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Goals of tutorials
My aim is to 
• present overview of Bayesian and probabilistic modeling
• cover basic Bayesian methodology relevant to nuclear physics, 

especially cross section evaluation
• point way to how to do it

• convince you that 
► Bayesian analysis is a reasonable approach to coping with 

measurement uncertainty

• Many thanks to my T-16 colleagues
► Gerry Hale, Toshihiko Kawano, Patrick Talou
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Outline – four tutorials
1. Bayesian approach

probability – quantifies our degree of uncertainty
Bayes law and prior probabilities

2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo 
Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data

4. Bayesian calculations 
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data
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Slides and bibliography
► These slides can be obtained by going to my public web page:

http://public.lanl.gov/kmh/talks/
• link to tutorial slides
• short bibliography relevant to topics covered in tutorial
• other presentations, which contain more detail about material presented here 

► Noteworthy books:
• D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical 

development of the Bayesian approach with an experimental physics slant
• D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear 

Science and Technology (1991); lots of good advice relevant to 
cross-section evaluation

• G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review, 
(World Scientific, New Jersey, 2003); Bayesian philosophy 

• A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view
• W. R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic 

MCMC text
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Tutorial 1
Bayesian approach



6

Uncertainty quantification
We need to know uncertainty in data: 
• To determine agreement among data, or between data and theory
• Inference about validity of models requires knowing degree of 

uncertainty 
• We typically assume uncertainty described by a Gaussian pdf

► often a good approximation
► width of Gaussian characterized by its standard deviation σ
► σ provides the metric for uncertainty about data
► when combining measurements, weight by inverse variance

• Nomenclature – uncertainty or error?
► error – state of believing what is incorrect; wrong belief; mistake
► uncertainty – lack of certainty, sureness; vagueness 
► uncertainty analysis seems to convey appropriate meaning

2σ −
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History of particle-properties measurements
• Plots show histories of two 

“constants” of fundamental particles 
• Mass of W boson

► logically ordered history
► all within error bar wrt last (best?) 

measurement
• Neutron lifetime

► disturbing history
► periodic jumps with periods of 

extreme agreement
► most earlier measurements disagree 

with latest ones
► plot demonstrates possible 

sociological and psychological 
aspects of experimental physics plots from Particle Data Group 2004
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Neutron fission cross section data for 239Pu
• Graph shows 16 measurements 

of fission cross-section for 
239Pu at 14.7 MeV

• Data exhibit fair amount of 
scatter

• Quoted error bars get smaller 
with time

• Minimum χ2 = 44.6, p = 10-4

indicates a problem 
► dispersion of data larger than 

quoted error bars
► outliers?; three data contribute 

24 to χ2, more than half 
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Neutron fission cross-section data 

• Neutron cross sections measured by many experimenters
► sometimes data sets differ significantly 
► often little information about uncertainties, esp. systematic errors
► many directly measure ratios of cross sections, e.g., 243Am/ 235U
► a thorough analysis must go back to original data and consider all 

discrepancies

243Am fission 
cross section

plot from P. Talou
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Bayesian analysis of experimental data
• Bayesian approach

► focus is as much on uncertainties in parameters as on their best
(estimated) value

► provides means for coping with Uncertainty Quantification (UQ)
► quantitative support of scientific method 
► use of prior knowledge, e.g., previous experiments, modeling 

expertise, subjective
► experiments should provide decisive information
► model-based analysis 
► model checking –

does model agree with experimental evidence? 
• Goal is to estimate model parameters and their uncertainties
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Bayesian approach to model-based analysis
• Models 

► used to describe and analyze physical world
► parameters inferred from data 

• Bayesian analysis
► uncertainties in parameters described by probability density 

functions (pdf)
► prior knowledge about situation may be incorporated
► quantitatively and logically consistent methodology for making 

inferences about models
► open-ended approach

• can incorporate new data
• can extend models and choose between alternatives
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Bayesian approach to model-based analysis
• Bayesian formalism provides framework for modeling

► choice of model is up to analyst (as in any analysis)
► many ways to do it 
► calling an analysis Bayesian does not distinguish it

• Because it is a Bayesian analysis does not necessarily mean it 
is a good analysis; it can also be bad or inappropriate 
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Uncertainties and probabilities
• Uncertainties in parameters are 

characterized by probability density 
functions (pdf)

• Probability interpreted as quantitative 
measure of “degree of belief”

• This interpretation is referred to as 
“subjective probability”
► different for different people with 

different knowledge
► changes with time
► in science, we seek consensus, avoid bias

• Rules of classical probability theory apply
► provides firm foundation with mathematical 

rigor and consistency
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Subjective probability can be quantitative
Example – coin toss 
• Hypothesis: for a specific coin, 

fraction of tosses that come up 
heads = 50%

• Hypothesis seems so reasonable 
that you might believe it is true

• On basis of this subjective 
probability, you might be willing 
to bet with 1:1 odds

• Before any tosses, you might have 
a prior as shown

• After 50 tosses, you would know 
better whether coin is fair
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Coherent bet quantifies subjective probability
• A property of the Gaussian distribution is that random draws from 

it will fall inside the interval from -σ to +σ 68% of time
• Suppose, on basis of what you know, you specify the standard 

error σ of your measurement of a quantity, assuming Gaussian 
• If you truly believe in the value of σ you have assigned, you should 

be willing to accept a bet, randomly chosen between two options:
► 2:1 bet that a much more accurate measurement would differ from 

your measured value by less than one σ
► OR 1:2 bet that a much more accurate measurement would differ 

from your measured value by more than one σ
• Your willingness to take bet either way makes this a coherent bet
• As physicists, we should make honest effort to assign uncertainties 

in this spirit, and communicate what we have done
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Rules of probability
• Continuous variable x; p(x) is a probability density function (pdf)
• Normalization: 
• Decomposition of joint distribution into conditional distribution:

where               is conditional pdf (probability of x given y)
► if                           ,  x is independent of y

• Bayes law follows: 

• Marginalization: 

is probability of x, without regard for y (nuisance parameter)

( ) 1=∫ p x dx

( , ) ( | ) ( )=p x y p x y p y

( ) ( , ) ( | ) ( )= =∫ ∫p x p x y dy p x y p y dy

( | ) ( )( | )
( )

=
p x y p yp y x

p x

( | )p x y
( | ) ( )=p x y p x
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Rules of probability
• Change of variables: if x transformed into z, z = f(x), the pdf in 

terms of z is

where J is the Jacobian matrix for the transformation:

1( ) ( )p p−=z J x

31
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Bayesian analysis of experimental data
• Bayes rule

► where
d is the vector of measured data values 
a is the vector of parameters for model that predicts the data

► p(d | a, I) is called the likelihood (of the data given the true model 
and its parameters)

► p(a | I) is called the prior (on the parameters a)
► p(a | d, I) is called the posterior – fully describes final uncertainty 

in the parameters
► I stands for whatever background information we have

about the situation, results from previous experience, 
our expertise, and the model used

► denominator provides normalization:
i.e., is integral of numerator

( | , ) ( | )( | , )
( | )

p d a p ap a d
p d

=
I II

I

( ) ( | ) ( ) d= ∫p d p d a p a a
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Auxiliary information – I
All relevant information about the situation may be brought to bear:
• Details of experiment

► laboratory set up, experiment techniques, equipment used
► potential for experimental technique to lead to mistakes
► expertise of experimenters

• Relationship between measurements and theoretical model
• History of kind of experiment
• Appropriate statistical models for likelihood and prior
• Experience and expertise

• We usually leave I out of our formulas, but keep it in mind

more 
subjective
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Likelihood
• Form of the likelihood p(d |a, I) depends on how we model the 

uncertainties in the measurements d
• Choose pdf that appropriately describes uncertainties in data

► Gaussian – good generic choice
► Poisson – counting experiments
► Binomial – binary measurements (coin toss …)

• Outliers exist
► likelihood should have a long tail, i.e., there is some probability of 

large fluctuation
• Systematic errors

► caused by effects common to many (all) measurements
► model by introducing variable that affects many (all) 

measurements; then marginalize it out
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Priors
• Noncommittal prior

► uniform pdf; p(θ) = const. when θ is offset parameter
► uniform in log(θ); p(log θ) = const. when θ is scale parameter
► choose pdf with maximum entropy, subject to known constraints

• Physical principles
► cross sections are nonnegative fl p(θ) = 0 when θ < 0
► invariance arguments, symmetries

