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Overview
• Uncertainties in physics experiments
• Particle Data Group (PDG)
• Particle lifetime data
• Coping with outliers
• Uncertainty in the uncertainty
• Student t distributions – normal distribution
• Analysis of lifetime data using t distributions 
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Physics experiments
• Suppose experimenter states his/her measurement of physical 

quantity y as:    measurement ± standard error  or   
y = d ± σd

► σd represents experimenter’s estimated uncertainty in d
• Experimental uncertainty composed of two components:

► statistical (random) uncertainty
• from noise in signal or event counting (Poisson distr.) 
• usually Type A – determined by repeated meas., frequentist methods

► systematic uncertainty
• may affect many or all of experimental results
• from equipment calibration, experimental procedure, corrections
• often Type B – determined by nonfrequentist methods
• may be based on experimenter’s judgment, hence subjective and uncertain   

► these usually added in quadrature (rms sum)



July 9, 2007 Bayesian Inference and Maximum Entropy 2007 4

Physics experiments – likelihood functions
• Experimentalist’s measurement  

y = d ± σd   is interpreted 
probabilistically as likelihood function

► where I is background information, 
e.g. how experiment is performed

• Likelihood is a probability density 
function in d

• normalized to unit area wrt. d
• but usually viewed as function of y
• not necessarily normalized wrt. y

• Likelihood usually taken to be normal 
distribution (Gaussian) with standard 
deviation  σd

( | )dp d y Iσ
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Physics experiments – inference
• Inference about the physical quantity y is obtained by Bayes law; 

the posterior distribution for y is

► where p(y | I) is the prior on y, given background information I
• Prior often taken as flat, i.e., p(y | I) = const.

► Bayesian analysis defaults to likelihood analysis
► result is least-squares (or minimum χ2) method

( | ) ( | ) ( | )d dp y d I p d y I p y Iσ σ∝

posterior  likelihood × prior∝
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Physics experiments – least squares fitting
• Least-Squares (LS) analysis is based on assuming the likelihood 

is a normal (Gaussian) distribution

• For data set with uncorrelated uncertainties, the likelihood is

where χ2 is

• LS analysis – fit model for y by minimizing χ2

• Check Goodness of Fit by comparing min χ2 to 
# degrees of freedom = # data – # fit parameters
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χ2 distribution – Goodness of fit
• χ2(ν) distribution is sum of ν

squared random numbers, drawn 
from unit-variance normal distr. 

• Shown in graph for ν = 2, 10, 50
► rms width =

• After LS fit, compare min. χ2 with 
ν (DOF) to check Goodness of Fit 
► assumes σ’s correct, uncertainties 

independent, and normally distr.
► quantitatively, calculate p value

• If χ2 somewhat larger than DOF, 
analyst often multiplies LS std. 
error by

2 /ν

2 / DOFχ
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Particle Data Group (PDG)
• Particle Data Group formed in 1957

► annually summarizes measured properties of elementary particles
• For each particle property, committee:

► lists all relevant experimental data
► decides which data to include in final analysis

• outliers often rejected
► recommends value (least-squares average of accepted data)

and its standard error 
• std. error often magnified by                     (avg. factor of 2; 50% of time)

• PDG reports are excellent source of information about 
measurements of unambiguous physical quantities
► available online; free
► provide insight into how physicists interpret data

2 /( 1)nχ −
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Five venerable elementary particles
• This study will include all measurements of the lifetimes of the

following particles:

particle  discov.    mass     lifetime, τ comments
(MeV)       (s) 

• μ± 1937        106       2.2×10-10 lepton, cosmic rays   
• π0 1950        135       8.4×10-17 meson, nuclear force
• K0

s 1951        498      0.90×10-10 strange meson, CP viol.
• n           1931        940         886            baryon, nucleus constituent
• Λ0 1952      1116       2.63×10-10 strange baryon
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Lambda lifetime measurement in the 60s
• Hydrogen bubble chambers used in 

1950s and 60s to observe elementary 
particles

• Picture shows reaction sequence:
K- + p → Ξ- + K+

Ξ-→ Λ0 + π-

Λ0 → p + π-

• Track lengths and particle momenta, 
determined from curvature in magnetic 
field, yield survival time of  Ξ- and Λ

• Hubbard et al. observed 828 such events 
to obtain lifetimes:

