Lessons about Likelihood Functions from Nuclear Physics

Kenneth M. Hanson

T-16, Nuclear Physics; Theoretical Division Los Alamos National Laboratory

Bayesian Inference and Maximum Entropy Workshop, Saratoga Springs, NY, July 8-13, 2007

This presentation available at http://www.lanl.gov/home/kmh/

July 9, 2007

Bayesian Inference and Maximum Entropy 2007

LA-UR-07-5405

Overview

- Uncertainties in physics experiments
- Particle Data Group (PDG)
- Particle lifetime data
- Coping with outliers
- Uncertainty in the uncertainty
- Student t distributions normal distribution
- Analysis of lifetime data using t distributions

Physics experiments

- Suppose experimenter states his/her measurement of physical quantity y as: measurement \pm standard error or $y = d \pm \sigma_d$
 - σ_d represents experimenter's estimated uncertainty in *d*
- Experimental uncertainty composed of two components:
 - statistical (random) uncertainty
 - from noise in signal or event counting (Poisson distr.)
 - usually Type A determined by repeated meas., frequentist methods
 - ► systematic uncertainty
 - may affect many or all of experimental results
 - from equipment calibration, experimental procedure, corrections
 - often Type B determined by nonfrequentist methods
 - may be based on experimenter's judgment, hence subjective and uncertain
 - these usually added in quadrature (rms sum)

July 9, 2007

Physics experiments – likelihood functions

- Experimentalist's measurement $y = d \pm \sigma_d$ is interpreted probabilistically as likelihood function $p(d \mid y \sigma_d I)$
 - where *I* is background information,
 e.g. how experiment is performed
- Likelihood is a probability density function in *d*
 - normalized to unit area wrt. d
 - but usually viewed as function of *y*
 - not necessarily normalized wrt. *y*
- Likelihood usually taken to be normal distribution (Gaussian) with standard deviation σ_d

July 9, 2007

• Inference about the physical quantity *y* is obtained by Bayes law; the posterior distribution for *y* is

 $p(y | d \sigma_d I) \propto p(d | y \sigma_d I) p(y | I)$ posterior \propto likelihood \times prior

- where p(y | I) is the prior on y, given background information I
- Prior often taken as flat, i.e., p(y | I) = const.
 - Bayesian analysis defaults to likelihood analysis
 - ► result is least-squares (or minimum χ^2) method

Physics experiments – least squares fitting

• Least-Squares (LS) analysis is based on assuming the likelihood is a normal (Gaussian) distribution

$$p(d \mid y \sigma) = \frac{1}{\sigma \sqrt{\pi}} \exp\left[-\frac{(d-y)^2}{2\sigma^2}\right]$$

• For data set with uncorrelated uncertainties, the likelihood is $\frac{\left[\left(d-v\right)^2\right]}{\left[\left(d-v\right)^2\right]}$

$$p(\mathbf{d} | y \mathbf{\sigma}) \propto \prod_{i} \exp \left[-\frac{(d_i - y)^2}{2\sigma_i^2} \right] \propto \exp \left(-\frac{1}{2} \chi^2 \right) + \text{const.}$$

where χ^2 is

$$\chi^2 = \sum_i \frac{(d_i - y)^2}{\sigma_i^2}$$

- LS analysis fit model for y by minimizing χ^2
- Check Goodness of Fit by comparing min χ² to # degrees of freedom = # data – # fit parameters

χ^2 distribution – Goodness of fit

- χ²(v) distribution is sum of v squared random numbers, drawn from unit-variance normal distr.
- Shown in graph for v = 2, 10, 50• rms width = $\sqrt{2/v}$
- After LS fit, compare min. χ² with v (DOF) to check Goodness of Fit
 - assumes σ's correct, uncertainties independent, and normally distr.
 - ► quantitatively, calculate *p* value
- If χ^2 somewhat larger than DOF, analyst often multiplies LS std. error by $\sqrt{\chi^2}$ / DOF