• Previous experiments
► use posterior from previous measurements for prior
► Bayesian updating

• Expertise
► elicit pdfs from experts in the field, avoiding common info sources
► elicitation, an established discipline, may be useful in physical 

sciences
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Priors
• Conjugate priors

► for many forms of likelihood, there exist companion priors that 
make it easy to integrate over the variables

► these priors facilitate analytic solutions for posterior
► example: for the Poisson likelihood in n and λ, the conjugate prior 

is a Gamma distribution in λ with parameters α and β, which 
determine the position and width of the prior

► conjugate priors can be useful and their parameters can often be
chosen to create a prior close to what the analyst has in mind

► however, in the context of numerical solution of complicated 
overall models, they loose their appeal
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Posterior
• Posterior p(a | d, I)

► net result of a Bayesian analysis
► summarizes our state of knowledge
► it provides fully quantitative description of uncertainties
► usual practice is to characterize posterior in terms of an 

estimated value of the variables and their variance
• Visualization

► difficult to visualize directly because it is a density 
distribution of many variables (dimensions)

► Monte Carlo allows us to visualize the posterior through it 
effect on the model that has been used in the analysis
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Visualization of uncertainties
• Visualization plays an important role in developing an 

understanding of a model and communicating its consequences
• Monte Carlo is often a good choice – choose sets of 

parameters from their uncertainty distribution and visualize 
corresponding outputs from the model

• Random sampling from posterior is typically done
• Quasi-random sampling is noteworthy alternative; it provides 

more uniform sets of samples
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Probability in weather forecasting
• Metrological forecast for Oct. 30, 2003 for Casper, Wyoming
• 22 predictions of 564 line (500 mb) obtained by varying input 

conditions; indicate plausible outcomes 
• Density of lines conveys certainty/probability of winter storms

7 days 
ahead

what happened? 
20-inches of snow!

4 days 
ahead

1 day 
ahead 

564 line; predictive 
of winter storms

National Geographic, 
June 2005
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Posterior – quantitative results
• Quantitative results are obtained by characterizing the posterior:

► mean (first moment):

• mean minimizes quadratic cost function
► maximum (peak position); same as mean if pdf symmetric
► standard deviation (second moment): 

• standard error
► covariance matrix:

• correlation matrix:
► credible (confidence) interval, e.g., 95% credible interval

• Means for estimating these include:
► can use calculus if posterior is in convenient analytic form 
► second-order approximation around peak (numerical)
► Monte Carlo (numerical)

ˆ ( )= ∫x = x x p x dx

( )2
( )x x x p x dxσ = −∫

( )( )cov( ) ( )= = − −∫Cxyx, y x x y y p x, y dxdy
corr( ) = /σ σ σ= R 2

xy xy x yx, y



27

Higher-order inference
• One can make inferences about models, not just parameters 
• The posterior for a model is

► the final integral is the normalizing denominator in original 
Bayes law for p(a|d); it is called the evidence

► while the evidence is not needed for parameter inference, it 
is required for model inference

• May be used for model selection, e.g., deciding between two or 
more models
► e.g., how many terms to include in a functional analysis

( | ) ( , | ) ( , | )p M p M d p M d= =∫ ∫d a d a a d a

( | , ) ( , )

( ) ( | , ) ( | )

p M p M d

p M p M p M d

∝

=

∫
∫

d a a a

d a a a
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Summary
In this tutorial:
• Need for uncertainty quantification 
• Bayesian fundamentals

► subjective probability, nevertheless quantifiable
► Bayesian use of probability theory
► posterior sampling
► visualization of uncertainties – Monte Carlo
► higher-order inference  
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Tutorial 2
Bayesian modeling
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Peelle’s Pertinent Puzzle (1987)
Overview:
• Paradoxical result produced by strong correlations in 

uncertainties
• Probabilistic view of PPP
• Specific probabilistic model for PPP elucidates how correlations

in uncertainties arise
• Plausible experimental situation consistent with PPP result
• Bayesian approach to coping with uncertainty in model
• With probabilistic modeling, you can go beyond simple linear, 

additive models
• PPP underlines the need to specify how uncertainties contribute 

to reported data
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Peelle’s pertinent puzzle
• Robert Peelle (ORNL) posed the PPP in 1987:

Given two measurements of same quantity x: 
m1 = 1.5;  m2 = 1.0 ,

each with independent standard error of 10% ,
and fully correlated standard error of 20% .
Weighted average using least-squares is x = 0.88 ± 0.22

• Peelle asks “under what conditions is this result reasonable?”
• By extension, if this not reasonable, what answer is appropriate?
• PPP is pertinent – its effect has been observed in nuclear data 

evaluation for decades
• Comment – PPP description of errors is ambiguous, which leads 

to numerous plausible interpretations
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PPP in cross-section evaluation
• Although the PPP problem may seem academic, it has significant 

real-world consequences in cross-section evaluation
► historically, fits to several data sets fall below lowest measurements

from Pronyaev, 
INDC(NDS)-438, 
p. 163 (2003)

6Li(n,t)

note large data 
discrepancies
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Standard solution to PPP
• The solution given in PPP is based on standard matrix equations 

for least-squares result:
estimated value
covariance in estimate

where the sensitivity matrix is 
and the measurements are the vector

with covariance matrix

• Result is   x = 0.88 ± 0.22
• This result is smaller than both measurements, which seems 

implausible

2 2 2 2

2 2 2 2

1.5 (0.1 0.2 ) 1.5 1.0 0.2
1.5 1.0 0.2 1.0 (0.1 0.2 )

C
⎛ ⎞∗ + ∗ ∗

= ⎜ ⎟
∗ ∗ ∗ +⎝ ⎠

1 1 1( )T Tx G C G G C m− − −=
1 1( )TV G C G− −=

[1.5 1.0]Tm =
[1.0 1.0]G =
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Probabilistic view of standard PPP solution
• Consider the probability density 

function (pdf) for the variables

where measurements are  
and their covariance matrix is

• For                  (diagonal of 2D pdf), 
p(x|m) is normal distribution centered 
at 0.88

( ) ( )11

2
( | ) exp

T
Tx m x m C x m−⎧ ⎫⎪ ⎪∝ − − −⎨ ⎬

⎪ ⎪⎩ ⎭
p

[1.5 1.0]Tm =

1 2[ ]Tx = x x

2 2 2 2

2 2 2 2

1.5 (0.1 0.2 ) 1.5 1.0 0.2
1.5 1.0 0.2 1.0 (0.1 0.2 )

C
⎛ ⎞∗ + ∗ ∗

= ⎜ ⎟
∗ ∗ ∗ +⎝ ⎠

0.882 0.228x = ±

1 2x = x = x

p(x1, x2 | m)
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Probabilistic model for additive error
• Represent common uncertainty in measurements by systematic 

additive offset D:
► where the εi represent the random fluctuations 

• Bayes law gives joint pdf for x and D

where priors p(x) is uniform and p(D) assumed normal (sD= 0.2)
• Writing                                     and assuming normal distributions

where
• Pdf for x obtained by integration: 

• This model equivalent to 

1 1 1 2 2 2;x = m x = mε ε+ + Δ + + Δ

( , | ) ( | , ) ( ) ( )m mΔ = Δ Δp x p x p x p

{ }( , | ) expm ϕΔ ∝ −p x

( ) ( )2 2 2
1 1 2 2

2 2 2
1 2

x - m x - m
2 =ϕ

σ σ σ Δ

− Δ − Δ Δ
+ +

0.1 ; 0.1 ; 0.2σ σ σ1 1 2 2 Δ∗ ∗= m = m =

( | ) ( , | ) dp x p x= Δ Δ∫m m

( ) ( )11

2
( | ) exp

T
Tx m x m C x m−⎧ ⎫⎪ ⎪∝ − − −⎨ ⎬

⎪ ⎪⎩ ⎭
p
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Plausible experimental scenario
• Under what conditions is PPP result 

reasonable?
• Suppose that 

► measurements made in intervals 
shown

► from experience with apparatus, 
we know background increases 
linearly in time

► background subtraction for m1 is 
1.5 times larger than for m2 ; 
leads to stated covariance matrix

• For this scenario, the additive 
model is appropriate, and the PPP 
solution, 0.88, is the correct answer

±20%

background
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Probabilistic model for normalization error
• Represent common uncertainty in measurements by systematic 

error in normalization factor c:
► where the εi represent the random fluctuations

