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Simulation code

SimulationInitial State
Ψ(0)

Model B
β

Ψ(t)

• Simulation code predicts state of time-evolving system 
 - Ψ(t) = time-dependent state of system
 - Ψ(0) = initial state of system

• Many underlying models needed to simulate complex physical situation

Model C
γ

Model A
α
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Validation of Simulation Code

• Validation = experimentally demonstrate that simulation code
satisfactorily predicts behavior of a specified aspect of the
physical world

• Goal is to estimate and minimize uncertainties in predictions

• Simulation code depends on many basic models

• Validation experiments
– basic experiments needed to validate basic models

– integrated experiments to validate intermediate levels of combinations of
basic models

– fully integrated experiments to validate complete simulation package

• Need analysis methods to accumulate and quantitatively assess
information about set of models for large number of experiments



July 31, 1998 MaxEnt98 - Garching, Germany 4

Simulation Codes

• Used to predict time evolution of physical systems

• Based on
– partial differential equations (PDEs)

• fundamental physics

• approximations

– behavior of materials and interactions between them
• domain of physical variables

• Examples
– fluid dynamics; liquids, gases; ocean, atmosphere

– hydrodynamics; solids under extreme pressures; high velocity impacts,
explosives

– electrodynamics; charged particles, magnetic fields; plasmas
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Uncertainty Analysis

• Uncertainties in model parameters characterized by probability
density function (pdf)

• Inference about models requires knowledge of uncertainties
– e.g., needed for model revision

• New experiments may be designed to reduce uncertainties through
sensitivity analysis

• Goal is to estimate and minimize uncertainties in predictions
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Uncertainty Analysis

• Based on complete characterization of uncertainties in
experiments
– incorporate “systematic” uncertainties

– include uncertainties in experimental conditions

• Must handle correlations among uncertainties

• Combine results from many (all) experiments
– reduce uncertainties in model parameters

– require consistency of models with all experiments
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Example of simple basic physics model
Isothermal dependence of gas pressure on density

• Assume linear model to
describe dependence (ideal gas)

• Determine two parameters,
intercept and slope, by
minimizing chi-squared based
on four available measurements

• Use this linear model in
simulation code where pressure
of gas is needed and density is
calculated
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Example of simple basic physics model
Isothermal dependence of gas pressure on density

• Uncertainties in parameters, derived
from uncertainties in measurements,
given by Gaussian pdf in 2-D
parameter space
– correlations evidenced by tilt

– points are random draws from pdf

• However, focus should be on
implied uncertainties in dependence
of pressure vs. density
– light lines are plausible model

realizations drawn from parameter pdf

– characterize uncertainty in dependence
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Example of simple basic physics model
Isothermal dependence of gas pressure on density

• Correlations in uncertainties are
critically important

• Plot shows random samples from
uncertainty in slope and intercept
ignoring correlations

• Uncertainties in dependence of
pressure vs. density far exceed
uncertainties in measurements
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Example of simple basic physics model
Isothermal dependence of gas pressure on density

• Suspected departure from linearity
might be handled by using
quadratic for model
– curve constrained to go through origin

• Comparison with previous linear
model demonstrates increased
uncertainties in model outside of
density measurement range

• Conclusion: desirable to conduct
basic physics experiments over full
operating range of physical
variables used by simulation code;
extrapolation increases uncertainty
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Parameter estimation - maximum likelihood

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

- ln P(Y|Y*)

• Measurement system model calculates measurements that experiment
would obtain for the simulated state of the physical system Ψ(t)

• Match to data summarized by minus-log-likelihood, -ln P(Y|Y*} =  1/2 
χ2

• Optimizer adjusts parameters (vector α) to minimize -ln P(Y|Y*(α)}
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Adjoint Differentiation of Forward Calculation
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• Data-flow diagram shows sequence of transformations A, B, C that convert
data structure x to y to z and then scalar ϕ.

• Derivatives of ϕ with respect to x are efficiently calculated in the reverse
(adjoint) direction.