τΞ = 1.69 ± 0.06×10-10 s
τΛ = 2.59 ± 0.09×10-10 s

Hydrogen bubble-
chamber photo 

From J.R. Hubbard et al., 
Phys.Rev. 135B (1964)
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Measurements of neutron lifetime
• Because n lifetime is so long, 

it is difficult to measure 
accurately without slowing 
neutrons or trapping them

• Plot shows all measurements 
of neutron lifetime

• Vertical line is PDG value, 
which includes 7 most recent 
measurements, except for  #2 
because it is highly discrepant

• χ2 (PDG) = 149/21 pts. 
• Several outliers exist

Neutron lifetime measurements
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Some other lifetime measurements
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Exploratory data analysis – IRQ and SOF 
• John Tukey (1977) suggested each set 

of measurements be scrutinized
► find quartile positions, Q1, Q2, Q3
► calculate the inter-quartile range

IQR = Q3 – Q1 
► calc. fraction of data in the intervals

y < Q1 – 1.5 IQR; y > Q3 + 1.5 IQR
called suspected outlier fraction (SOF)

• For normal distr.
► IQR = 1.35 σ
► SOF = 0.7%  (outside 2.7 σ)

• Q2 (median) is good estimate of x
• IQR measures width of core
• SOF measures extent of tail

Histogram of sample data set
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Composite of lifetime measurements
• Upper graph shows discrepancies 

of 99 lifetime meas. for 5 particles 
from PDG values, divided by their 
standard errors, i.e.  Δτ/σ

• Lower graph shows histogram
• χ2(y = 0) = 367/99 points
• IQR = 1.83 (1.35 for normal)
• Suspected outlier frac. = 6.1 % 
• Objective: characterize the 

distribution of discrepancies 
relative to their estimated 
uncertainties, Δτ/σ
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Coping with outliers
• Outliers disrupt analyses based on normal 

likelihood functions (e.g., LS)
• Outlier-tolerant likelihood functions 

generally have long (thick) tail
► long tail admits possibility of 

large deviations from true value
► exact form doesn’t seem to matter 

• A simple long-tail likelihood is 
mixture of two Gaussians:

► β is probability of long-tail Gaussian
► typical values:  β = 0.01-0.05 , γ = 5-20 

2 2

2 2 2

( ) ( )(1 ) exp exp
2 2

y d y dββ
σ γ γ σ
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Outlier-tolerant likelihood functions
• Hypothetical data set with outlier

► vertical green line show LS avg.
► thick curve is likelihood of data set

• Plot shows posterior based on two-
Gaussian likelihood
► log scale shows tails of likelihood 

functions
► long tail from outlier does not 

influence peak shape near cluster of 
three measurements

► long tails from cluster allows outlier 
to produce a small secondary peak; 
has little effect on posterior mean

Two Gaussians

LS

2G
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Effect of outlier on linear fit
• Outliers pose significant problem 

for LS algorithm, based on 
Gaussian likelihood

• Graph shows 10 data with outlier; 
error bars indicate known std. errs.

• LS (Gaussian like.) results in fitted 
line that disagrees with most data:  

• Using two-Gaussian likelihood for 
all data gracefully handles outlier
► fit is unchanged by outlier

• All data treated in same way
► no need to identify outliers 

2 15
min 85.6 / 9DOF, 10pχ −= =

Gaussian - best fit

2 Gaussians - best fit
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Physical analogy of probability
• φ(Δx) = minus-log-likelihood is analogous to a physical potential

• is a force with which each datum pulls on model 

• Outlier-tolerant likelihoods
► generally have long tails
► restoring force eventually decreases for large residuals

ϕ∇

Examples of long-tailed distrs.: t distributions for ν = 1, 5, ∞ (normal)
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Uncertainty in the uncertainty
• Suppose there is uncertainty in the stated standard error σ0 for 

measurement d
• Dose and von der Linden (2000)* give plausible derivation:

► assume likelihood has underlying normal distr.