• Following same development as before, where prior  p(c)
assumed normal with expected value of 1 and sc = 0.2

• Writing 

where
• Divide p(cx, c) by Jacobian  J = 1/c to get p(x, c), which is a 

log-normal distribution
• p(x) obtained by numerical integration: 
• This approach promoted by D. Smith (1991)

1 1 2 2;cx = m  + cx = m + ε ε

{ }( , | ) expp cx c ϕ∝ −m

( ) ( ) ( )2 2 2

2 2 2
1 2

1
ϕ

σ σ σ
1 2 −

+ +
c

cx - m cx - m c
2 =

0.1 ; 0.1 ; 0.2σ σ σ1 1 2 2∗ ∗ c= m = m =

( | ) ( , | )dp x p x c c= ∫m m
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Probabilistic view of normalization error
• Consider the probability density 

function (pdf) for variables

where measurements are  
► also, divide p(cx, c) by Jacobian J = 

1/c to get p(x, c),
► for                   (diagonal of 2D pdf), 

p(x|m) is not a simple normal distribution
► max at: xmax = 1.074
► posterior mean and rmsd: 

x = 1.200 ± 0.276

[1.5 1.0]Tm =

1 2[ ]Tx = x x

1 2x = x = x

22 2
2 1 1 2 2

1 1 2 2

1 ;

;

χ
ρ ρ σ

σ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞− − −
= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
=

c

c c

cx m cx m c
m m

p(x1, x2 | m)

1.200 0.276x = ±
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Probabilistic model for normalization error
• Compare pdfs for two models 

for correlated effect:
A – additive offset
B – normalization factor

• Observe significant difference 
in two results
► emphasizes need to know 

which kind of effect leads to 
correlation 

• Probabilistic modeling is 
capable of handling a variety of 
known effects  
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But which model should we use?
• Ambiguity in specifying source of 

correlation leads to uncertainty 
about which model to use

• Bayesian approach can handle 
model uncertainty

► for two equally likely models 
M1 and M2

• Answer is average both pdfs!!
x = 1.04 ± 0.30

1 2
1 1

2 2

( | ) ( , | )d

( | , ) ( )d

( | , ) ( | , )

m m

m

m m

=

+

∫
∫

p x p x M M

= p x M p M M

= p x M p x M

1.04 0.30x = ±

solid black line is 
average of A and B
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An alternative approach
• Devinder Sivia offers an variation 

on this approach
• Use data to help decide which 

model to use 

► where wi is proportional to the 
evidence integral for 

• Answer is: x = 0.96 ± 0.27
• Comment: relative weights depend 

heavily on resp. priors; perhaps not 
a good situation

1 1 2 2

( | ) ( , | )

( | , ) ( | )

( | , ) ( | , )

i
i

i i
i

p x p x M

= p x M p M

= w p x M w p x M

=

+

∑

∑

m m

m m

m m

solid black line is 
weighted average of 

other two distributions

0.96 0.27= ±x

from D. Sivia, Proc. AMCTM Conf., 

(World Scientific, 2005)

( | )ip M m
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Conclusions
• PPP result is consistent with plausible experimental scenario

► in which correlated (systematic) error contributes additively to result
• Ambiguous statement of the PPP leads to other interpretations

► some of which yield more plausible answers
• Analysts need better information to analyze data without guessing

• Probabilistic modeling can cope with various known uncertainty 
effects
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Conclusions
• Experimenters – please provide measurement details
• Some of the details needed:

► specify standard errors as precisely as possible, indicating where 
uncertainties in their assessment lie

► specify components in uncertainties and whether they are 
• independent, or correlated, e.g., systematic errors
• given relative to measured quantities or inferred values
• additive (background subtraction) or multiplicative 

(normalization)
• Correlation matrix by itself is not enough
• Another issue in PPP is inconsistency between two measurements: 

one can cope with this discrepancy by introducing notion that the 
true errors may differ from quoted errors, i.e., treatment of outliers
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Monte Carlo techniques 
Monte Carlo – represent pdf by a set of point samples
• Typically use MC to draw samples from posterior for parameters, 

which are fed into model to get prediction; predictive distribution
• Visualization of pdf, uncertainty
• Numerical calculations

► estimation of mean, standard deviation, correlations
► integration, marginalization

• Quasi-Monte Carlo – select points with more uniform distribution
► provide more accurate estimates for fixed number of samples 
► often deterministic point sets

• Markov chain Monte Carlo
► draw random samples for numerically-defined pdf
► facilitates inference through numerical calculations 
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Voronoi analysis
• Voronoi diagram

► partitions domain into polygons
► points in ith Voronoi region are closest 

to ith generating point, xi

► boundaries often obtained by geometrical 
construction

• Monte Carlo technique for Voronoi analysis
► randomly throw large number of points zk

into region
► compute distance of each zk to all generating 

points {xi}
► zk belongs to Voronoi region of closest xj

► can compute volume, first moment , radial 
moments, identify neighbors, …

• Readily extensible to high dimensions

10 random points

Geometric construction

Monte Carlo
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Centroidal Voronoi Tessellation
• Plot shows 13 random points (·) and the 

centroids of their Voronoi regions (×)
• A point set is called a Centroidal Voronoi 

Tessellation (CVT) when the generating 
points z j coincide with the centroids their 
Voronoi regions; a CVT minimizes

• Algorithm (McQueen)
► start with arbitrary set of generating points
► perform Voronoi analysis using Monte Carlo
► move each generating point to its Voronoi 

centroid
► iterate lasts two steps until convergence 

• Final CVT points are uniformly distributed

Final CVT point set
∑ ∫ −

j

j

j

xxz d
2

V

Start with random points
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CVT for multi-variate normal distribution
• CVT algorithm works for an arbitrary 

density function, e.g., a normal distribution
• In above MC algorithm for Voronoi 

analysis, simply draw random numbers 
from desired distribution

• Plots show starting random point set and 
final CVT set

• Radii of points are rescaled to achieve 
desired average variance along axes  

• CVT points appear uniformly distributed 
within constraint of adhering to unit-
variance normal distribution

• This kind of distribution may have benefits 
for MC calculations and visualizations 

Random, 100

CVT, 100
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Sampling from correlated normal distribution 
• Want to draw samples from multi-variate normal distribution with 

known covariance Cx

• Important to include correlations among uncertainties, i.e., off-
diagonal elements

• Algorithm: 
► perform eigenanalysis of covariance matrix of d dimensions

where U is orthogonal matrix of eigenvectors and
Λ is the diagonal matrix of eigenvalues

► draw d samples from uncorrelated unit-variance normal distr., ξi

► scale this vector by λi
½

► transform vector into parameter space using the eigenvector matrix
► to summarize, fluctuations are given by:

TUΛUCx =

1/2Δ =x UΛ ξ
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Sampling from correlated normal distribution 
Proof of algorithm:
• Want to draw samples from multi-variate normal distribution 

with specified covariance Cx

• Algorithm:   
► fluctuations given by: 

where ξi randomly drawn from uncorrelated normal pdf and 
U and Λ come from an eigenanalysis of Cx:
where U is orthogonal matrix of eigenvectors and

Λ is the diagonal matrix of eigenvalues
• Proof: 

► Covariance of an ensemble of x vectors is 

► thus, the fluctuations Δx have the desired covariance 

TUΛUCx =

T 1/2 T 1/2 T= Δ Δ =C x x UΛ ξξ Λ U
1/2 T 1/2 T T= = = xUΛ ξξ Λ U UΛU C

1/2Δ =x UΛ ξ
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Neutron cross sections
• Plot shows 

► measured fission cross sections 
for neutrons on 239Pu; red data 
points

► inferred cross sections; blue line
► weighted average in 30 energy 

bins (groups); green histogram
• PARITSN code simulates neutron 

transport based on multigroup, 
discrete-ordinates method
► uses 30 energy bins (groups)
► calculates criticality for specified 

configuration of fissile-material
► establish dependence of criticality 

experiment to cross sections

239Pu cross sections

cross section evaluation, P. Young et al.
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Neutron cross sections - uncertainties
• Analysis of measured cross 

sections yields a set of 
evaluated cross sections

• Uncertainties in evaluated cross 
sections are ~ 1.4-2.4 %

• Covariance matrix important
• Strong positive correlations 

caused by normalization 
uncertainties in each experiment

standard error in cross sections

correlation matrix
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JEZEBEL – criticality experiment
• JEZEBEL experiment (1950-60)