Particle Data Group (PDG)

- Particle Data Group formed in 1957
 - annually summarizes measured properties of elementary particles
- For each particle property, committee:
 - lists all relevant experimental data
 - decides which data to include in final analysis
 - outliers often rejected
 - recommends value (least-squares average of accepted data) and its standard error
 - std. error often magnified by $\sqrt{\chi^2/(n-1)}$ (avg. factor of 2; 50% of time)
- PDG reports are excellent source of information about measurements of unambiguous physical quantities
 - ► available online; free
 - provide insight into how physicists interpret data

Five venerable elementary particles

• This study will include all measurements of the lifetimes of the following particles:

	particle	discov.	mass	lifetime, τ	comments
			(MeV)	(S)	
•	μ^{\pm}	1937	106	2.2×10 ⁻¹⁰	lepton, cosmic rays
•	π^0	1950	135	8.4×10 ⁻¹⁷	meson, nuclear force
•	K ⁰ _s	1951	498	0.90×10 ⁻¹⁰	strange meson, CP viol.
•	n	1931	940	886	baryon, nucleus constituent
•	Λ^0	1952	1116	2.63×10 ⁻¹⁰	strange baryon

Lambda lifetime measurement in the 60s

- Hydrogen bubble chambers used in 1950s and 60s to observe elementary particles
- Picture shows reaction sequence:

$$K^{-} + p \rightarrow \Xi^{-} + F$$
$$\Xi^{-} \rightarrow \Lambda^{0} + \pi^{-}$$
$$\Lambda^{0} \rightarrow p + \pi^{-}$$

- Track lengths and particle momenta, determined from curvature in magnetic field, yield survival time of Ξ^{-} and Λ
- Hubbard et al. observed 828 such events to obtain lifetimes:

$$\tau_{\Xi} = 1.69 \pm 0.06 \times 10^{-10} \text{ s}$$

 τ_{Λ} = 2.59 \pm 0.09 $\times 10^{\text{--}10}$ s

Hydrogen bubblechamber photo

From J.R. Hubbard et al., *Phys.Rev.* **135B** (1964)

Measurements of neutron lifetime

- Because n lifetime is so long, it is difficult to measure accurately without slowing neutrons or trapping them
- Plot shows all measurements of neutron lifetime
- Vertical line is PDG value, which includes 7 most recent measurements, except for #2 because it is highly discrepant
- χ^2 (PDG) = 149/21 pts.
- Several outliers exist

Neutron lifetime measurements

Some other lifetime measurements

Exploratory data analysis – IRQ and SOF

- John Tukey (1977) suggested each set of measurements be scrutinized
 - ▶ find quartile positions, Q1, Q2, Q3
 - ► calculate the inter-quartile range IQR = Q3 - Q1
 - calc. fraction of data in the intervals y < Q1 - 1.5 IQR; y > Q3 + 1.5 IQRcalled suspected outlier fraction (SOF)
- For normal distr.
 - IQR = 1.35σ
 - SOF = 0.7% (outside 2.7 σ)
- Q2 (median) is good estimate of *x*
- IQR measures width of core
- SOF measures extent of tail July 9, 2007 Bayesian Inference and Maximum Entropy 2007

Composite of lifetime measurements

- Upper graph shows discrepancies of 99 lifetime meas. for 5 particles from PDG values, divided by their standard errors, i.e. Δτ/σ
- Lower graph shows histogram
- $\chi^2(y=0) = 367/99$ points
- IQR = 1.83 (1.35 for normal)
- Suspected outlier frac. = 6.1 %
- Objective: characterize the distribution of discrepancies relative to their estimated uncertainties, Δτ/σ

