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OverviewOverview
•• OutliersOutliers
•• Bayesian treatmentBayesian treatment

►► likelihood functions with long tailslikelihood functions with long tails
►► Gaussian likelihood with uncertainty in standard errorGaussian likelihood with uncertainty in standard error

•• Physical interpretation of likelihoodPhysical interpretation of likelihood
►► potential, forcepotential, force

•• Outlier dataOutlier data
►► PuPu--239 fission cross sections at 14.7 MeV239 fission cross sections at 14.7 MeV

•• Discrepant data setsDiscrepant data sets
►► AmAm--243 fission cross243 fission cross--sectionssections
►► normalization factors treated as outliersnormalization factors treated as outliers

•• Acknowledgment and thanks to my colleagues Acknowledgment and thanks to my colleagues 
Toshihiko Kawano and Patrick Toshihiko Kawano and Patrick TalouTalou
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Outliers
• Outliers often caused by mistakes made in taking data or analysis
• Mistakes happen!

► ask any experimentalist
► experience and care can reduce number of mistakes, 

but not completely eliminate them
• Question is, how do we cope with outliers?

► be careful, outlier may be correct (could mean Nobel prize)
► traditional approach: identify outliers and drop them from analysis

• iterative process; may be difficult to decide which data are outliers
• data are either in or out 

► Bayesian approach: include in likelihood function as long tail
• iterative process (because posterior is not unimodal), but automatic
• includes all data
• weight of each datum is regulated by how well supported by other data
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History of particle-properties measurements
• Plots show histories of two “constants” of 

fundamental particles 
• Mass of W boson

► sensible history
► all measurements are consistent

• Neutron lifetime
► bizarre history

• periodic jumps with periods of 
extraordinary agreement

• measurements before 1980 disagree with 
latest ones

► plot demonstrates socio-psychological 
aspects of experimental physics

► conclude: systematic errors hard to estimate!

Particle Data Group 
2004
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Neutron fission cross section data for 239Pu
• Graph shows 16 measurements 

of fission cross-section for 
239Pu at 14.7 MeV

• Data exhibit fair amount of 
scatter

• Quoted error bars tend to get 
smaller with time
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Neutron fission cross-section data 

• Neutron cross sections measured by many experimenters
► sometimes data sets do not agree 
► often little information about uncertainties, esp. systematic errors
► many data, many experiments – opportunity to learn about 

properties of real data

243Am fission 
cross section

plot from P. Talou
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Outliers
• Long history in Bayesian analysis (outliers and robust estimation) 

► deFinnetti (61), Box and Tiao (68), O’Hagan (79), Berger  (91), and 
many more

► in MaxEnt series: Hanson and Wolf (92), Sivia (96), Press (97), 
Dose and von der Linden (99), Fröhner (00)

• Likelihood:  p( true value | measured value)
• Bayesian treatment of outliers often involves using non-Gaussian 

likelihood functions, generally with long tails
► long tail includes possibility of large deviation from true value
► exact form doesn’t seem to matter much
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Two-Gaussian likelihood
• A simple likelihood with a long tail: 

likelihood is mixture of two Gaussians 
2 2

2 2 2

(1 ) ( ) ( )exp exp
2 22 2

x m x mβ β
σ γ σσ π γσ π

⎧ ⎫ ⎧ ⎫− − −
− + −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

Two Gaussians; β = 0.1, γ = 10
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Physical analogy of probability
• Given          , the probability density function of a parameter a
• Think of                              as a physical potential

► Gaussian pdf yields quadratic φ
• linear force law

– each datum pulls on fit model with force that increases linearly with 
residual (difference from a preferred value a0 )

► generally useful notion
► helpful in designing algorithms, e.g., Hamiltonian hybrid MCMC
► gives meaning to inferential force of data

• Outlier-tolerant likelihoods
► generally have long tails
► restoring force eventually decreases for large residuals

( )p a

( )0
d
da a - aϕ ∝ −

log{ ( )}p aϕ = −
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Physical analogy of probability
• Outlier-tolerant likelihoods

► generally have long tails
► restoring force eventually decreases for large residuals

G = single Gaussian

2G = mixture of two Gaussians

CG = mixture of Cauchy + Gaussian

( ) log{ ( )}x p xϕ = −( )p x
( )x
x

ϕ∂
∂

Long tail has effect of 
reducing restoring force 
at large deviations
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Neutron fission cross section data for 239Pu
• Graph shows 16 measurements 

of the fission cross-section for 
239Pu at 14.7 MeV

• Data exhibit fair degree of 
scatter

• Quoted error bars get smaller 
with time

• Minimum χ2 = 44.7, p = 10-4

indicates a problem 
► dispersion of data larger than 

quoted error bars
► outliers?; three data contribute 

24 to χ2, more than half 
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239Pu cross sections – Gaussian likelihood
• Gaussian likelihood (min χ2) yields