► fissile material 239Pu
► measure neutron multiplication 

as function of separation of two 
hemispheres of material

► summarize criticality with 
neutron multiplication factor, 
keff = 0.9980 ± 0.0019

► very accurate measurement

• Our goal – use highly accurate 
JEZEBEL measurement to 
improve our knowledge of 239Pu 
cross sections

JEZEBEL set up
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JEZEBEL – sensitivity analysis
• PARITSN code calculates keff on 

basis of neutron cross sections
• Sensitivity of keff to cross sections 

found by perturbing cross section 
in each energy bin by 1% and 
observing increase in keff

• Observe that 1% increase in all 
cross sections results in 1% 
increase in keff , as expected

keff sensitivity to 
cross sections



54

Bayesian update
• For data linearly related to the parameters, the Bayesian 

(aka Kalman) update for Gaussian distributions is

► x0 and x1 are parameter vectors before and after update
► C0 and C1 are their covariance matrices
► y and Cy are the measured data vector and its covariance
► y0 is the value of y for x0 

► Sy is the matrix of the sensitivity of y to x; ∂y/∂x

• For the JEZEBEL case, y is a scalar (keff), 
Cy is a scalar (variance), and Sy is a vector

yyy SCSCC 1T1
0

1
1

−−− +=

)( 0
1T

0
1

01
1

1 yySCSxCxC yyy −+= −−−
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Updated cross sections
• Plot shows uncertainties in cross 

sections before and after using 
JEZEBEL measurement

• Modest reduction in uncertainties; 
follows energy dependence of 
sensitivity

• Correlation matrix is significantly 
altered

• Strong negative correlations 
introduced by integral constraint of 
matching JEZEBEL’s keff
► reduction in uncertainties in future 

prediction depends on how closely 
its sensitivity matches JEZEBEL’s

standard error in cross sections

correlation matrix
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Linear-response model – output uncertainty
• Assume outputs of a model are linearly 

related to perturbations in the inputs,

► where Sy is sensitivity matrix ∂y/∂x
• The covariance in the output y is

► when output y is a scalar, 
the covariance Cy is a scalar (variance), 
and Sy is a vector

• If linear model is sufficient and one knows Sy, then 
predictive distribution is easily characterized

• For complex simulations, Sy is not usually known

yxyy SCSC T=

Tyδ δ= yS x
Model

x y
Inputs Outputs
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Uncertainty in subsequent simulations 
• Our goal is to use updated cross sections in new calculations

► expect that integral constraint will reduce uncertainties
• Demonstrate usefulness of quasi-MC in form of CVT point sets by 

“predicting” keff measured in JEZEBEL
► for this demo, assume linear model with known sensitivity 

vector
► under this assumption, we can calculate exact answer and 

compare to MC-style sampling to obtain predictive distribution
• For a new physical scenario, we would not have sensitivity vector 

and would have to do full simulation calculation
► thus, only a modest number of function evaluations can be done
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Accuracy of predicted keff and its uncertainty
• Prediction based on liner model with know sensitivities

► only 30 sample sets allowed for neutronics calc. because of time
► check accuracy of predicted mean and standard deviation

• Conclude – CVT is more accurate than random sampling

0.000020.001970.000010.99796CVT-rot

-0.00195-0.99796exact-linear

0.000100.002180.000100.99824random-rot

0.000280.001910.000370.99788random

rms dev.avg.rms dev.avg.

est. std. dev. keffest. mean keff

Performance summary from 1000 runs, each with set 
of 30 sample vectors; ‘rot’ indicates single sample set 
randomly rotated to achieve each new one
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Summary
In this tutorial:
• Peelles’ pertinent puzzle

► impact on cross-section evaluation
► probabilistic modeling; additive and multiplicative systematic 

effects
► experimenters need to provide more than correlation matrices 

• Monte Carlo
► generation of samples with specified covariance matrix
► quasi-Monte Carlo – more uniformly spaced points than random
► Centroidal Voronoi Tessellation (CVT) algorithm

• Bayesian updating of cross sections to include integral data
► JEZEBEL criticality experiment
► integral constraint results in negative correlations
► CVT point set improves prediction accuracy  
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Tutorial 3
Bayesian data analysis
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Types of measurement uncertainties
• Generally two major types of uncertainties

► random uncertainty – different for each measurement of same quantity
• in repeated measurements, get a different answer each time
• often assumed to be statistically independent, but aren’t always

► systematic uncertainty – same for each measurement within a group
• component of measurements that remains unchanged
• for example, caused by error in calibration or zeroing
• this kind of uncertainty needs more attention 

• Nomenclature varies 
► physics – random uncertainty and systematic uncertainty
► statistics – random and bias

• metrology standards (NIST, ASME, ISO) –
random and systematic uncertainties (now)

► trend toward quoting standard error
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Measurement uncertainties in cross sections
In cross-section experiments, sources of uncertainties include:
• Random uncertainties

► counting statistics for primary process and monitoring process
► background

• Systematic uncertainties
► integrated beam intensity
► target thickness, target impurities
► detector efficiency
► count rate corrections
► geometry
► corrections for contamination from other processes

• Try to reduce systematic uncertainties through calibration, design
• Random uncertainties usually easy to assess; 

systematic uncertainties require judgment
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Characterization of measurement uncertainties
• The best analysis is based on a thorough understanding of 

probabilistic nature of the fluctuations in the data
• In nuclear physics we are fortunate to have control over 

measurements; we can calibrate and study apparatus
• Look closely at measurements to characterize random fluctuations

► shape of pdf
► standard deviation (variance) of fluctuations,
► presence of outliers
► covariance, correlation:
► usually need to assume stationarity, same characteristics everywhere
► autocorrelation function useful for estimating correlations

ρ( ) ( ) ( )l y i y i l
N i

N

= −
=
∑1

1

Tˆ ˆcov( ) ( )( )≡ = − −Cdd d d d d
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Neutron fission cross section data for 239Pu
• Graph shows 16 measurements 

of fission cross-section for 
239Pu at 14.7 MeV

• Data exhibit fair amount of 
scatter

• Quoted error bars get smaller 
with time

• Minimum  χ2 = 44.6 (p = 10-4) 
indicates a problem 
► dispersion of data larger than 

quoted error bars by factor  
► outliers?; three data contribute 

24 to χ2, more than half 
44.6

3
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Neutron fission cross-section data 

• Neutron cross sections measured by many experimenters
► sometimes data sets differ significantly 
► often little information about uncertainties, esp. systematic errors
► many directly measure ratios of cross sections, e.g., 243Am/ 235U
► thorough analysis must take into account all discrepancies

243Am fission 
cross section

plot from P. Talou
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Inference using Bayes rule  
• We wish to infer the parameters a of a model M, based on data d
• Use Bayes rule, which gives the posterior:

► where I represents general information we have about the situation
► p(d | a, M, I) is the likelihood, the probability of the observed data, 

given the parameters, model, and general info
► p(a | M, I) is the prior, which represents what we know about the 

parameters exclusive of the data
• Note that inference requires specification of the prior

( | ) ( | ) ( | )a d d a  a∝p ,M,I p ,M, I p M,I
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Likelihood
• Form of the likelihood p(d |a, I) based on how we model the 

uncertainties in the measurements d
• Choose pdf that appropriately describes uncertainties in data

► Gaussian – good generic choice
► Poisson – counting experiments
► Binomial – binary measurements (coin toss …)

• Outliers exist
► likelihood should have a long tail, i.e., there is some probability of 

large fluctuation
• Systematic errors

► caused by effects common to many (all) measurements
► model by introducing variable that affects many (all) 

measurements; marginalize out
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The model and parameter inference
• We write the model as

► where y is a vector of physical quantities, which is modeled 
as a function of the independent variables vector x and
a represents the parameter vector for the model

• In inference, the aim is to determine:
► the parameters a from a set of n measurements di of y under 

specified conditions xi

► and the uncertainties in the parameter values
• This process is called parameter inference, model fitting (or 

regression); however, uncertainty analysis 
is often not done, only parameters estimated

( , )=y y x a
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The likelihood and chi-squared
• The form of the likelihood p(d |a, I) depends on how we model 

the uncertainties in the measurements d
• Assuming the error in each measurement di is normally 