Coping with outliers

- Outliers disrupt analyses based on normal likelihood functions (e.g., LS)
- Outlier-tolerant likelihood functions generally have long (thick) tail
 - long tail admits possibility of large deviations from true value
 - exact form doesn't seem to matter
- A simple long-tail likelihood is mixture of two Gaussians:

$$\propto (1-\beta) \exp\left\{-\frac{(y-d)^2}{2\sigma^2}\right\} + \frac{\beta}{\gamma} \exp\left\{-\frac{(y-d)^2}{2\gamma^2 \sigma^2}\right\}$$

- β is probability of long-tail Gaussian
- typical values: $\beta = 0.01-0.05$, $\gamma = 5-20$

Outlier-tolerant likelihood functions

- Hypothetical data set with outlier
 - vertical green line show LS avg.
 - thick curve is likelihood of data set
- Plot shows posterior based on two-Gaussian likelihood
 - log scale shows tails of likelihood functions
 - long tail from outlier does not influence peak shape near cluster of three measurements
 - long tails from cluster allows outlier to produce a small secondary peak; has little effect on posterior mean

Effect of outlier on linear fit

- Outliers pose significant problem for LS algorithm, based on Gaussian likelihood
- Graph shows 10 data with outlier; error bars indicate known std. errs.
- LS (Gaussian like.) results in fitted line that disagrees with most data: $\chi^2_{min} = 85.6/9 \text{ DOF}, \quad p = 10^{-15}$
- Using two-Gaussian likelihood for all data gracefully handles outlier
 - fit is unchanged by outlier

• All data treated in same way

no need to identify outliers

Physical analogy of probability

- $\varphi(\Delta x) =$ minus-log-likelihood is analogous to a physical potential
 - $\nabla \varphi$ is a force with which each datum pulls on model
- Outlier-tolerant likelihoods
 - ► generally have long tails
 - restoring force eventually decreases for large residuals

Examples of long-tailed distrs.: t distributions for $v = 1, 5, \infty$ (normal)

July 9, 2007

Bayesian Inference and Maximum Entropy 2007

Uncertainty in the uncertainty

- Suppose there is uncertainty in the stated standard error σ_0 for measurement *d*
- Dose and von der Linden (2000)* give plausible derivation:
 - ► assume likelihood has underlying normal distr.

$$p(d \mid y \sigma I) \propto \exp \left[-\frac{1}{2} \left(\frac{d-y}{\sigma} \right)^2 \right]$$

- assume uncertainty distr. for ω , where σ is scaled by $\sigma = \sigma_0 / \sqrt{\omega}$ $p(\omega | I) = \Gamma_a(\omega) \propto \omega^{\frac{\nu}{2} - 1} \exp[-\nu\omega/2]$
- marginalizing over ω , the likelihood is Student t distr.,

$$p(d \mid y \sigma_0 I) \propto \left[1 + \frac{1}{\nu} \left(\frac{d - y}{\sigma_0} \right)^2 \right]^{-\frac{\nu + 1}{2}} \propto t_{\nu} \left(\frac{d - y}{\sigma_0} \right)$$

• t distribution more appropriate for likelihood than normal

*Other contributors: Box and Tiao, O'Hagan, Fröhner, Press, Sivia, Hanson and Wolf July 9, 2007 Bayesian Inference and Maximum Entropy 2007 19

Prior on standard error

• In derivation by Dose and von der Linden, prior on ω is: $p(\omega | I) = \Gamma_a(\omega) \propto \omega^{\frac{\nu}{2}-1} \exp[-\nu\omega/2]$

where σ is scaled by $\sigma = \sigma_0 / \sqrt{\omega} = s \sigma_0$

- Corresponding prior on s is $p(s \mid I) = \left[\left| \frac{d\omega}{ds} \right| p(\omega \mid I) \right]_{\omega = s^{-2}}$ $\propto s^{-(1+\nu)} \exp\left[-\nu s^{-2} / 2 \right]$
- These are plausible distributions for representing uncertainty in σ
 - rms dev = 1.06, 0.69, 0.30 (v = 1,3,9)

