of two orthogonal views
 - ▷ parallel projections, each containing 128 samples
 - ⊳ Gaussian noise; rms-dev 5% of proj. max
- Object model
 - boundary is 50-sided polygon
 - \triangleright smoothness achieved by prior on curvature κ
 - uniform (known) density inside boundary
- $\varphi = -\log \text{ posterior} = \frac{1}{2}\chi^2 + \frac{\alpha S}{(2\pi)^2} \oint \kappa^2 ds$,
 - \triangleright where *S* is total perimeter,
 - > χ^2 is sum of squares of residuals divided by noise variance

The Bayes Inference Engine

- Flexible modeling tool developed at LANL
 - object described as composite geometric and density model
 - measurement process (principally radiography)
- User interface via data-flow diagram
- Full interactivity with every aspect of model
- Provides
 - MAP estimate by optimization (gradient by ADICT)
 - ▷ samples of posterior by MCMC
 - uncertainty estimates

The Bayes Inference Engine

• BIE data-flow diagram to find MAP solution

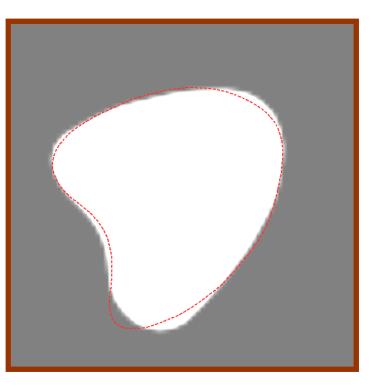


 Optimizer uses gradients that are efficiently calculated by adjoint differentiation in code technique (ADICT)

MAP reconstruction

• Determine boundary that maximizes posterior probability

Reconstructed boundary (gray-scale) compared with original object (red line)



MCMC Markov Chain Monte Carlo

- Generate sequence of random samples from specified probability density function
 represent pdf with finite number of samples
- Markov chain probability of *k*th state in sequence depends only on (*k*-1)th state
- Monte Carlo procedure
 - based on pseudo-random numbers generated by computer
 - estimated quantities always uncertain because of event statistics

MCMC - Metropolis algorithm

Generates sequence of random samples from an arbitrary target probability density function, $q(\mathbf{x})$

- Metropolis algorithm:
 - ▷ draw trial step from symmetric pdf, i.e., $T(\Delta x) = T(-\Delta x)$
 - ▷ accept or reject trial step based on $q(\mathbf{x}_{\mathbf{k}} + \Delta \mathbf{x})/q(\mathbf{x}_{\mathbf{k}})$
 - relies only on calculation of target pdf q(x)
 - simple and generally applicable
 - works well for small number of parameters; inefficient for many

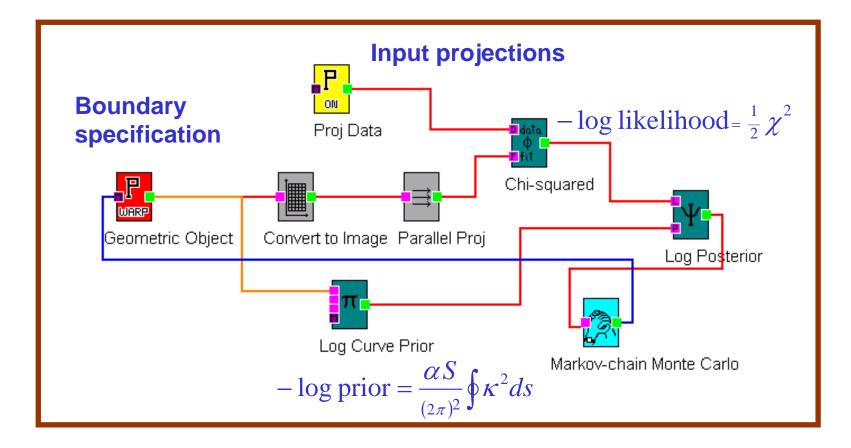
Probability $q(x_1, x_2)$ accepted step \mathbf{x}_2 ★ rejected step \mathbf{X}_1

MCMC - Metropolis algorithm

- Generate sequence of random samples from probability density function q(x), where x is vector of parameters
- Start with arbitrary \mathbf{x}_0
- Recursive loop to generate sequence: at point \mathbf{x}_k
 - ▷ pick new trial vector $\mathbf{x}^* = \mathbf{x}_k + \Delta \mathbf{x}$, where $\Delta \mathbf{x}$ drawn from symmetric p.d.f.

