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Overview
• Minus-log-probability analogous to a physical potential
• Gaussian approximation near peak of probability density function
• Probing the covariance matrix with an external force

► deterministic technique to replace stochastic calculations
• Examples
• Potential applications
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Physical potential
• Spring produces restoring force 

proportional to displacement from 
its equilibrium position 

F = – k x
• Potential is integral of force

► it is often more useful to think 
about a physical problem in terms 
of potentials instead of forces

• Derivative of potential is force

Unloaded position21
2( )x F dx k xϕ = =∫

( )d x F
dx
ϕ

=

Mass suspended 
from a spring

At equilibrium
kx = Mg
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Analogy to physical system
• Analogy between minus-log-posterior and a physical potential

► a represents parameters 
d represents data
I represents background information, essential for modeling

• Gradient ∂aφ corresponds to forces acting on the parameters
• Maximum a posteriori (MAP) estimates parameters âMAP

► condition is ∂aφ = 0
► optimized model may be interpreted as mechanical system in 

equilibrium – net force on each parameter is zero
• This analogy is very useful for Bayesian inference

► conceptualization
► developing algorithms 

( ) log ( | , )p Iϕ = −a a d
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Gaussian approximation  
• Posterior distribution is very often well approximated by a 

Gaussian in the parameters
• Then, φ is quadratic in perturbations in the model parameters 

from the minimum in φ at â:

where K is the φ curvature matrix (aka Hessian);
• Uncertainties in the estimated parameters are summarized by the 

covariance matrix:

• Inference process becomes one of finding â and C

min
T1

2 ˆ ˆ( ) ( ) ( )ϕ ϕ= +a a - a K a - a

1Tˆ ˆcov( ) ( )( ) −≡ − − ≡ =a a a a a C K
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Effect of external force  
• Consider applying an constant external force to the parameters
• Effect is to add a linearly increasing term to potential

• Gradient of perturbed potential is 

• At the new minimum, gradient is zero, so

• Displacement of minimum in parameters, δamin , is proportional 
to covariance matrix times the force

• With external force, one may “probe” the covariance 
► each applied force probes one column (or average of several) 

min
T T1

2 ˆ ˆ( ) ( ) ( )ϕ ϕ′ = + −a a - a K a - a f a

min
-1ˆ ˆδ ′a = a  - a = K f = C f

ˆ( )'ϕ∂ =∂ K a - a - fa
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Effect of external force
• Displacement of minimizer of 
φ is in direction other than 
applied force

• Displacement is controlled by 
the covariance matrix
► its direction is determined 

by correlations
► its magnitude is 

proportional to variance 
(inversely proportional to 
the curvature or stiffness)

2-D parameter space

Force, f

Displacement, δa

a

b
φ contour
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Simulated data for straight line
• Linear model: 

a is intercept at x = 0
b is slope of line

• Simulate 10 data points, with
values:

• Add Gaussian noise: 

• Find straight line that minimizes

► where di are the data, yi are the 
model values at positions xi

= +y a bx

0.5=a 0.5=b

0.2σ =y

blue line 
minimizes φ

10 data points

1 1
2 2 2

2
2 [ ( ; )]( ) i i i

i i

d y xϕ χ
σ

−
= = ∑ aa
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Apply force to solution
• Apply upward force to solution 

line at x = 0 and 
find new minimum in φ
► thus, pull only on parameter a

• Effect is to pull line upward at 
x = 0 and reduce its slope 
► data constrain solution

• Conclude that a (intercept) and 
b (slope) are anti-correlated 

Pull upward on line

green line 
minimizes new 
φ’ (external force)
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Apply several forces to solution

• Family of lines shown for forces 
applied upward at x = 0: 

f = ± 1, ± 2 x constant
► observe proportional 

displacement of intercept 
(x = 0)

• These results yield quantified 
estimates of parts of the 
covariance matrix

Upward force at x = 0
f = ± 1, 2 σa-1



July 11, 2006 Bayesian Inference and Maximum Entropy 2006 11

Uncertainties in straight line fit
• Plot above shows results for variety 

of forces applied upward at x = 0
► perturbations in parameters 

proportional to force
► slope of δa = σa

2 = Caa = (0.127)2

► slope of δb = Cab = – 4.84x10-3

• Plot below shows φ (= ½χ2) is 
quadratic function of force
► for force f = ± σa

-1 = (0.127)-1

min φ increases by 0.5
(min χ2 increases by 1) 

• Either dependence provides a way 
to quantify (co)variance estimates  

• Cbb not determined

f at x = 0
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Compare to result from standard minimum-χ2
• Fit linear model:  
• Determine parameters a and b by 

minimum χ2 (least-squares) analysis
• Results:  

► correlation: rab = – 0.867
• Covariance estimates from these

► Caa = σa
2 = (0.127)2

► Cab = rab σa σb = – 4.84x10-3

► these are identical to values 
obtained by applying external force 

► Cbb not determined with external force 

= +y a bx

ˆ 0.484=a
0.127aσ =

ˆ 0.523=b
0.044bσ =

2
min 4.04 0.775χ = =p

Scatter plot
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Simple spectrum
• Simulate simple spectrum with a 

single peak:
► Gaussian peak (ampl = 2, w = 0.2)
► quadratic background
► add random noise (rmsdev = 0.2)

• Minimize φ wrt 6 parameters
► amplitude, width, position of peak
► 3 coefficients for quadratic 

background
• Nonlinear problem
• Suppose quantity of interest is the area 

under the peak;
► what force should be applied to parameters? 
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External force for derived quantities  
• Consider a scalar quantity z, which is a function of parameters a