Student t distribution

- Student* t distribution $t_{\nu}(z) \propto \left[1 + \frac{z^2}{\nu}\right]^{-\left(\frac{\nu+1}{2}\right)}$
 - long (thick) tail for v < 9 (SOF > 2%)
 - v = 1 is Cauchy distr. (solid red)
 - $v = \infty$ is normal distr. (solid blue)
- Lower graph shows *v* dependence of
 - RMSD (square root of variance)
 - ► IQR (Intra-quartile range)
 - SOF (Suspected outlier fraction)

* Student (1908) was pseudonym for W.S. Gossett, who was not allowed to publish under his own name by his employer, Guinness brewery

Composite of lifetime measurements

- Recall data for discrepancies of 99 lifetime meas. for 5 particles from PDG values, divided by their standard errors, i.e. Δτ/σ
- Lower graph shows histogram
- Objective: characterize the distribution of discrepancies relative to their estimated uncertainties, $\Delta \tau / \sigma$
 - do data follow normal or t distribution?

Bayesian model selection

• To select between two models, A and B, Bayes rule gives the odds ratio

$$\frac{p(\mathbf{A} \mid \mathbf{d} \,\boldsymbol{\sigma} \, I)}{p(\mathbf{B} \mid \mathbf{d} \,\boldsymbol{\sigma} \, I)} = \frac{p(\mathbf{d} \mid \mathbf{A} \,\boldsymbol{\sigma} \, I)}{p(\mathbf{d} \mid \mathbf{B} \,\boldsymbol{\sigma} \, I)} \frac{p(\mathbf{A} \mid I)}{p(\mathbf{B} \mid I)}$$

where p(A|I)/p(B|I) is the prior odds ratio on the models and $p(\mathbf{d}|A\mathbf{\sigma}I)$ is **evidence**, evaluated as the integral over the likelihood of the parameters τ and s for model A

$$p(\mathbf{d} | \mathbf{A} \boldsymbol{\sigma} I) = \int p(\mathbf{d} | \tau s \mathbf{A} \boldsymbol{\sigma} I) p(\tau s | \mathbf{A} I) d\tau ds$$

where $p(\mathbf{d} \mid \tau s \land \mathbf{\sigma} I)$ is the likelihood and $p(\tau s \mid \land I)$ is the prior on the lifetime and scale factor

Analysis of lifetime data set

• To calculate average value of data set, use the Student t distribution for likelihood of each measurement of lifetime, τ:

$$p(d_i \mid \tau \, \sigma_i \, s \, I) \propto \left[1 + \frac{1}{\nu} \left(\frac{d_i - \tau}{s \, \sigma_i} \right)^2 \right]^{-\frac{\nu + 1}{2}} \propto t_{\nu} \left(\frac{d_i - \tau}{s \, \sigma_i} \right)$$

where s is scaling factor of standard error for whole data set

- Select *v* based on data using Bayesian model selection
- Scale factor *s* marginalized out of posterior

$$p(\tau | \mathbf{d} \, \mathbf{\sigma}) = \int p(\tau \, s \, | \mathbf{d} \, \mathbf{\sigma}) \, ds = \int p(\mathbf{d} | \tau \, s \, \mathbf{\sigma}) \, p(\tau) \, p(s) \, ds$$

- $p(\tau)$ is prior on lifetime, τ (= const.)
- $p(s_i)$ is prior on s_i (= const., although $1/s_i$ is often appropriate)
- Posterior for *s* determined by dispersion of data

Model selection

• Odds ratios of t distr. (T) to normal (N) is $\frac{p(T | \mathbf{d} \mathbf{\sigma} I)}{p(N | \mathbf{d} \mathbf{\sigma} I)} = \frac{p(\mathbf{d} | v = 2.6 T \mathbf{\sigma} I)}{p(\mathbf{d} | N \mathbf{\sigma} I)} \frac{p(T | I)}{p(N | I)}$

