Probabilistic interpretation of Peelle's pertinent puzzle and its resolution

Kenneth Hanson, Toshihiko Kawano, and Patrick Talou
Los Alamos National Laboratory

- Los Alamos

NATIONAL LABORATORY
Sept. 27 - Oct. 1, 2004
Nuclear Data Conference 2004

Overview

- Peelle’s Pertinent Puzzle (1987) paradoxical result produced by strong correlations in errors
- Probabilistic view of PPP
- Specific probabilistic model for PPP elucidates how correlations in errors arise
- Plausible experimental situation consistent with PPP result
- Other probabilistic interpretations of PPP statement
- Bayesian approach to coping with uncertainty in model
- PPP underlines the need for how uncertainties contribute to reporter data

Peelle’s pertinent puzzle

- Robert Peelle (ORNL) posed the PPP in 1987:

Given two measurements of same quantity x :

$$
m_{1}=1.5 ; m_{2}=1.0,
$$

each with independent standard error of 10%, and fully correlated standard error of 20%.
Weighted average using least-squares is $x=0.88 \pm 0.22$

- Peelle asks "under what conditions is this result reasonable?"
- By extension, if this not reasonable, what answer is appropriate?
- PPP is pertinent! - its effect has been present in nuclear data evaluation for decades
- Comment - PPP description of errors is ambiguous, which leads to numerous plausible interpretations

Standard PPP solution

- The solution given in PPP is based on standard matrix equations for least-squares result: estimated value

$$
\boldsymbol{x}=\left(\boldsymbol{G}^{T} \boldsymbol{C}^{-1} \boldsymbol{G}\right)^{-1} \boldsymbol{G}^{T} \boldsymbol{C}^{-1} \boldsymbol{m}
$$

covariance in estimate $\boldsymbol{V}=\left(\boldsymbol{G}^{T} \boldsymbol{C}^{-1} \boldsymbol{G}\right)^{-1}$
where the sensitivity matrix is $\quad \boldsymbol{G}=\left[\begin{array}{lll}1.0 & 1.0\end{array}\right]$ and the measurements are the vector $\boldsymbol{m}=\left[\begin{array}{ll}1.5 & 1.0\end{array}\right]^{T}$
with covariance matrix $\boldsymbol{C}=\left(\begin{array}{cc}1.5^{2} *\left(0.1^{2}+0.2^{2}\right) & 1.5 * 1.0 * 0.2^{2} \\ 1.5 * 1.0 * 0.2^{2} & 1.0^{2} *\left(0.1^{2}+0.2^{2}\right)\end{array}\right)$

- Result is $x=0.88 \pm 0.22$
- This result is smaller than both measurements, which seems implausible

Probabilistic view of standard PPP solution

- Consider the probability density function (pdf) for the variables

$$
\begin{aligned}
& \boldsymbol{x}=\left[\begin{array}{ll}
x_{1} & X_{2}
\end{array}\right]^{T} \\
& p(\boldsymbol{x} \mid \boldsymbol{m}) \propto \exp \left\{-\frac{1^{T}}{2}(\boldsymbol{x}-\boldsymbol{m})^{T} \boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{m})\right\}
\end{aligned}
$$

where measurements are $\boldsymbol{m}=\left[\begin{array}{ll}1.5 & 1.0\end{array}\right]^{T}$ and their covariance matrix is
$\boldsymbol{C}=\left(\begin{array}{cc}1.5^{2} *\left(0.1^{2}+0.2^{2}\right) & 1.5 * 1.0 * 0.2^{2} \\ 1.5 * 1.0 * 0.2^{2} & 1.0^{2} *\left(0.1^{2}+0.2^{2}\right)\end{array}\right)$

- For $x=x_{1}=x_{2}$ (diagonal of 2D pdf), $p(x \mid \boldsymbol{m})$ is normal distribution centered at 0.88

Probabilistic model for additive error

- Represent common uncertainty in measurements by systematic additive offset $\Delta: \quad x=m_{1}+\Delta ; \quad x=m_{2}+\Delta$
- Bayes law gives joint pdf for x and Δ

$$
p(x, \Delta \mid \boldsymbol{m})=p(\boldsymbol{m} \mid x, \Delta) p(x) p(\Delta)
$$

where priors $p(x)$ is uniform and $p(\Delta)$ assumed normal ($\sigma_{\Delta}=0.2$)

- Writing $p(x, \Delta \mid \boldsymbol{m}) \propto \exp \{-\varphi\}$ and assuming normal distributions

$$
2 \varphi=\frac{\left(x-m_{1}-\Delta\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x-m_{2}-\Delta\right)^{2}}{\sigma_{2}^{2}}+\frac{(\Delta-1)^{2}}{\sigma_{\Delta}^{2}}
$$

where $\sigma_{1}=0.1 * m_{1} ; \quad \sigma_{2}=0.1 * m_{2} ; \quad \sigma_{\Delta}=0.2$

- Pdf for x obtained by integration: $p(x \mid \boldsymbol{m})=\int p(x, \Delta \mid \boldsymbol{m}) \mathrm{d} \Delta$
- This model exactly same as $p(\boldsymbol{x} \mid \boldsymbol{m}) \propto \exp \left\{-\frac{1}{2}^{T}(\boldsymbol{x}-\boldsymbol{m})^{T} \boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{m})\right\}$

Plausible experimental scenario

- Under what conditions is PPP result reasonable?
- Suppose that measurements made in intervals shown
- From experience with apparatus, we know that background increases linearly in time
- Background subtraction for m_{1} is 1.5 times larger than for m_{2},

Time which leads to stated covar. matrix

- For this scenario, previous model is appropriate, and PPP solution, 0.88 , is correct answer