► assume uncertainty distr. for ω, where σ is scaled by 

► marginalizing over ω, the likelihood is Student t distr.,

• t distribution more appropriate for likelihood than normal
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*Other contributors: Box and Tiao, O’Hagan, Fröhner, Press, Sivia, Hanson and Wolf
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Prior on standard error
• In derivation by Dose and 

von der Linden, prior on ω is:

where σ is scaled by 

• Corresponding prior on s is

• These are plausible distributions
for representing uncertainty in σ
► rms dev = 1.06, 0.69, 0.30 (ν =1,3,9) 
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Student t distribution
• Student* t distribution 

► long (thick) tail for ν < 9  (SOF > 2%)
► ν = 1 is Cauchy distr. (solid red)
► ν = ∞ is normal distr. (solid blue)

• Lower graph shows ν dependence of
► RMSD (square root of variance)
► IQR (Intra-quartile range)
► SOF (Suspected outlier fraction)

2
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( ) 1 zt z
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ν = 1, 5, ∞

* Student (1908) was pseudonym for W.S. 
Gossett, who was not allowed to publish under his 
own name by his employer, Guinness brewery
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Composite of lifetime measurements
• Recall data for discrepancies of 99 

lifetime meas. for 5 particles from 
PDG values, divided by their 
standard errors, i.e.  Δτ/σ

• Lower graph shows histogram
• Objective: characterize the 

distribution of discrepancies 
relative to their estimated 
uncertainties, Δτ/σ
► do data follow normal or t 

distribution?
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Bayesian model selection
• To select between two models, A and B, Bayes rule gives 

the odds ratio 

where p(A|I)/p(B|I) is the prior odds ratio on the models 
and is evidence, evaluated as the integral over 
the likelihood of the parameters τ and s for model A

where p(d | τ s A σ I) is the likelihood and
p(τ s | A I) is the prior on the lifetime and scale factor

(A | ) ( |A ) (A | )
(B | ) ( | B ) (B | )

p I p I p I
p I p I p I

=
dσ d σ
dσ d σ

( |A ) ( | A ) ( | A )p I p s I p s I d dsτ τ τ= ∫d σ d σ

( |A )p Id σ
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Analysis of lifetime data set
• To calculate average value of data set, use the Student t 

distribution for likelihood of each measurement of lifetime, τ:

where s is scaling factor of standard error for whole data set
• Select ν based on data using Bayesian model selection
• Scale factor s marginalized out of posterior 

► p(τ) is prior on lifetime, τ ( = const.)
► p(si) is prior on si ( = const., although 1/si is often appropriate)

• Posterior for s determined by dispersion of data
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Model selection
• Odds ratios of t distr. (T) to normal (N) 

is

= 1.3×10-85 /2.2×10-90 = 5.5×104

► assuming prior ratio on models = 1
and priors on parameters equal (~5)

► evidence is integral over τ and s
► priors on τ and s = constant

• t distr. is strongly preferred by data 
to normal distr.
► ν ≈ 2.6  (maximizes evidence)
► for normal:  avg. s = 1.95 ± 0.14

(T | ) ( | =2.6T ) (T | )
(N | ) ( | N ) (N | )

p I p I p I
p I p I p I

ν
=

dσ d σ
dσ d σ

Evidence

Evidence vs. ν



July 9, 2007 Bayesian Inference and Maximum Entropy 2007 26

Model selection – excluding largest outlier
• Remove most discrepant datum (9.5 σ)
• Odds ratios of t distr. (T) to normal (N)

= 2.1×10-82 /5.0×10-84 = 42
► assuming prior ratio on models = 1

and priors on parameters equal (~5)
► evidence is integral over τ and s
► priors on τ and s = constant

• t distr. is still preferred by data to 
normal distr.
► ν ≈ 3.3  (maximizes evidence)
► for normal:  avg. s = 1.71 ± 0.12

Evidence

(T | ) ( | =3.3T ) (T | )
(N | ) ( | N ) (N | )

p I p I p I
p I p I p I

ν
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dσ d σ
dσ d σ

Evidence vs. ν
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Bayesian model selection
• Graph shows best fits of likelihood 

functions to histogram of 
normalized residuals of lifetime 
data 

• For normal: s = 1.95 ± 0.14
• For t distr.: s = 1.2 ± 0.15, ν = 2.6
• Bayesian model-selection analysis 

indicates t distr. is 5.5×104 times 
more likely than normal distr.
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Analysis of neutron lifetime data
• Upper plot shows all 

measurements of neutron lifetime
• Lower plot shows results based 

on all 21 data points: 
► posterior for t-distr. analysis 

(ν = 2.6, margin. over s;                    
)

