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Goals of tutorials

My aim is to
« present overview of Bayesian and probabilistic modeling

* cover basic Bayesian methodology relevant to nuclear physics,
especially cross section evaluation

e point way to how to do it

e convince you that

» Bayesian analysis 1s a reasonable approach to coping with
measurement uncertainty

* Many thanks to my T-16 colleagues
» Gerry Hale, Toshihiko Kawano, Patrick Talou



Outline — four tutorials

1. Bayesian approach
probability — quantifies our degree of uncertainty
Bayes law and prior probabilities
2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo
Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis

linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data

4. Bayesian calculations
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data



Slides and bibliography

» These slides can be obtained by going to my public web page:
http://public.lanl.gov/kmh/talks/

* link to tutorial slides
« short bibliography relevant to topics covered in tutorial

« other presentations, which contain more detail about material presented here

» Noteworthy books:

« D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical
development of the Bayesian approach with an experimental physics slant

« D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear
Science and Technology (1991); lots of good advice relevant to
cross-section evaluation

» G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review,
(World Scientific, New Jersey, 2003); Bayesian philosophy

* A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view

« W. R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic
MCMC text 4



Tutorial 4
Bayesian calculations



Forward and inverse probability

Forward probability - MC

Experimental
observation
space

Parameter
space

Inverse probability - MCMC

« Forward probability - determine uncertainties in observables
resulting from model parameter uncertainties; use Monte Carlo

* Inverse probability - infer model parameter uncertainties from
uncertainties in observables; use Markov chain Monte Carlo



MCMC - problem statement

Parameter space of N dimensions represented by vector X

Given an “arbitrary” target probability density function (pdf), q(X),
draw a set of samples {X, } from it

Only requirement typically is that, given X, one be able to evaluate
Cq(X), where C 1s an unknown constant, that 1s, (X) need not be
normalized

Although focus here 1s on continuous variables, MCMC applies to
discrete variables as well

It all started with seminal paper:

» N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equations of state calculations by fast computing
machine,” J. Chem. Phys. 21, pp. 1087-1091 (1953)

« MANIAC: 5 KB RAM, 100 KHz, 1 KHz multiply, 50 KB disc 7



Uses of MCMC

Permits evaluation of the expectation values of functions of X, e.g.,
(F0) =T (%) qx) dx = (1/K) =, f(x,)
» typical use is to calculate mean (X) and variance {(X - (X))?)

Useful for evaluating integrals, such as the partition function for
properly normalizing the pdf

Dynamic display of sequences provides visualization of
uncertainties in model and range of model variations

Automatic marginalization; when considering any subset of
parameters of an MCMC sequence, the remaining parameters are
marginalized over (integrated out)



Markov Chain Monte Carlo

Generates sequence of random samples from an
arbitrary probability density function

* Metropolis algorithm:

>

draw trial step from
symmetric pdf, 1.e.,

t(A X) = t(-A X)

accept or reject trial step

simple and generally
applicable

relies only on calculation of
target pdf for any X

Probability(x,, X,) = q(x)
accepted step
* rejected step




Metropolis algorithm

* Target pdfis q(X)
 Select initial parameter vector X,

* [terate as follows: at iteration number k
(1) create new trial position X* = X, + AX,
where AX 1s randomly chosen from t(AX)
(2) calculate ratio r = q(x*)/q(X,)
(3) accept trial position, 1.e. set X, ; = X*
if r > 1 or with probability r, 1f r <1
otherwise stay put, X,., = X,

* Requires only computation of cq(X), where C is a constant
* Trail distribution must be symmetric: t(A X) = t(-A X)
* Maintains detailed balance: p(X,— X,.{) = P(Xis1— %)

» “Markov chain” since X, ,, depends probabilistically
only on X,

10



Choice of trial distribution

* Algorithm places loose requirements on trial distribution t()
» stationary; independent of position

* Often used functions include
» N-D Gaussian, 1sotropic and uncorrelated

» N-D Cauchy, i1sotropic and uncorrelated
* Choose width to “optimize” MCMC efficiency

» rule of thumb: aim for acceptance fraction of about 25%

11



Choice of trial distribution — experiments

« Target distribution q(X) is h dimensional Gaussian
» uncorrelated, univariate (isotropic with unit variance)
» most generic case

* Tnal distribution t(AX) 1s n dimensional Gaussian

» uncorrelated, equivariate; various widths

— R
-
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target . MRS
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MCMC sequences for 2D Gaussian

Results of running Metropolis g Z M . 025
with ratios of width of trial pdf : Oﬁ AN \u “h,.xl Ww M ! qwr
to target pdf of 0.25, 1, and 4 . ol '.l} o
When trial pdf iS muCh Smaller j14[3;.][} 1200 14I00 16I00 18IUU 2600
than target pdf, movement . eauence fumber |
across target pdf 1s slow 37 2:— ' M “\ o L
When trial width same as target, l”Wr,, U,‘ WH w J} mulyﬁ \INMM \WW MWL!H
samples seem to better sample " -

target pdf 1000 1200 1400 16I00 1 8I00 2[;00

Sequence Number

When trial width much larger g 4 |
than target, trials stay put for | I J H N
long periods, but jumps are g ZM a WL ﬁhﬂhu;i NNH / rle
large T |