(Gaussian) distributed with zero mean and variance σi
2, and that 

the errors are statistically independent,

• where yi is the value predicted for parameter set a
• The above exponent is one-half chi squared

• For this error model, likelihood is 

[ ]
2

2
2

[ ( )]2log ( | ) i i

i i

d y apχ
σ

⎡ ⎤−
= − = ⎢ ⎥

⎣ ⎦
∑d a

21
2( | ) exp( )p χ∝ −d a

2

2

[ ( )]( | ) exp
2

i i

i i

d y ap
σ

⎡ ⎤−
∝ −⎢ ⎥

⎣ ⎦
∏d a
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Likelihood analysis
• For a non-informative uniform prior, 

the posterior is proportional to the likelihood
• Given the relationship between chi-squared and the likelihood, 

the posterior is

• Parameter estimation based on maximum likelihood is 
equivalent to that based on minimum chi squared  (or  least 
squares)

21
2( | ) ( | ) exp( )p p χ∝ ∝ −a d d a
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Likelihood analysis – chi squared  
• When the errors in each measurement are Gaussian distributed and

independent, likelihood is related to chi squared:

• near minimum, χ2 is approximately quadratic in the parameters a

► where â is the parameter vector at minimum χ2 and
K is the χ2 curvature matrix (aka the Hessian)

• The covariance matrix for the uncertainties in the estimated 
parameters is

( ) ( )2 2T1
2 ˆ ˆ ˆ( ) ( )χ χ= − − +a a a K a a a

2

2
21

2
1
2

[ ( )]( | ) exp( ) exp ad a
σ

χ −
−

⎧ ⎫⎡ ⎤
∝ − = ⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
∑ i i

i i

d yp

1Tˆ ˆcov( ) ( )( ) 2a a a a a C K −≡ − − ≡ =
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Characterization of chi squared  
• Expand vector y around y0, and approximate:

• The derivative matrix is called the Jacobian, J
• Estimated parameters â minimize χ2 (MAP estimate)
• As a function of a, χ2 is approximately quadratic in a – â

► where K is the χ2 curvature matrix (aka the Hessian);

• Jacobian useful for finding min. χ2 , i.e., optimization

( ) ( )2 2T1
2 ˆ ˆ ˆ( ) ( )χ χ= − − +a a a K a a a

0 0

0
( , ) ( )i

i i i i j j
j j a
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∂
= = + − +
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[ ]
2 2

2 2 2
1 2 3
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ˆ
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χ σ σ σ− − −∂
= = =

∂ ∂
K K JΛJ Λ
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Multiple data sets and Gaussian prior
• Analysis of multiple data sets 

► to combine the data from multiple, independent data sets into a 
single analysis, the combined chi squared is 

► where p(dk | a, I) is the likelihood from kth data set
• Include Gaussian priors through Bayes theorem  

► for a Gaussian prior on a parameter aj

► where ãj is the default value for aj and σj
2 is assumed variance 

2 2
all k

k
χ χ= ∑

( | , ) ( | , ) ( | )p I p I p I∝a d d a a

( )2

21
2 2log ( | , ) ( )

2
a d aϕ χ

σ
−

− = = + j j

j

a a
p I
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Chi-squared distribution 
• Plot shows χ2 distribution for 

number of degrees of freedom, 
ν = 100

• Generally, 
► mean = ν
► rms dev = 

• Cumulative distribution gives p
value, probability of χ2 ≥ observed 
value

• p often used a measure of 
goodness of fit

• Checks self-consistency of models 
used to explain data (weakly)

2 /ν
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Goodness of fit
• Check of minimum chi-squared value only weakly confirms 

validity of models used
• Chi-squared value depends on numerous factors:

► assumption that errors follow Gaussian distribution and are 
statistically independent

► proper assignment of standard deviation of errors
► correctness of model used to calculate measured quantity
► measurements correspond to calculated quantity (proper 

measurement model)
• Thus, a reasonable chi-squared p value does not necessarily 

mean everything is OK, because there may be compensating 
effects
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Fit linear function to data – minimum χ2

• Linear model:  
• Simulate 10 data points, 

exact values:
• Determine parameters, intercept 

a and slope b, by minimizing chi-
squared (standard least-squares 
analysis)

• Result:  

• Strong correlations between 
parameters a and b

= +y a bx

ˆ 0.484=a 0.127aσ =
ˆ 0.523=b 0.044bσ =

2
min 4.04 0.775χ = =p

1 0.867
0.867 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

R

0.2σ =y

0.5=a 0.5=b

Best fit10 data points

Scatter plot
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Sampling from correlated normal distribution 
• Want to draw samples x from multi-variate normal distribution 

with known covariance Cx

• Important to include correlations among uncertainties, i.e., off-
diagonal elements

• Algorithm: 
► perform eigenanalysis of covariance matrix of d dimensions

where U is orthogonal matrix of eigenvectors and
Λ is the diagonal matrix of eigenvalues

► draw d samples from unit variance normal distribution, ξi

► scale this vector by λi
½

► transform vector into parameter space using the eigenvector matrix
► to summarize:

TUΛUCx =

ξΛUx 1/2=
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Linear fit – uncertainty visualization
• Uncertainties in parameters are 

represented by Gaussian pdf in 2-D 
parameter space
► correlations evidenced by tilt in 

scatter plot
► points are samples from pdf

• Should focus on implied 
uncertainties in physical domain
► model realizations drawn from 

parameter uncertainty pdf
► these appear plausible –

called model checking
► this comparison to the original data 

confirms model adequacy
► called predictive distribution

12 MC samples

Scatter plot
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Linear fit – correlations are important
• Plots show what happens if off-

diagonal terms of covariance 
matrix are ignored

• Correlation matrix is

• Model realizations show much 
wider dispersion than consistent 
with uncertainties in data

• No tilt in scatter plot – uncorrelated 
• Correlations are important !

1 0
0 1

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
R

12 MC samples

Scatter plot
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Probabilistic model for additive error
• Represent systematic additive uncertainty in measurements by 

common additive offset D:
► where the εi represent the random fluctuations 

• Bayes law gives joint pdf for all the parameters

where priors p(a), p(b) are uniform and p(D) assumed normal
• Writing                                            and assuming normal 

distributions

• Pdf for x obtained by integration: 

• This model equivalent to standard least-squares approach by 
including D in fit, and using just results for a and b

= ( ; )i i i i iy a + bx = f x a,bε ε+ + Δ + + Δ

( , , | , ) ( | , , , ) ( ) ( ) ( )y x y xΔ = Δ Δp a b p a b p a p b p

{ }( , , | , ) expy x ϕΔ ∝ −p a b

( )2 2

2 2

( ; )i i

i

y - f x a,b
2 =ϕ

σ σ Δ

− Δ Δ
+∑

( | , ) ( , | , ) dy x y x= Δ Δ∫p a,b p a,b
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Linear fit – systematic uncertainty
• Introduce systematic offset D

with uncertainty
• Linear model:  
• Determine parameters, a, b, and 

offset D by minimizing chi-
squared (standard least-squares 
analysis)

• Result:  

• Same parameters, but     much 
larger

= + + Δy a bx

ˆ 0Δ =
0.326aσ =

ˆ 0.523=b

σ a

1 0.338
0.338 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

R

0.3σ Δ =

0.044bσ =

ˆ 0.484=a

Best fit

Systematic 
error bar
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Linear fit – systematic uncertainty
• Show uncertainties in inferred 

models
► colored lines are model 

realizations drawn from parameter 
uncertainty pdf

► these appear plausible, 
considering additional systematic 
uncertainty, 0.3σ Δ =

Systematic 
error bar
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Role of simulated data
• Simulated data are crucially important for testing algorithms

► treat simulated data as is actual measurements
► can compare algorithmic results with known true values
► can test how well algorithm copes with specific data 

deficiencies
► aid in debugging computer code, underlying ideas

• Important to mimic real data
► characteristics of measurement fluctuations (noise)
► limited resolution (blur) of signal
► systematic effects
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Linear fit to many data
• Linear model:  
• Simulate 1000 data points, 

exact values:
• Determine parameters by 

minimizing chi-squared
• Result:  

• Standard errors are reduced by 
factor of 10 through data averaging

• Is this reasonable?