• CPU time to compute all derivatives comparable to forward calculation

• One may need to keep intermediate data structures to evaluate derivatives

• Code based: logic of adjoint code derivable from forward code
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Analysis of single experiment

• Likelihood
– p(Y | Y*) = probability of measurements Y given the values Y*

predicted by experiment simulation.  (NB: Y* depends on α)

• The pdf describing uncertainties in model parameter vector α,
called posterior:
– p(α |Y)       p(Y | Y*) p(α)         (Bayes law)

– p(α) is prior; summarizes previous knowledge of α
– “best” parameters estimated by maximizing p(α |Y) (called MAP

solution)

– uncertainties in α are fully characterized by p(α |Y)

�
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Helpful to use logarithms of probabilities

• In terms of log-probability, Bayes law becomes:
  - ln p(α |Y) = - ln p(Y|α  ) - ln p(α) + constant

• Parameters are estimated by minimizing - ln p(α |Y)

• Gaussian approximation of probability:
- ln p(α) = φ = φ0 + (α − α0)T K (α − α0) ,

where K is the curvature or second derivative matrix of φ (aka
Hessian) and α0  is the position of the minimum in φ

• Covariance matrix is inverse of K:  C = K-1

• Likelihood for Gaussian measurement uncertainties is    
  -ln P(Y|Y*} = 1/2 χ2 = Σ {(yi - y*

i)/(2 σi)}2
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Gaussian probabilities

• Bayes law:   
- ln p(α |Y) = - ln p(Y|α  ) - ln p(α) + constant

• For Gaussians
- ln p(α | Y) = φ = φ0 + (α − α0)T K0 (α − α0) = 
 (α − αL)T KL (α − αL) + (α − αP)T KP (α − αP)  + const.,
where subscripts L & P refer to likelihood & prior

• Covariance matrix of posterior is:
C0 = K0

-1 = [KL + KP ]-1

• Estimated parameters are:
α0  =  K0

-1 [αL KL + αP KP ]
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Parameter uncertainties via MCMC

• Posterior p(α |Y) provides full uncertainty distribution

• Markov Chain Monte Carlo (MCMC) algorithm generates a
random sequence of parameters that sample p(α |Y)
– results in plausible set of parameters {α}

– representative of uncertainties

– second moments of parameters can be used to estimate covariance matrix C

• MCMC advantages
– can be applied to any pdf, not just Gaussians

– automatic marginalization over nuisance variables

• MCMC disadvantage
– potentially calculationally demanding
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Markov Chain Monte Carlo

α2

Prob(α1, α2)
accepted step
rejected step

α1

• Metropolis algorithm:
– draw trial step from symmetric

pdf, i.e.,  T(∆α) =  T(-∆α)

– accept or reject trial step

– simple and generally applicable

– relies only on calculation of
target pdf for any α

– works well for many
parameters

Generates sequence of random samples from a target probability
density function
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Parameter uncertainties via MCMC

Initial State
{Ψ(0)}

Simulation

Model A
{α}

Ψ(t)
Measurement
System Model

MCMC

Measurements, Y

- ln P(Y|Y*)
= 1/2 χ2

- ln P(α |Y)

• Markov Chain Monte Carlo (MCMC) algorithm generates a sequence of
parameter vectors that randomly sample posterior probability of parameters
for given data Y, P(α| Y)

• This sequence {α} represents a plausible set of parameters

• Must include uncertainty in initial state of system, {Ψ(0)}

Y*(α)
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Reconstruction with several
plausible boundaries

Data flow diagram in BIE

Uncertainty analysis with Bayes Inference Engine
Example of reconstruction from just two radiographs

• Reconstruction problem solved with Bayes Inference Engine (BIE)
using deformable boundary model

• MCMC generates set of plausible solutions, which characterize
uncertainty in boundary localization

Boundary
specification

Input projections

( )
ds

S
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2 2
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Simulation of plausible outcomes -
characterizes uncertainty in prediction

SimulationInitial State
Ψ(0)

Model A
{α}

{Ψ(t)}

• Simulation code predicts plausible results for known uncertainties in
parameters
– {Ψ(t)} = plausible sets of dynamic state of system

– {α} = plausible sets of parameter vector α
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Uncertainty in predictions

• Estimate by propagating through simulation code a set of
parameter samples drawn from joint posterior distribution
of all parameters describing constituent physics models

• Assumptions about simulation code:
– appropriate physics models included; can be checked using

carefully designed experiments (validation issue)

– numerically accurate (verification issue)