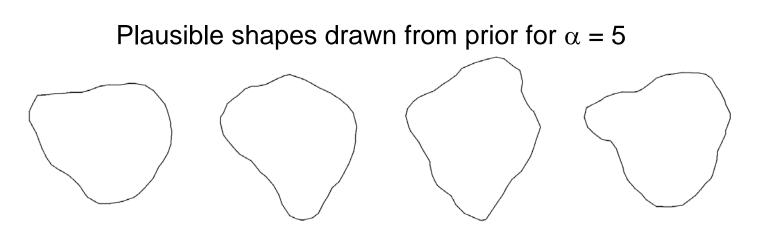
The Bayes Inference Engine

• BIE data-flow diagram to produce MCMC sequence



Probabilistic interpretation of prior for deformable model

- Probability of shape: $\sim \exp\left[-\frac{\alpha S}{(2\pi)^2}\oint \kappa^2 ds\right]$
- Sample prior pdf using MCMC
 - shows variety of shapes deemed admissible before experiment
 - \triangleright decide on $\alpha = 5$ on basis of appearance of shapes

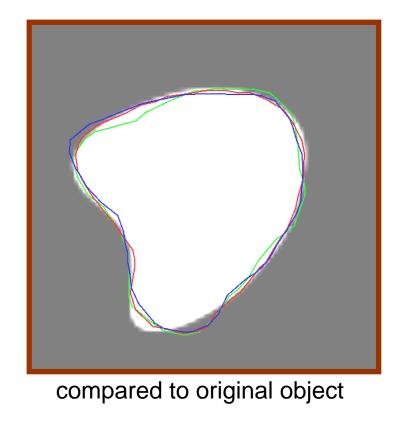


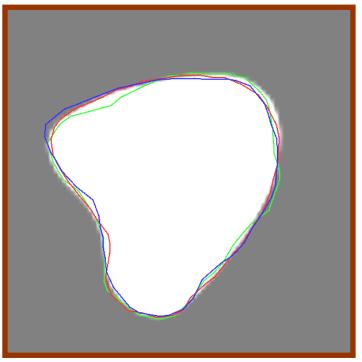
Visualization of uncertainty

- Problem inherently difficult for numerous parameters
 wish to see correlations among uncertainties in parameters
- View MCMC sequence as video loop
 advantage is one directly observes model in normal way
- View several plausible realizations from MCMC sequence
- Marginalized uncertainties (one parameter at a time)
 rms uncertainty (or variance) for each parameter
 - ▷ credible intervals

Uncertainties in two-view reconstruction

- From MCMC samples from posterior with 150,000 steps, display three selected boundaries
 - ▶ these represent alternative plausible solutions





compared to MAP estimated object

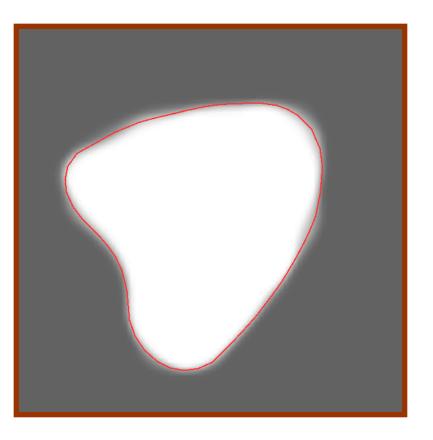
Posterior mean of gray-scale image

- Average gray-scale images over MCMC samples from posterior
- Value of pixel is probability it lies inside object boundary
- Amount of blur in edge is related to magnitude of uncertainty in edge localization
- Observe that posterior median nearly same as MAP boundary
 - implies posterior probability distribution symmetric about MAP parameter set

Posterior mean of gray-scale image

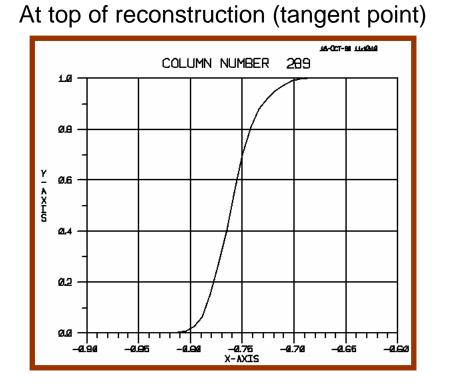
- Pixels in posterior mean image with value 0.5 represent posterior median boundary position
 - similar to MAP boundary for two-view problem

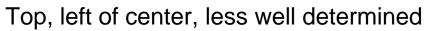
Posterior mean image compared to MAP boundary (red line)