= +y a bx

ˆ 0.496a = 0.0126aσ =
ˆ 0.499b = 0.0044bσ =

2
min 972.0 0.717pχ = =

1 0.866
0.866 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

R

0.2σ =y

0.5=a 0.5=b

12 MC samples

Best fit1000 data points
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Linear fit to many data - systematic uncertainty
• Introduce systematic offset D

with uncertainty
• Linear model:  
• Determine parameters, a, b, 

and offset D by minimizing 
chi-squared (standard least-
squares analysis)

• Result:  

• Same fit, but      dominated by
• Uncertainty in slope still small

= + + Δy a bx

ˆ 0Δ =
0.300σ =a

ˆ 0.499b =
1 0.036

0.036 1
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
R

0.3σ Δ =

0.0044bσ =

ˆ 0.496a =

σ a σ Δ
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Outliers
• Measurements that differ from 

true value by more than expected
• Often caused by mistakes

► every experimenter knows 
mistakes happen!

• Can accommodate in likelihood 
function by including long tail

• Simple model: likelihood is 
mixture of two Gaussians 

• Long tail includes possibility of 
large deviation from true value

• Outlier-tolerant analysis generally 
called “robust estimation”

2 2

2 2

( ) ( )(1 ) exp exp
2 2

x m x mβ β
σ γ σ

⎧ ⎫ ⎧ ⎫− −
− − + −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
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Linear fit – outliers
• Outliers pose significant problem 

for min χ2 algorithm
• Create outlier by artificially 

perturbing third point
• Min-χ2 results in large shift of fitted 

line:  

• Two-Gaussian likelihood handles 
outlier very well
► fit is nearly the same as before

ˆ 0.987a = 0.180aσ =
ˆ 0.402b = 0.062σ =b

2 15
min 85.6 10pχ −= =

Gaussian - best fit

ˆ 0.494a = 0.140aσ =
ˆ 0.520b = 0.043bσ =

2 Gaussians - best fit
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239Pu cross sections – Gaussian likelihood
• With Gaussian likelihood 

(min χ2) yields
► χ2 = 44.7, p = 0.009% for 15 DOF

2.441 ± 0.013
► implausibly small uncertainty 

given three smallest uncerts. 
≈ 0.027

• Each datum reduces the standard 
error of result, even if it does not 
agree with it!
► consequence of Gaussian likelihood

► independent of where data lie!
which doesn’t make sense

2 2

1

n

i
i

σ σ− −

=

= ∑
Gaussian: 2.441 ± 0.013
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239Pu cross sections – outlier-tolerant likelihood
• Use just latest five measurements
• Compare results from alternative 

likelihoods:
► Gaussian: 2.430 ± 0.015
χ2 = 13.88, p = 0.8% for 4 DOF

► two Gaussians: 2.427 ± 0.018 
• For two-Gaussian likelihood: 

► result not pulled as hard by outlier
► σ is not as small, seemingly taking 

into account discrepant nature of 
data

Two Gaussians:
2.427 ± 0.018

Gaussian:
2.430 ± 0.015
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239Pu cross sections – outlier-tolerant likelihood
• Use just latest five measurements
• To exaggerate outlier problem, set 

all standard errors = 0.027
• Compare results from alternative 

likelihoods:
► Gaussian: 2.489 ± 0.012
χ2 = 69.9, p = 2×10-14 for 4 DOF

► two Gaussians: 2.430 ± 0.022 
• For two-Gaussian likelihood: 

► result is close to cluster of three 
points; outliers have little effect

► uncertainty is plausible 

Two Gaussians:
2.430 ± 0.022

Gaussian:
2.489 ± 0.012
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239Pu cross sections – outlier-tolerant likelihood
• To exaggerate outlier problem, set 

all standard errors = 0.027, using 
just latest five measurements

• Plot shows pdfs on log scale, which 
shows what is going on with two-
Gaussian likelihood
► long tail of likelihood function for 

outlier does not influence peak 
shape near cluster of three 
measurements; for single Gaussian, 
it would make it narrower

► long tails of likelihood functions 
from cluster allows outlier to 
produce a small secondary peak; 
has little effect on posterior mean

Two Gaussians
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Hierarchical model – scale uncertainties
• When data disagree a lot, we may question 

whether quoted standard errors are correct
• Scale all σ by factor s: 
• Then marginalize over s

• For prior p(s), either use 
noninformative (flat in log(s)) or 
one like shown in plot

• Let the data decide!
• This is called hierarchical model

because properties of one pdf, the 
likelihood, are specified by another pdf

0sσ σ=

( | ) ( , | )dp p s s= ∫a d a d
( | ) ( | , ) ( , )dp p s p s s∝ ∫a d d a a

( | ) ( | , ) ( ) ( )dp p s p p s s∝ ∫a d d a a

Scale factor s
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239Pu cross sections – scale uncertainties
• Accommodate large dispersion in 

data by scaling all σ by factor s: 

• For likelihood, use Gaussian with 
scaled σ

• For prior p(s), use non-informative 
prior for scaling parameter

• Bottom plot shows joint posterior pdf
• Marginalize over s:

to get posterior for x (top plot)
• Result is: 2.441 ± 0.024; 

very plausible uncertainty

0 0 ; quoted stand. err.sσ σ σ= =

joint distribution: p(x, s)( ) 1/p s s∝

2
01( | , ) exp

2n 2p x s
s s

χ⎛ ⎞
∝ −⎜ ⎟

⎝ ⎠
d

( | ) ( | , ) ( ) ( )dp x p x s p x p s s∝ ∫d d
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239Pu cross sections – scale uncertainties
• To obtain the posterior for the scaling 

parameter s, marginalize joint posterior 
over x:

• Plot (top) shows result
► maximum at about 1.7, 

for original fit 
► however, this result is different from 

just scaling σ to make χ2 per DOF unity
► it allows for a distribution in s, taking 

into account that s is uncertain
• This model can be extended to allow 

each σi to be scaled separately
► prior on si could reflect our confidence 

in quoted σi for each experiment

joint distribution: p(x, s)

( | ) ( | , ) ( ) ( )dp s p x s p x p s x∝ ∫d d

2

DOF
χ

≈
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Summary
In this tutorial:
• Types of uncertainties in measurements – random and systematic

• Uniform prior ⇒ likelihood analysis ⇒ χ2 analysis
• Used straight line fit to illustrate various Bayesian concepts and 

models
► posterior sampling; predictive distribution and model checking
► systematic uncertainties
► averaging over many measurements
► outliers

• Studied Pu cross-section data at 14.7 MeV
► outlier-tolerant likelihood
► scaling of quoted standard errors using a distribution of scales, 

which is determined by input data
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Tutorial 4
Bayesian calculations
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Forward and inverse probability 

• Forward probability - determine uncertainties in observables 
resulting from model parameter uncertainties; use Monte Carlo

• Inverse probability - infer model parameter uncertainties from 
uncertainties in observables; use Markov chain Monte Carlo 

Parameter 
space

Experimental 
observation 
space

Forward probability – MC

Inverse probability – MCMC 
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MCMC - problem statement 
• Parameter space of n dimensions represented by vector x
• Given an “arbitrary” target probability density function (pdf), q(x), 

draw a set of samples {xk} from it
• Only requirement typically is that, given x, one be able to evaluate 

Cq(x), where C is an unknown constant, that is, q(x) need not be 
normalized 

• Although focus here is on continuous variables, MCMC applies to 
discrete variables as well

• It all started with seminal paper:
► N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, 

and E. Teller, “Equations of state calculations by fast computing 
machine,” J. Chem. Phys. 21, pp. 1087–1091 (1953)

• MANIAC: 5 KB RAM, 100 KHz, 1 KHz multiply, 50 KB disc 
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Uses of MCMC 
• Permits evaluation of the expectation values of functions of x, e.g.,

〈 f(x)〉 = ∫ f(x) q(x) dx ≅ (1/K) Σk f(xk)
► typical use is to calculate mean 〈x〉 and variance 〈(x - 〈x〉)2〉

• Useful for evaluating integrals, such as the partition function for 
properly normalizing the pdf

• Dynamic display of sequences provides visualization of 
uncertainties in model and range of model variations

• Automatic marginalization; when considering any subset of 
parameters of an MCMC sequence, the remaining parameters are 
marginalized over (integrated out)
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Markov Chain Monte Carlo

x2

Probability(x1, x2) = q(x)
accepted step
rejected step

x1

• Metropolis algorithm:
► draw trial step from 

symmetric pdf, i.e.,  
t(Δ x) =  t(-Δ x)