• Other stochastic effects in simulation may be included
– variability in densities

– chaotic behavior
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Plausible outcomes for many models

SimulationInitial State
{Ψ(0)}

Model A
{α}

{Ψ(t)}

Model B
{β}

• Integrated simulation code predicts plausible results for known
uncertainties in initial conditions and material models
– {Ψ(t)} = plausible sets of dynamic state of system

– {Ψ(0)} = plausible sets of initial state of system

– {α} = plausible sets of parameter vector α for material A

– {β} = plausible sets of parameter vector β for material B
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Analysis of many experiments involving
several models

• Complications
– complexity of handling large number of analyses

– logic and dependencies are difficult to follow

– need for global analysis

– correlations between uncertainties in parameters for various are induced
by analyses dependent on several models

• A comprehensive methodology is needed
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Graphical probabilistic modeling

• Analysis of experimental data Y
improves on prior knowledge
about parameter vector α

• Bayes law
p(α | Y ) ~ p( Y | α ) p(α)
(posterior ~ likelihood x prior)

• Use bubble to represent effect of
analysis based on data Y

• In terms of logs:  - ln p(α |Y) =
- ln p(Y|α  ) - ln p(α) + constant

p(α | Y)
Y α

p(α )

α1

α2

p(α)

p(α | Y)

p(Y | α )



July 31, 1998 MaxEnt98 - Garching, Germany 25

Graphical probabilistic modeling

p(α | Y1)
Exp.1 α Exp.2 α β

p(α, β | Y1, Y2)

Output of second bubble:
         p(α, β | Y1, Y2) ~ p( Y1, Y2 | α, β ) p(α, β)      (Bayes law)
                                 ~ p( Y2 | α, β ) p(β) p(α | Y1 )  

              (likelihood 2 x prior(β) x posterior 1)

                                    ~ p( Y2 | α, β ) p(β) p( Y1 | α) p(α)  

  (likelihood 2 x prior(β) x likelihood 1 x prior(α))

Summary: Action of bubble is to multiply input pdfs on
left by likelihood from experiment to get output joint pdf

p(α )

p(β )
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Graphical probabilistic modeling

• Useful for complete analysis of many experiments related
to several models
– displays logic

– explicitly shows dependencies

– sociological and organizational tool when many modelers and
experimenters are involved

• Result is full joint probability for all parameters based on
every experiment
– uncertainties in all parameters, including their correlations, which

is crucially important
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Example of analysis of several experiments

Exp.1 α

Exp.2 α β

p(α β γ δ | Y1 Y2 Y3 Y4 Y5 )
Exp.3 γ Exp.5

α β
γ δ

Exp.4 δ

Output is full joint probability for all parameters based on all
experiments

p(α )

p(γ )

p(β )

p(δ )
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Need to avoid double counting

Exp.1 α

Exp.2 α β

p(α β γ | 1 2 3 4)

Exp.3

Exp.4 α β γ

Output of analyses of both Exps. 2 and 3 make use of output of
Expt. 1 and prior on β.  This repetition must be avoided in
overall posterior calculation through dependency analysis:

- ln p(α β γ | 1 2 3 4 ) =  - ln p(1 | α  ) - ln p(α) - ln p(2 | α β ) - ln p(β)
- ln p(3 | α β ) - ln p(4 | α β γ ) - ln p(γ) + constant

p(β )

p(α )

p(β )
p(γ )α β
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Model checking

• Model checking is a necessary
part of any analysis: check model
against all experimental data

• Thus, need to check consistency
of full posterior wrt each of its
contributions, for example
– likelihoods from Exps. 1 and 2 are

consistent with each other

– however, Exp. 2 is inconsistent with
posterior (dashed) from other exps.

– inconsistency must be resolved in
terms of correction to model and/or
experimental interpretation

α1

α2 1

2

3

4
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Summary

• A methodology has been presented to cope with combining
experimental results from many experiments relevant to several
basic physics models in the context of a simulation code
– suggest using a graphical representation of a probabilistic model

• Many challenges remain
– correlations in experimental uncertainties

– systematic experimental uncertainties

– detection and resolution of inconsistencies between experiments and
simulation code

– normalization of likelihoods of different types

• More on WWW- http://home.lanl.gov/kmh