 $= 1.3 \times 10^{-85} / 2.2 \times 10^{-90} = 5.5 \times 10^{4}$

- assuming prior ratio on models = 1 and priors on parameters equal (~5)
- evidence is integral over τ and s
- priors on τ and s = constant
- t distr. is strongly preferred by data to normal distr.
 - $v \approx 2.6$ (maximizes evidence)
 - for normal: avg. $s = 1.95 \pm 0.14$

2

Model selection – excluding largest outlier

- Remove most discrepant datum (9.5 σ)
- Odds ratios of t distr. (T) to normal (N) $\frac{p(T | \mathbf{d} \boldsymbol{\sigma} I)}{p(N | \mathbf{d} \boldsymbol{\sigma} I)} = \frac{p(\mathbf{d} | v = 3.3 \text{ T} \boldsymbol{\sigma} I)}{p(\mathbf{d} | N \boldsymbol{\sigma} I)} \frac{p(T | I)}{p(N | I)}$ $= 2.1 \times 10^{-82} / 5.0 \times 10^{-84} = 42$
 - assuming prior ratio on models = 1 and priors on parameters equal (~5)
 - evidence is integral over τ and s
 - priors on τ and s = constant
- t distr. is still preferred by data to normal distr.
 - $v \approx 3.3$ (maximizes evidence)
 - for normal: avg. $s = 1.71 \pm 0.12$

Bayesian model selection

- Graph shows best fits of likelihood functions to histogram of normalized residuals of lifetime data
- For normal: $s = 1.95 \pm 0.14$
- For t distr.: $s = 1.2 \pm 0.15$, v = 2.6
- Bayesian model-selection analysis indicates t distr. is 5.5×10⁴ times more likely than normal distr.

Analysis of neutron lifetime data

- Upper plot shows all measurements of neutron lifetime
- Lower plot shows results based on all 21 data points:
 - ► posterior for t-distr. analysis (v = 2.6, margin. over s; $\overline{s} = 1.16$)
 - consistent with PDG
 - least-squares result (w/o and with χ^2 scaling, s = 2.73)
 - single outlier has large effect
- PDG value (using 7 most recent data points, excluding Serebrov; s = 1)

Neutron lifetime measurements

Analysis of neutron lifetime data

- Details of analysis of neutron data
 - t distr. with v = 2.6 (fixed)
- Upper plot shows joint posterior distr. for *s* and τ (lifetime)
 - priors for s and τ constant
- Lower plot:
 - posterior for lifetime (projection of joint distr. onto τ , i.e. marginalized over s)
 - ► lifetime estimate is posterior mean, standard error is rms dev.:

 $\tau = 886.1 \pm 1.1 \text{ s}$

Analysis of π^0 lifetime data

- Upper plot shows all measurements of π^0 lifetime
- Lower plot shows results based on all 13 data points:
 - ► posterior for t-distr. analysis (v = 2.6, margin. over s; $\overline{s} = 1.55$)
 - least-squares result (with χ^2 scaling, s = 1.58)
- PDG values (using 4 selected data points, excluding latest one; σ scaled by s = 3.0)
- Results all consistent

Analysis of Λ lifetime data

- Upper plot shows all measurements of Λ lifetime
- Lower plot shows results based on all 27 data points:
 - ► posterior for t-distr. analysis (v = 2.6, margin. over s $\overline{s} = 1.59$)
 - least-squares result (with χ^2 scaling, s = 1.81)
- PDG value (using 3 latest data points, s = 1.6)
 - disagrees with LS and t-distr. results
 - ignores most data

Lambda lifetime measurements

Robustness tests

- How well does t-distr. analysis handle data from different distrs.?
- Analyze data using two likelihoods:
 a) t distr. with v = 3
 b) normal distr.
 - scale uncertainties by marginalizing over *s* distr.
 - results from 10,000 random trials
 - For each run, draw 20 data points from various t distributions
- Conclude
 - t distr. analysis well behaved
 - normal distr. analysis unstable when data have outliers