• consistent with PDG 
► least-squares result (w/o and 

with χ2 scaling, s = 2.73)
• single outlier has large effect

• PDG value (using 7 most recent 
data points, excluding Serebrov; 
s = 1)

Neutron lifetime measurements

=1.16s
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Analysis of neutron lifetime data
• Details of analysis of neutron data

► t distr. with ν = 2.6 (fixed)
• Upper plot shows joint posterior 

distr. for s and τ (lifetime)
► priors for s and τ constant

• Lower plot: 
► posterior for lifetime (projection of 

joint distr. onto τ, i.e. marginalized 
over s) 

► lifetime estimate is posterior mean, 
standard error is rms dev.:
τ = 886.1 ± 1.1 s
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Analysis of π0 lifetime data
• Upper plot shows all 

measurements of π0 lifetime
• Lower plot shows results based on 

all 13 data points: 
► posterior for t-distr. analysis 

(ν = 2.6, margin. over s; 
) 

► least-squares result (with χ2

scaling, s = 1.58)
• PDG values (using 4 selected data 

points, excluding latest one; 
σ scaled by s = 3.0)

• Results all consistent

π0 lifetime measurements

=1.55s
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Analysis of Λ lifetime data
• Upper plot shows all measurements 

of Λ lifetime
• Lower plot shows results based on 

all 27 data points: 
► posterior for t-distr. analysis 

(ν = 2.6, margin. over s
) 

► least-squares result (with χ2 scaling, 
s = 1.81)

• PDG value (using 3 latest data 
points, s = 1.6)
► disagrees with LS and t-distr. results
► ignores most data

Lambda lifetime measurements

=1.59s
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Robustness tests 
• How well does t-distr. analysis 

handle data from different distrs.? 
• Analyze data using two likelihoods: 

a) t distr. with ν = 3
b) normal distr.

► scale uncertainties by 
marginalizing over s distr.

► results from 10,000 random trials
► For each run, draw 20 data points 

from various t distributions
• Conclude

► t distr. analysis well behaved
► normal distr. analysis unstable 

when data have outliers

Tests with 20 data points/run 



July 9, 2007 Bayesian Inference and Maximum Entropy 2007 33

Statistical fluctuations: n-p scattering 
• n-p cross sections measurements by 

Clement et al. (1972); 425 data pts.
• Compare to R-matrix calc. of G. Hale
• Upper graph shows residuals with 

specified statistical uncertainty 
• Lower graph shows residuals (after 

subtracting running avg)/rms error
• χ2 = 394/341 points = (1.07)2

• IQR = 1.55 (1.35 for normal)
• SOF = 1.2% (0.7% for normal)
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Statistical fluctuations: n-p scattering 
• Histogram of Clement (1972) 

residuals, with running avg subtracted, 
normalized by statistical error

• Odds ratios of t distr. (t) to normal (N) 

= 2.8×10-237 /8.7×10-234 = 3.2×10-4

► assuming prior ratio on models = 1
and priors on parameters equal (~5)

► evidence is integral over τ and s
► priors on τ and s = constant

• Normal distr. is strongly preferred 
by data to t distr.

(t | ) ( | =3 t ) (t | )
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Discussion
• Long-tailed likelihood functions

► may result in posterior with multiple maxima
► posterior mean is best estimator, but can be computationally costly

• Overall uncertainty may contain components that separately follow 
normal (or Poisson) and t distributions 
► likelihood is convolution of normal and t distrs.
► can not be represented analytically
► numerical computation of likelihood feasible

• Some outlier models are based on mixtures (good data – bad data)
► likelihood is mixture of normal and t distributions: 

(1 - β) N + β S
where N is normal and S is Student t distr.

► assumes data follow either S (with prob. β) or N (with prob. 1 - β) 
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Summary
• Variations in particle-lifetime data matched by 

t distribution with ν ≈ 2.6 to 3.0, not by normal distr.
• Likelihood or Bayesian analysis based on using Student t 

distribution
► copes with outliers
► treats each datum in same way – no need to identify outliers
► produces stable results when outliers exist in data sets, 

whereas normal distr. does not
► does not degrade results when outliers are not present

• These results for particle lifetimes do not represent all 
physical measurements, but are worth keeping in mind

• Repeat experiments are worthwhile to gain confidence and 
mitigate against outliers
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