• The small perturbation δa results in a perturbation in z

► where sz is the sensitivity vector for z (derivative of z wrt a) 
• The variance in z is 

• standard result for propagating covariance 

• The force on parameters a needed to probe z is

resulting in 
which is the same relation as for δa

T
zzδ δ= s a

z z
T T T Tvar( )z z zz z zδ δ δ δ= ≡ = = aC s  a a s s  C s

( ) z z= a

z z z= = ∂af s

z zzδ = C f
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Simple spectrum – apply force to peak area
• Area under Gaussian peak; 

a = amplitude, w = rms width:

= 0.86
• To examine the area, apply force 

to parameters proportional to 
derivatives of area wrt parameters,

• Plot shows result of applying force 
proportional to these derivatives
► area of Gaussian increased
► background altered slightly

2A wa π∂ =∂

2A awπ=

2A aw π∂ =∂
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Simple spectrum – apply force to peak area

• Examples of sizable +/– forces applied 
to area 

fA = 3.4x(0.101)-1

fA = – 8x(0.101)-1
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Simple spectrum – apply force to peak area
• Plot shows nonlinear response, but 

approximately linear for small f
• Plot below shows δφ as function of 

displacement δA
• δφ has quadratic form for small δA

► this relation allows one to estimate 
σA from a displacement produced 
by single small applied force:

► σA = 0.098 (– side); 0.104 (+ side)

1
2

2

A

Aϕ
σ
⎡ ⎤δ

δ = ⎢ ⎥
⎣ ⎦
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Compare to minimum-χ2 result
• Minimum χ2 fit
• Fit involves 6 parameters

► nonlinear problem
► results:

ampl.
width

► correlation: raw = – 0.427

• From these, standard error in area

► this result agrees fairly well with 
external force estimate, 
considering nonlinearity 

2
min 34.32 0.852pχ = =
ˆ 1.948a = 0.149aσ =

ˆ 0.1759w = 0.0165wσ =

1/ 22 22 0.093A a w aw a ww a r aw2 2σ π σ σ σ σ⎡ ⎤= + − =⎣ ⎦
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Summary of steps to estimate variance
• Find values of model parameters a that minimize φ
• Decide on quantity of interest z
• If z is not one of parameters, calculate sz = ∂a z
• Find parameter values that minimize φ´ = φ – k sz

T a, 
for some scaling factor k (appropriate value is about σz

-1)
• Check that change in φ is around 0.5; if not adjust k and minimize
φ´ again

• From perturbations in parameters, estimate standard error in z by 
either formula:
► or 

• Further diagnostics may be helpful, if more calculations feasible

2z
z
ϕ

σ
δ
δ=2

z
z

kσ δ=
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Tomographic reconstruction from two views
• Problem - reconstruct uniform-density object from two projections

► 2 orthogonal, parallel projections (128 samples in each)
► Gaussian noise added

Original object 

Two orthogonal projections 
with 5% rms noise
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The Bayes Inference Engine 
• BIE data-flow diagram to find max. a posteriori (MAP) solution

► 0ptimizer uses gradients that are efficiently calculated by adjoint 
differentiation, a key capability of the BIE

Boundary 
description

Input projections 

χ 2
2
1

 likelihoodlog =−

( )
dsS

∫=− 2

2 2
prior  log κα

π
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MAP reconstruction – two views
• Model object in terms of:

► deformable polygonal boundary 
with 50 vertices

► boundary smoothness constraint
► constant interior density

• Determine boundary that 
maximizes posterior probability

• Reconstruction not perfect, 
but very good for only two 
projections

• Question is: 
How do we quantify uncertainty 
in reconstruction?

Reconstructed boundary 
(gray-scale) compared with 

original object (red line)
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Tomographic reconstruction from two views
• Stiffness of model proportional to 

curvature of ϕ
• Displacement obtained by 

applying a force to MAP model 
and re-minimizing ϕ is 
proportional to a column of the 
covariance matrix 

• Displacement divided by force 
► at position of force, it is 

proportional to variance there
► elsewhere, it is proportional to 

covariance 
• This approach may be efficient 

alternative to MCMC

Applying force (white bar) to 
MAP boundary (red) moves it to 

new location (yellow-dashed)
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Covariance using MCMC
• Use MCMC to draw samples 

from posterior
• Parameters consist of 50 vertices 

defining object boundary
• MCMC (Metropolis) 150,000 

steps; display three selected 
boundaries

• Advantage: obtain full 
covariance matrix

• Disadvantage: calculation takes 
over 2000 times longer than 
technique of probing posterior

compared uncertainties to 
MAP estimated object

3 boundaries from 150,000 
MCMC steps
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Situations where probing covariance useful
• Technique will be most useful when

► interest is in uncertainty in one or a few parameters or derived
quantities out of many parameters

► covariance matrix is not known (nor desired) 
► posterior can be well approximated by Gaussian pdf in parameters
► optimization easy to do
► gradient calculation (for optimization) can be done efficiently,

e.g. by adjoint differentiation of the forward simulation code
• Technique may also be useful for exploring and quantifying 

► non-Gaussian posterior pdfs, including situations with inequality 
constraints, e.g., non-negativity 

► general pdfs; in contexts other than probabilistic inference
► pdfs of self-optimizing natural systems (populations, bacteria, traffic)
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Summary
• Technique has been presented that

► is based on interpreting minus-log-posterior as physical 
potential energy

► allows one to directly probe a specified component of 
covariance matrix by applying force to estimated model 

► replaces a stochastic calculation (e.g., MCMC) by a 
deterministic one

► may efficiently provide uncertainty estimates in  
computational situations
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