► accept or reject trial step
► simple and generally 

applicable
► relies only on calculation of  

target pdf for any x

Generates sequence of random samples from an 
arbitrary probability density function
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Metropolis algorithm
• Target pdf is q(x)
• Select initial parameter vector x0

• Iterate as follows:  at iteration number k
(1) create new trial position x* = xk + Δx ,

where Δx is randomly chosen from t(Δx)
(2) calculate ratio  r = q(x*)/q(xk)
(3) accept trial position, i.e. set  xk+1 = x* 

if r ≥ 1 or with probability r, if r < 1
otherwise stay put,  xk+1 = xk

• Requires only computation of cq(x), where c is a constant
• Trail distribution must be symmetric: t(Δ x) =  t(-Δ x)
• Maintains detailed balance: p(xk→ xk+1) = p(xk+1→ xk) 
• “Markov chain” since xk+1 depends probabilistically 

only on xk
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Choice of trial distribution
• Algorithm places loose requirements on trial distribution t()

► stationary; independent of position
• Often used functions include

► n-D Gaussian, isotropic and uncorrelated
► n-D Cauchy, isotropic and uncorrelated

• Choose width to “optimize” MCMC efficiency
► rule of thumb: aim for acceptance fraction of about 25%
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Choice of trial distribution – experiments
• Target distribution q(x) is n dimensional Gaussian

► uncorrelated, univariate (isotropic with unit variance)
► most generic case

• Trial distribution t(Δx) is n dimensional Gaussian
► uncorrelated, equivariate; various widths

target

trial

xk
xkxk
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MCMC sequences for 2D Gaussian
• Results of running Metropolis 

with ratios of width of trial pdf
to target pdf of 0.25, 1, and 4

• When trial pdf is much smaller 
than target pdf, movement 
across target pdf is slow

• When trial width same as target, 
samples seem to better sample 
target pdf

• When trial width much larger 
than target, trials stay put for 
long periods, but jumps are 
large

0.25

1

4
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MCMC sequences for 2D Gaussian
• Results of running Metropolis with 

ratios of width of trial pdf to target pdf
of 0.25, 1, and 4

• Display accumulated 2D distribution 
for 1000 trials

• Viewed this way, it is difficult to see 
difference between top two images

• When trial pdf much larger than target, 
fewer splats, but further apart

0.25

1

4
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MCMC - autocorrelation and efficiency
• In MCMC sequence, subsequent parameter values are usually 

correlated 
• Degree of correlation quantified by autocorrelation function:

► where y(x) is the sequence and l is lag
• For Markov chain, expect exponential 

• Sampling efficiency is

• In other words,        iterates required to achieve one statistically 
independent sample 

ρ( ) ( ) ( )l y i y i l
N i

N

= −
=
∑1

1

ρ λ( ) exp[ ]l l= −

η ρ
λ

= + =
+=

∞
−∑[ ( )]1 2 1

1 21

1l
l

η−1
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Autocorrelation for 2D Gaussian

• Plot confirms that the 
autocorrelation drops 
slowly when the trial 
width is much smaller 
than the target width; 
MCMC efficiency is poor

• Sampling efficiency is

• Best efficiency occurs 
when trial about same size 
as target (for 2D)

Normalized autocovariance for 
various widths of trial pdf

relative to target:  0.25, 1, and 4

1
4

0.25

ρ

1
1 2

η
λ

=
+
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Efficiency as function of width of trial pdf
► for univariate, uncorrelated 

Gaussians, with 1 to 64 
dimensions

► efficiency as function of 
width of trial distributions

► boxes are predictions of 
optimal efficiency from 
diffusion theory
[A. Gelman, et al., 1996]

► efficiency drops 
reciprocally with number 
of dimensions 

1

2

4
8

32

64

16
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Efficiency as function of acceptance fraction
• For univariate Gaussians, 

with 1 to 64 dimensions
• Efficiency as function of 

acceptance fraction
• Best efficiency is achieved 

when about 25% of trials are 
accepted for moderate number 
of dimensions 

• Optimal statistical efficiency:  
η ~ 0.3/n

► for uncorrelated, equivariate Gaussian
► generally decreases correlation and 

variable variance
► consistent with diffusion theory 

derivation [A. Gelman, et al., 1996]

Acceptance fraction (%)

64

1



110

Further considerations
• When target distribution q(x) not 

isotropic
► difficult to accommodate with 

isotropic t(Δx) 
► each parameter can have different 

efficiency
► desirable to vary width of different 

t(x) to approximately match q(x)
► recovers efficiency of univariate case

• When q(x) has correlations
► t(x) should match shape of q(x) 

q(x)

t(Δx)
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MCMC - Issues
• Identification of convergence to target pdf

► is sequence in thermodynamic equilibrium with target pdf?
► validity of estimated properties of parameters (covariance)

• Burn in
► at beginning of sequence, may need to run MCMC for awhile to 

achieve convergence to target pdf
• Use of multiple sequences

► different starting values can help confirm convergence
► natural choice when using computers with multiple CPUs

• Accuracy of estimated properties of parameters
► related to efficiency, described above 

• Optimization of efficiency of MCMC
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MCMC – convergence and burn in
• Example: sequence obtained for 2 

D unit-variance Gaussian pdf
► Metropolis algorithm
► starting point is (4, 4)
► trial pdf is Gaussian, σ = 0.2
► 1000 steps
► avg acceptance = 0.87

• Observe:
► large number of steps required 

before sequence has converged to 
core region (burn in)

► hard to tell whether sequence has 
converged, either from 2D plot or 
by looking at individual coordinate 
(convergence)
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Annealing
• Introduction of fictitious temperature

► define functional ϕ(x) as minus-logarithm of target probability 
ϕ(x) = - log(q(x))

► scale ϕ by an inverse “temperature” to form new pdf
q'(x, T) = exp[- ϕ(x)/ T]

► q'(x, T) is flatter than q(x) for T > 1  (called annealing)
• Uses of annealing (also called tempering)

► allows MCMC to move between multiple peaks in q(x)
► simulated-annealing optimization algorithm (takes lim T → 0)
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Annealing helps handle multiple peaks 
► Scale minus-log-prob:  q'(x, T) = exp[- ϕ(x)/T] ,  T = temperature
► Example: target distribution is three narrow, well separated peaks
► For original distribution (T = 1), an MCMC run of 10000 steps rarely 

moves  between peaks
► At temperature T = 100 (right), MCMC moves easily between peaks and 

through surrounding regions

T = 1 T = 100

from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)
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Other MCMC algorithms
• Gibbs

► vary only one component of x at a time
► draw new value of xj from conditional  q(xj| x1 x2... xj-1 xj+1... ) 

• Metropolis-Hastings 
► allows use of nonsymmetric trial functions, t(Δx; xk)
► uses acceptance criterion  r = [t(Δx; xk) q(x* )] / [t(-Δx; x*) q(xk )]

• Langevin technique 
► variation of Metropolis-Hastings approach
► uses gradient* of minus-log-prob to shift trial function towards 

regions of higher probability
• Hamiltonian hybrid algorithm

► based on particle dynamics; requires gradient* of minus-log-prob
► provides potentially higher efficiency for large number of variables

• Many others
* adjoint differentiation affords efficient gradient calculation
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Gibbs algorithm
• Vary only one component of x

at a time
• Draw new value of xj from 

conditional pdf
q(xj| x1 x2... xj-1 xj+1... )

► algorithm typically used only 
when draws from q are 
relatively easy to do

• Cycle through all components

x2

Probability(x1, x2)

x1
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• Hamiltonian hybrid algorithm
► called hybrid because it alternates Gibbs & Metropolis steps 
► associate with each parameter xi  a momentum pi

► define a Hamiltonian  
H = ϕ(x) + Σ pi

2/(2 mi)  ;  where ϕ = -log (q (x ))
► new pdf: 

q'(x, p) = exp(- H(x, p)) = q(x) exp(-Σ pi
2/(2 mi))

► can easily move long distances in (x, p) space at constant H using 
Hamiltonian dynamics, so Metropolis step is very efficient 

► uses gradient* of ϕ (minus-log-prob)
► Gibbs step in constant p is easy
► efficiency may be better than Metropolis for large dimensions

Hamiltonian hybrid algorithm

* adjoint differentiation affords efficient gradient calculation
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• Gibbs step: randomly sample momentum distribution 
• Follow trajectory of constant H using leapfrog algorithm:

where τ is leapfrog time step.  
• Repeat leapfrog a predetermined number of times 
• Metropolis step: accept or reject on basis of H at beginning and 

end of H trajectory

Hamiltonian algorithm

p t p t
x t

i i
i

( ) ( )
( )