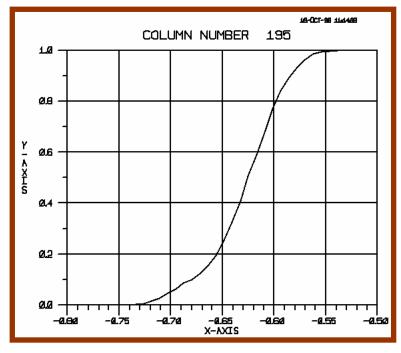


Uncertainty in edge localization

- Steepness of edge profile of posterior mean image indicates uncertainty in edge localization
 - uncertainty is nonstationary; varies with position





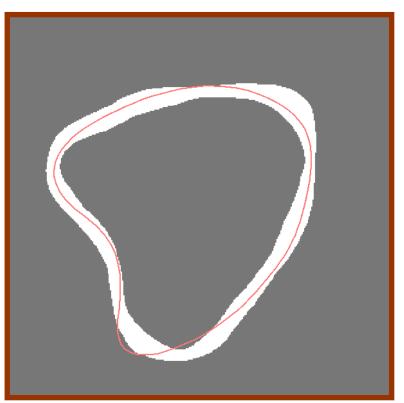


Credible interval

- Bayesian "confidence interval"
 - ▷ probability that actual parameter lies within interval
 - different from standard definition of confidence interval,
 which is based on (hypothetical) repeated experiments
- For MCMC posterior mean image, determines credible interval for boundary position
 - ▷ 95% credible interval is region of posterior mean image whose pixel values lie between 0.025 and 0.975.

Credible interval

- 95% credible interval of boundary localization for two-view reconstruction compared with original object boundary (red line)
 - ▷ narrower at tangent points
 - 92% of original boundary lies inside
 95% credible interval
- Marginalized measure of uncertainty ignores correlations among different positions



- Bayesian vs. frequentist approach to uncertainty assessment
 - ▷ MCMC sampling of posterior
 - single data set, single object
 - Monte Carlo simulation of repeated experiments to determine characteristics of the estimator used
 - variety of data sets (variety of objects)
- Advantages of Bayesian approach
 - ▷ applies to specific data set supplied
 - illuminates null space; multiple solutions that yield exactly same measurements

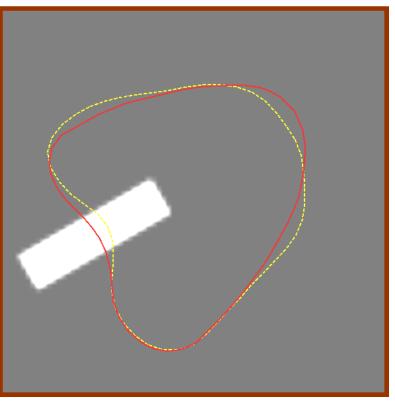
Important issues

- Markov Chain Monte Carlo
 - efficiency number of function evaluations required to obtain given level of accuracy in posterior characterization
 - choice of trial step distribution
 - account for correlations among different parameters
 - for Metropolis algorithm, efficiency ~ (number parameters)⁻¹
 - burn in period at beginning of MCMC sequence to reach equilibrium with target pdf
 - how long should burn in be?
 - ▷ need algorithms to improve efficiency
 - hybrid method, based on Hamiltonian dynamics (needs gradient)

Hard truth method

- Interpret $\varphi = -\log probability$ as potential function; sum of
 - deformation energy
 - $\triangleright \frac{1}{2}\chi^2$
- Stiffness of model proportional to curvature of φ
- Row of covariance matrix found by applying a force to parameters at MAP solution and reminimizing φ

Applying force (white bar) to MAP boundary (red) moves it to new location (yellow-dashed)



Bibliography

- "Uncertainty assessment for reconstructions based on deformable models,"
 K. M. Hanson et al., *Int. J. Imaging Syst. Technol.* 8, pp. 506-512 (1997)
- "Posterior sampling with improved efficiency," K. M. Hanson et al., in *Medical Imaging: Image Processing, Proc. SPIE* **3338**, pp. 371-382 (1998)
- "The hard truth," K. M. Hanson et al., in *Maximum Entropy and Bayesian Methods*, pp. 157-164 (Kluwer, 1996)
- "Operation of the Bayes Inference Engine," K. M. Hanson et al., in *Maximum Entropy and Bayesian Methods*, pp. 309-318 (Kluwer, 1999)

These and other papers available under http://home.lanl.gov/kmh/