July 9, 2007

Bayesian Inference and Maximum Entropy 2007

Statistical fluctuations: n-p scattering

- n-p cross sections measurements by Clement et al. (1972); 425 data pts.
- Compare to R-matrix calc. of G. Hale
- Upper graph shows residuals with specified statistical uncertainty
- Lower graph shows residuals (after subtracting running avg)/rms error
- $\chi^2 = 394/341$ points = $(1.07)^2$
- IQR = 1.55 (1.35 for normal)
- SOF = 1.2% (0.7% for normal)

Statistical fluctuations: n-p scattering

- Histogram of Clement (1972) residuals, with running avg subtracted, normalized by statistical error
- Odds ratios of t distr. (t) to normal (N) $\frac{p(t | \mathbf{d} \boldsymbol{\sigma} I)}{p(N | \mathbf{d} \boldsymbol{\sigma} I)} = \frac{p(\mathbf{d} | v = 3t \boldsymbol{\sigma} I)}{p(\mathbf{d} | v = \infty t \boldsymbol{\sigma} I)} \frac{p(t | I)}{p(N | I)}$ $= 2.8 \times 10^{-237} / 8.7 \times 10^{-234} = 3.2 \times 10^{-4}$
 - assuming prior ratio on models = 1 and priors on parameters equal (~5)
 - evidence is integral over τ and s
 - priors on τ and s = constant

July 9, 2007

• Normal distr. is strongly preferred by data to t distr.

Discussion

- Long-tailed likelihood functions
 - may result in posterior with multiple maxima
 - posterior mean is best estimator, but can be computationally costly
- Overall uncertainty may contain components that separately follow normal (or Poisson) and t distributions
 - likelihood is convolution of normal and t distrs.
 - can not be represented analytically
 - numerical computation of likelihood feasible
- Some outlier models are based on mixtures (good data bad data)
 - likelihood is mixture of normal and t distributions:
 (1 β) N + β S
 where N is normal and S is Student t distr.
 - assumes data follow either S (with prob. β) or N (with prob. 1 β)

Summary

- Variations in particle-lifetime data matched by t distribution with $v \approx 2.6$ to 3.0, not by normal distr.
- Likelihood or Bayesian analysis based on using Student t distribution
 - ► copes with outliers
 - ► treats each datum in same way no need to identify outliers
 - produces stable results when outliers exist in data sets, whereas normal distr. does not
 - does not degrade results when outliers are not present
- These results for particle lifetimes do not represent all physical measurements, but are worth keeping in mind
- Repeat experiments are worthwhile to gain confidence and mitigate against outliers

Bibliography

- "A further look at robustness via Bayes;s theorem," G.E.P. Box and G.C. Tiao, *Biometrica* 49, pp. 419-432 (1962)
- "On outlier rejection phenomena in Bayes inference," A. O'Hagan, J. Roy. Statist. Soc. B 41, 358–367 (1979)
- "Bayesian evaluation of discrepant experimental data," F.H. Fröhner, *Maximum Entropy and Bayesian Methods*, pp. 467–474 (Kluwer Academic, Dordrecht, 1989)
- "Estimators for the Cauchy distribution," K.M. Hanson and D.R. Wolf, *Maximum Entropy and Bayesian Methods*, pp. 157-164 (Kluwer Academic, Dordrecht, 1993)
- "Dealing with duff data," D. Sivia, *Maximum Entropy and Bayesian Methods*, pp. 157-164 (1996)
- "Understanding data better with Bayesian and global statistical methods," W.H. Press, Unsolved Problems in Astrophysics, pp. 49-60 (1997)
- "Outlier-tolerant parameter estimation," V. Dose and W. von der Linden, *Maximum Entropy and Bayesian Methods*, pp. 157-164 (AIP, 2000)
- "Lessons about likelihood functions from nuclear physics," K.M. Hanson, to appear in Maximum Entropy and Bayesian Methods (AIP, 2007)

This presentation available at http://www.lanl.gov/home/kmh/

July 9, 2007