+ = −
∂
∂

τ τ ϕ
2 2 x

x t x t
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p ti i
i
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Hamiltonian hybrid algorithm

xi

pi

k

k+1

k+2

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant H, follow by Metropolis
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• Gibbs step - easy because draws are from uncorrelated Gaussian
• H trajectories followed by several leapfrog steps permit long 

jumps in (x, p) space, with little change in H
► specify total time = T ; number of leapfrog steps = T/τ
► randomize T to avoid coherent oscillations
► reverse momenta at end of H trajectory to guarantee that it is 

symmetric process (condition for Metropolis step)
• Metropolis step - no rejections if H is unchanged

• Adjoint differentiation efficiently provides gradient

Hamiltonian algorithm
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2D correlated Gaussian distribution 

• 2D Gaussian pdf with high correlation (r =0.95)
• Length of H trajectories randomized 
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n-D isotropic Gaussian distributions
• Assume that gradient of φ are 

calculated as quickly as φ itself 
(e.g., using adjoint
differentiation)

• MCMC efficiency versus 
number dimensions
► Hamiltonian method: drops 

little
► Metropolis method: goes as 

0.3/n

• Hamiltonian method much 
more efficient at high 
dimensions

Hamiltonian

Metropolis
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16D correlated Gaussian distribution 

• 16D Gaussian pdf related to smoothness prior based on 
integral of L2 norm of second derivative 

• Efficiency/(function evaluation) = 
2.2% (Hamiltonian algorithm)
0.11% or 1.6%  (Metropolis; without and with covariance

adaptation) 
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Conclusions – Hamiltonian MCMC
• MCMC provides good tool for exploring the Bayesian posterior 

and hence for drawing inferences about models and parameters
• Hamiltonian method

► based on Hamiltonian dynamics
► efficiency for isotropic Gaussians is about 7% per function 

evaluation, independent of number of dimensions
► caveat – must be able to calculate gradient of minus-log-posterior in 

time comparable to the posterior itself (e.g., through adjoint
differentiation) 

► much better efficiency than Metropolis for large dimensions
► more robust to correlations among parameters than Metropolis
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Conclusions – MCMC
• MCMC provides good tool for exploring the posterior and hence 

for drawing inferences about models and parameters
• For valid results, care must be taken to

► verify convergence of the sequence
► exclude early part of sequence, before convergence reached
► be wary of multiple peaks that need to be sampled

• For good efficiency with Metropolis alg., care must be taken to
► adjust the size and shape of the trial distribution; rule of thumb is to 

aim for 25% trial acceptance for  5 < n < 100

• A lot of MCMC research is going on
• Software libraries for MCMC are available for most computer 

languages, or as stand-alone applications, e.g., OpenBUGS
(formerly WinBUGS) 
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Rossi analysis – example of MCMC
• Goal: measure flux as function of time, Φ(t), to obtain alpha, a 

measure of criticality, versus time

• Experimental issues
► measurements made using Rossi technique
► signal displayed on oscilloscope, photographed, read 
► recorded signal is band limited

• Analysis complicated by intricate error model for measurements

α ( ) (ln )t d
dt

d
dt

= =
1
Φ

Φ Φ
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The Rossi technique 
• Rossi technique -

photograph oscilloscope screen
► horizontal sweep is driven 

sinusoidally in time
► signal amplitude vertical

• Records rapidly increasing 
signal while keeping trace in 
middle of CRT, which 
minimizes oscilloscope 
nonlinearities

x x tR R= +cos( )2 0π φf

A
m

pl
itu

de
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Bayesian analysis of an experiment
• The pdf describing uncertainties in model parameter vector a, 

called posterior:
► p(a|d) ~ p(d|d*) p(a)         (Bayes law)

where d is vector of measurements, and
d*(a) is measurement vector predicted by model

► p(d|d*) is likelihood, probability of measurements d given the 
values d* predicted by simulation of experiment

► p(a) is prior; summarizes previous knowledge of a
► “best” parameters estimated by 

• maximizing posterior (called MAP solution)
• mean of posterior 

► uncertainties in a are fully characterized by p(a|d) 
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Cubic spline expansion of alpha curve
► Expand α(t) in terms of basis 

functions:

where
• ak is the expansion coefficient,
• φ is a spline basis function,
• tk is the position of the kth knot
• Δt is the knot spacing

► Use 15 evenly-space knots
• spacing chosen on basis of 

limited bandwidth of signal y
• two are outside data interval to handle 

end conditions
► Parameters ak are to be determined

α φ( )t a t t
tk

k

k

= −∑ Δ

Alpha(time)
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Modeling the Rossi data 
► α(t) represented as cubic spline
► measurement model predicts data
► can include systematic effects of measurement system

Alpha(time) x-y data (used in calc.)

xR, x amplitude$
y0

$

Measurement 
Model

$systematic effects
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Reading a Rossi trace 

• Technician reads points by centering cross hairs of a reticule on 
trace; computer records positions, {xi, yi}

• Points are read with intent to:
► place point at peaks
► achieve otherwise arbitrary placement along curve with even 

spacing along trace
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Likelihood model - uncertainties in Rossi data

► minus-log-likelihood, p(d|a), for measured point (xexp , yexp):

where is the model point closest to  (xexp, yexp)

Δ
χ

σ σ

2 2

2

2

22 2 2
=

− ′
+

− ′( ) ( )exp expx x y y

x y

model model

( , )′ ′x ymodel model

(xexp, yexp)

(x´model, y´model)
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Smoothness constraint
• Cubic splines tend to oscillate in some applications
• Smoothness of α(t) can be controlled by minimizing 

where T is the time interval; T3 factor removes T dependence 
• Smoothness can be incorporated in Bayesian context by setting 

prior on spline coefficients to
- log p(a) = λ S(α(a))

• Hyperparameter λ can be determined in Bayesian approach by 
maximizing p(λ|d)

22
3

2( ) dS T dt
dt

αα = ∫



134

MCMC - alpha uncertainty
• MCMC samples from 

posterior
► plot shows several α(t) 

curves consistent with data
► uncertainties in model 

visualized as variability 
among curves

• Smoothness parameter, 
λ = 0.4
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MCMC – estimation of λ
• Strength of smoothness prior given 

by λ
• Determine λ using Bayes law

• Last integral, called evidence, is 
estimated as value of integrand at its 
peak times its volume

• Volume given by determinant of 
covariance matrix of a, estimated 
using MCMC sequence

• At maximum λ = 0.4

( | ) ( | )p p , dλ λ= ∫d a d a

( | ) ( )p , p , dλ λ∝ ∫ d a a a

( ) ( | ) ( )p p , p dλ λ= ∫ d a a a



136

MCMC - Alpha
• For MCMC sequence with 

105 samples, image shows accumulated 
MCMC curves in alpha domain

• Effectively shows PDF for uncertainty 
distribution in 
alpha, estimated from data

• However, does not show correlations 
between uncertainties at two different 
times, as do individual MCMC samples

A
lp

ha
Time

λ = 0.4 (best value)
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MCMC - Alpha
• Interpreting accumulated alpha curve 

as a PDF, one can estimate α(t) in 
terms of
► posterior mean
► posterior max. (MAP estimate)

• Or characterize uncertainties
► standard deviations
► covariance matrix (correlations)
► credible intervals (envelope)

• Plot on right shows
► posterior mean
► posterior mean +/- standard dev. 

(one standard dev. envelope)

λ = 0.4 (best value)
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Background estimation in spectral data
• Problem: estimate background for PIXE spectrum
• Approach is based on assuming background is smooth and 

treating resonances as outlying data  
• Fully Bayesian calculation using MCMC to estimate spline 

parameters, their knot positions, and number of knots

from Fischer et al., Phys. Rev. E 61, 1152 (2000)
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Summary
In this tutorial:
• MCMC provides random draws from calculational pdf
• Metropolis algorithm

► choosing the trial function
► diagnositics

• Hamiltonian (hybrid) algorithm
► potentially more efficient than Metropolis, 

provided “φ can be calculated as quickly as φ
• Examples:

► analysis of Rossi traces; complex likelihood function
• possibility of elaborating on model to include systematic effects

► background estimation using splines and treating signal as outliers