► χ2 = 44.7, p = 0.009% for 15 DOF
2.441 ± 0.013 b

► implausibly small uncertainty, 
given three smallest uncertainties
≈ 0.027 b

• Each datum reduces the standard 
error of result, even if it does not 
agree with it!
► consequence of Gaussian likelihood

► does not depend on where data lie!
► which doesn’t make sense

2 2

1

n

i
i

σ σ− −

=

= ∑ Gaussian: 2.441 ± 0.013 b
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239Pu cross sections – outlier-tolerant likelihood
• Use just latest five measurements
• To exaggerate outlier problem, set 

all standard errors = 0.027 b
• Compare results from alternative 

likelihoods:
► Gaussian: 2.489 ± 0.012 b
χ2 = 69.9, p = 2×10-14 for 4 DOF

► two Gaussians: 2.430 ± 0.022 b 
• For two-Gaussian likelihood: 

► result is close to cluster of three 
points; outliers (pts. 2 and 5) have 
little effect

► estimated uncertainty is plausible 

Two Gaussians:
2.430 ± 0.022 b

Gaussian:
2.489 ± 0.012 b
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239Pu cross sections – outlier-tolerant likelihood
• Five latest measurements with all 

standard errors set to 0.027 b
• Plot shows pdfs on log scale, to 

illustrate effect of long tails
► long tail of likelihood function for 

outlier does not influence peak 
shape near cluster of three 
measurements; Gaussian likelihood 
would make it narrower

► long tails of likelihood functions 
from cluster allows outlier to 
produce a small secondary peak; 
has little effect on posterior mean

Two Gaussians
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239Pu cross sections – Two–Gaussian likelihood
• Original  16 data points
• Two-Gaussian likelihood

► β = 0.1, γ = 10
• Peak is slightly asymmetric
• Mean and standard dev. are

2.451 ± 0.023 b
• Single Gaussian likelihood result is

2.441 ± 0.013 b
► 2G answer accounts for outliers 

better
► estimated uncertainty is more 

plausible

Two-Gaussians: 2.451 ± 0.023 b

Gaussian: 2.441 ± 0.013 b
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Hierarchical model – scaled uncertainties
• When data disagree significantly, we may question 

whether quoted standard errors are correct
• Suppose we scale all σ by factor s: 
• Assign prior on s, p(s)

► use noninformative (flat in log(s)) 
► or restrictive one as shown in plot

• Let the data decide!
• Then marginalize over s

• This approach called hierarchical model
because one pdf depends on another pdf

0sσ σ=

( | ) ( , | )dp p s s= ∫a d a d
( | ) ( | , ) ( , ) dp p s p s s∝ ∫a d d a a

( | ) ( | , ) ( ) ( )dp p s p p s s∝ ∫a d d a a Scale factor s

Possible prior on s –
inverse χ2 distribution (20)
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239Pu cross sections – scaled uncertainties
• Accommodate large dispersion in 

data by scaling all σ by factor s: 

• For likelihood for n points, use 
Gaussian with scaled σ

• For prior p(s), use non-informative 
prior for scaling parameter

• Bottom plot shows joint posterior pdf
• Marginalize over s:

to get posterior for x (top plot)
• Result: 2.441 ± 0.024 b; plausible σ

0 0 ; quoted stand. err.sσ σ σ= =

joint distribution: p(x, s)( ) 1/p s s∝

2
01( | , ) exp

2n 2p x s
s s

χ⎛ ⎞
∝ −⎜ ⎟

⎝ ⎠
d

( | ) ( | , ) ( ) ( )dp x p x s p x p s s∝ ∫d d
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239Pu cross sections – scaled uncertainties
• To obtain the posterior for the scaling 

parameter s, marginalize joint posterior 
over x:

• Plot (top) shows result
► maximum at about 1.7, 

for original fit 
► however, this result is different than just 

scaling σ to make χ2 per DOF unity
► it allows for a distribution in s, taking 

into account uncertainty in s
• This model can be extended to allow 

each σi to be scaled separately
► prior based on confidence in quoted σi

joint distribution: p(x, s)

( | ) ( | , ) ( ) ( )dp s p x s p x p s x∝ ∫d d

2

DOF
χ

≈



August 8, 2005 Bayesian Inference and Maximum Entropy 2005 19

Neutron fission cross-section data 

• Observe in this plot
► principle cause of discrepancies could be in normalization factor
► systematic difference in normalization 