Probabilistic model for normalization error

- Represent common uncertainty in measurements by systematic error in normalization factor $c: x=m_{1} / c ; \quad x=m_{2} / c$
- Following same development as before, where prior $p(c)$ assumed normal with expected value of 1 and $\sigma_{c}=0.2$
- Writing $p(x, c \mid \boldsymbol{m}) \propto \exp \{-\varphi\}$

$$
2 \varphi=\frac{\left(c x-m_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(c x-m_{2}\right)^{2}}{\sigma_{2}^{2}}+\frac{(c-1)^{2}}{\sigma_{c}^{2}}
$$

where $\sigma_{1}=0.1 * m_{1} ; \quad \sigma_{2}=0.1 * m_{2} ; \quad \sigma_{c}=0.2$

- Divide $p(c x, c)$ by Jacobian $J=1 / c$ to get $p(x, c)$
- $p(x)$ obtained by numerical integration: $p(x \mid \boldsymbol{m})=\int p(x, c \mid \boldsymbol{m}) \mathrm{d} c$
- This approach promoted by D. Smith (1991)

Probabilistic model for normalization error

- Compare pdfs for two models for correlated effect:
A - additive offset
B - normalization factor
- Observe significant difference in two results
- Emphasizes need to know which kind of effect leads to correlated error

- Probabilistic model is capable of handling various known effects

Other models to include normalization error

- In previous model, because the normalization factor c is a scale parameter, one may argue that prior on c should be a log-normal distribution, i.e., a normal distribution in $\log (c)$
- Then, writing $p(x, c \mid \boldsymbol{m}) \propto \exp \{-\varphi\}$

$$
2 \varphi=\frac{\left(c x-m_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(c x-m_{2}\right)^{2}}{\sigma_{2}^{2}}+\frac{\log ^{2}(c)}{\sigma_{c}^{2}}
$$

- Jacobian $J=1$, so $p(c x, c)$ is same as $p(x, c)$
- $p(x)$ obtained by numerical integration: $p(x \mid \boldsymbol{m})=\int p(x, c \mid \boldsymbol{m}) \mathrm{d} c$
- Resulting pdf is slightly different than for previous model
- Another approach is to take logarithm of data, transforming multiplicative normalization error to additive error
- formulas for linear, additive errors may be applied

Probabilistic view of Chiba-Smith solution

- Assume the correlated error is to be applied to inferred x value:

$$
\begin{gathered}
\boldsymbol{C}=\left(\begin{array}{cc}
\hat{\boldsymbol{x}}^{2}\left(0.1^{2}+0.2^{2}\right) & \hat{\boldsymbol{x}}^{2} 0.2^{2} \\
\hat{\boldsymbol{x}}^{2} 0.2^{2} & \hat{\boldsymbol{x}}^{2}\left(0.1^{2}+0.2^{2}\right)
\end{array}\right) ; \\
\hat{\boldsymbol{x}}=\frac{\left(m_{1} / \rho_{1}^{2}+m_{2} / \rho_{2}^{2}\right)}{\left(1 / \rho_{1}^{2}+1 / \rho_{2}^{2}\right)}
\end{gathered}
$$

- Plot shows $p\left(x_{1}, x_{2} \mid \boldsymbol{m}\right)$

$$
p(\boldsymbol{x} \mid \boldsymbol{m}) \propto \exp \left\{-\frac{1^{T}}{2}(\boldsymbol{x}-\boldsymbol{m})^{T} \boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{m})\right\}
$$

- For $x=x_{1}=x_{2}$ (diagonal of 2D pdf), $p(x \mid \boldsymbol{m})$ is normal distribution centered at 1.25

Results for various probabilistic models

- Plot shows pdfs for x for various models
- additive error - PPP (dashed, A)
- normalization error (solid, B)
- normalization error with log-normal prior (dashed, C)
- using logarithm of data (dotted, D)
- Table summarizes results
- PPP solution substantially different from others
- Those based on multiplicative normalization error are similar

Method	$x m a x$	xmean	σx
A - PPP - additive	0.882	0.882	0.228
B - normalization	1.074	1.200	0.276
C - " with log prior	1.101	1.177	0.253
D - log transform	1.171	1.252	0.267

Which model should we use?

- Ambiguity in specifying source of correlation leads to uncertainty about which model to use
- Bayesian approach can handle model uncertainty

$$
\begin{aligned}
& p(x \mid \boldsymbol{m})=\int p(x, M \mid \boldsymbol{m}) \mathrm{d} M \\
& \quad=\int p(x \mid \boldsymbol{m}, M) p(M) \mathrm{d} M \\
& \quad=\frac{1}{2} p\left(x \mid \boldsymbol{m}, M_{1}\right)+\frac{1}{2} p\left(x \mid \boldsymbol{m}, M_{2}\right)
\end{aligned}
$$

- for two equally likely models M_{1} and M_{2}
- Answer is average of both pdfs!!

$$
x=1.04 \pm 0.30
$$

solid black line is average of A and B

Conclusions

- PPP result is consistent with plausible experimental scenario
- in which correlated (systematic) error contributes additively to result
- Ambiguous statement of the PPP leads to other interpretations
- some of which yield more plausible answers
- Analysts need better information to analyze data without guessing
- Probabilistic modeling can cope with various known uncertainty effects

Conclusions

- Experimenters - please provide measurement details
- Some of the details needed:
- specify standard errors as precisely as possible, indicating where uncertainties in their assessment lie
- specify components in uncertainties and whether they are
- independent, or correlated, e.g., systematic errors
- given relative to measured quantities or inferred values
- additive (background subtraction) or multiplicative (normalization)
- Correlation matrix by itself may not be enough
- Another issue in PPP is inconsistency between two measurements: one can cope with this discrepancy by introducing notion that the true errors may differ from quoted errors, i.e., treatment of outliers