243Am fission 
cross section

plot from P. Talou
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Probabilistic model – systematic additive error
• Represent systematic additive uncertainty in measurements by 

common additive offset D:
► where the εi represent random fluctuations 

• Bayes law gives joint pdf for all the parameters

where priors p(a), p(b) are uniform and p(D) assumed normal
• Writing                                            and assuming normal 

distributions

• Pdf for x obtained by integration: 
• This model equivalent to standard least-squares approach by 

including D in fit, and using just results for a and b

= ( ; )i i i i iy a + bx = f x a,bε ε+ + Δ + + Δ

( , , | , ) ( | , , , ) ( ) ( ) ( )y x y xΔ = Δ Δp a b p a b p a p b p

{ }( , , | , ) expy x ϕΔ ∝ −p a b

( )2 2

2 2

( ; )i i

i

y - f x a,b
2 =ϕ

σ σΔ

− Δ Δ
+∑

( | , ) ( , | , ) dy x y x= Δ Δ∫p a,b p a,b
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Linear fit – systematic uncertainty
• Linear model:  
• Simulate 10 data points, 

exact values:
• Introduce systematic offset D with

uncertainty
• Determine parameters a, b, and 

offset D; marginalize over D
• Various lines are Monte Carlo 

model realizations drawn from 
parameter uncertainty pdf

• Systematic uncertainty has effect of 
introducing additional variation 
(uncertainty) in vertical direction

= + + Δy a bx

0.3σΔ =

0.2σ =y

0.5=a 0.5=b

w/o systematic 
uncertainty 

with systematic 
uncertainty 

Systematic 
error bar
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Probabilistic model – normalization error
• Represent common uncertainty in measurements by systematic 

error in normalization factor c:
► where the εi represent random fluctuations

• Following same development as for additive effect, 
• Writing 

• Typically, prior  p(c) is assumed normal with expected value of 
1 and sc = rms uncertainty in normalization

• Divide p(cx, c) by Jacobian  J = 1/c to get p(x, c), which is a 
log-normal distribution

• p(x|m) obtained by numerical integration: 

εi i icx = m  + 

{ }( , | ) expp cx c ϕ∝ −m

( | ) ( , | )dp x p x c c= ∫m m

( )2

2 ( | )c
i

cx - m
2 = p cι

ι

ϕ σ
σ

+∑
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Consistent data sets– Gaussian likelihood
• Consider energy range 1 – 4 MeV;

fit with cubic splines, 9 knots; min χ2

• Three data sets; agree somewhat
• Normalization error of each data set 

= 1.4%, 2.8%, 1.8% (vertical bars)
• Include stated normalization error
• Top graph – dashed line is estimate

► lines show normalizations of data sets
► at 2 MeV, nxs = 1.453 ± 0.021 b

• Bottom graph – posterior samples
► using Markov Chain Monte Carlo
► plausible uncertainty, but smaller than 

dispersion in data suggests 

243Am fission cross section

normalization 
uncertainty
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Discrepant data sets – Gaussian likelihood
• Four data sets; one disagrees in 

normalization with others by >10 σ
• Normalization error in data sets 

= 1.4%, 2.8%, 1.8%, (0.9%)
• Include stated normalization error
• Likelihood: exp(-χ2/2), Gaussian
• Prior on scale factor is Gaussian 

with stated uncertainties 
• nxs(2 MeV) = 1.588 ± 0.016 b

► new data set moves result by 7 
times its estimated error !

► highly implausible

243Am fission cross section

normalization 
uncertainty
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Discrepant data sets – Cauchy-Gaussian
• Normalization error in data sets 

= 1.4%, 2.8%, 1.8%, (0.9%)
• Gaussian likelihood for each datum
• Treat normalization as systematic effect
• Use outlier-tolerant prior on scale 

factors to include possibility of gross 
error in normalization:
► 0.67×Cauchy + 0.33×Gaussian mixture

• Normalization of outlying data set has 
no influence on result, but its shape is 
included

• nxs(2 MeV) = 1.418 ± 0.021 b
very plausible result

243Am fission cross section

normalization 
uncertainty
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Future work
• Systematic uncertainties

► include possibility of scaling the quoted uncertainties
► use informative priors based on knowledge of experiments: 

how done, techniques used, who did them
► do thorough analysis of what kinds of uncertainties are typical and 

include them
• Treatment of outliers

► systematically investigate various choices for form of long-tailed 
likelihood function

► balance ability to ameliorate effects of outliers with undue increase 
in posterior variance

• Do global analysis on original data (often in the form of ratios to 
standard cross sections with smaller error bars) 
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