1000 1200 1400 1600 1800 2000
Sequence Number
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MCMC sequences for 2D Gaussian

Results of running Metropolis with
ratios of width of trial pdf to target pdf
of 0.25, 1, and 4

Display accumulated 2D distribution
for 1000 trials

Viewed this way, it 1s difficult to see
difference between top two 1mages

| 0.25

\fariable 2

LLI\JQI\JL

-2 0 2 4
Variable 1

Variable 2

L-Lro;vruh

When trial pdf much larger than target,
fewer splats, but further apart

-2 0 2 4
Variable 1

Variable 2

L-Lm;am-h

-2 0 2 4
Variable 1
14



MCMC - autocorrelation and efficiency

In MCMC sequence, subsequent parameter values are usually
correlated

Degree of correlation quantified by autocorrelation function:

I .
p(l) = EZ yny@-1)
=
» where y(X) is the sequence and | is lag

For Markov chain, expect exponential

p(l) = eXp[—‘H]
Sampling efficiency i1s
p=11+23 p)]" = ——
o 1+2A4

In other words, 7 iterates required to achieve one statistically

independent sample
15



Autocorrelation for 2D Gaussian

* Plot confirms that the 10T
autocorrelation drops P os :I';-L;;_ o
slowly when the trial o8\ Tl g0s
width 1s much smaller AN el :
than the target width; L\, T
MCMC efficiency is poor AN ]
* Sampling efficiency is °0 -
77 . 1 -D-EII; lllll 1IEI IIIIIII 20 | Lag ISII] IIIIIII 0 50
I+24 Normalized autocovariance for
* Best efﬁciency occurs various widths of trial pdf
when tl‘la(lfabglg)same S1Z¢€ relative to target: 0.25, 1, and 4
as target (1or

16



Efficiency as function of width of trial pdf

for univariate, uncorrelated
Gaussians, with 1 to 64
dimensions

efficiency as function of
width of trial distributions

boxes are predictions of
optimal efficiency from

diffusion theory

[A. Gelman, et al., 1996]

efficiency drops
reciprocally with number
of dimensions

Efficiency (%)

100.0¢ T T T

10.0- )
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Efficiency as function of acceptance fraction

For univariate Gaussians, 100.0'
with 1 to 64 dimensions | I
| A
Efficiency as fur.lctmn of < 100 ffﬁ; A
acceptance fraction = ' s N\t
: : : c Pt T
Best efficiency 1s achieved E #;H,:‘f;ﬁ-_________ﬁ N\
when about 25% of trials are m 10 oo ;4 ~
e 0w N
accepted for moderate number " o %{
of dimensions IR | ST
. .y . 1 10 100
Optimal statistical efficiency: Acceptance fraction (%)
N~ 0.3/n
» for uncorrelated, equivariate Gaussian
» generally decreases correlation and
variable variance
» consistent with diffusion theory "

derivation [A. Gelman, et al., 1996]



Further considerations

* When target distribution g(X) not
1sotropic q(x)

|

>

difficult to accommodate with < RO >
1sotropic t(AX) L X

each parameter can have different t(AX)
efficiency

desirable to vary width of different </ _________ >
t(X) to approximately match q(X) S — Eat —__-’

recovers efficiency of univariate case

* When ((X) has correlations

>

t(X) should match shape of q(X)

19



MCMC - Issues

Identification of convergence to target pdf
» 1s sequence in thermodynamic equilibrium with target pdf?
» validity of estimated properties of parameters (covariance)
Burn in

» at beginning of sequence, may need to run MCMC for awhile to
achieve convergence to target pdf

Use of multiple sequences

» different starting values can help confirm convergence

» natural choice when using computers with multiple CPUs
Accuracy of estimated properties of parameters

» related to efficiency, described above
Optimization of efficiency of MCMC

20



MCMC - convergence and burn 1n

« Example: sequence obtained for 2 i
D unit-variance Gaussian pdf X

» Metropolis algorithm > ;:

» starting point is (4, 4) £ 4|

» trial pdfis Gaussian, ¢ = 0.2 A

» 1000 steps g

543210123465
» avg acceptance = (.87 Index 1

 (Observe:

» large number of steps required
before sequence has converged to
core region (burn 1n)

» hard to tell whether sequence has
converged, either from 2D plot or . . . .
by looking at individual coordinate 0 Sepnumber O
(convergence)

Index 2
EONDSO=~NWB®O

1
n
O

21



Annealing

Introduction of fictitious temperature

» define functional ¢(X) as minus-logarithm of target probability
¢(X) = - log(q(x))
» scale ¢ by an inverse “temperature” to form new pdf

q'(X, T) = exp[- ¢(X)/ T]
» Q'(X, T) 1s flatter than q(X) for T > 1 (called annealing)

Uses of annealing (also called tempering)
» allows MCMC to move between multiple peaks in g(X)

» simulated-annealing optimization algorithm (takes lim T — 0)

22



Annealing helps handle multiple peaks

Scale minus-log-prob: q'(X, T) = exp[- @(X)/T], T = temperature
Example: target distribution 1s three narrow, well separated peaks

For original distribution (T = 1), an MCMC run of 10000 steps rarely
moves between peaks

At temperature T = 100 (right), MCMC moves easily between peaks and
through surrounding regions

10

=10

from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)



Other MCMC algorithms

Gibbs

» vary only one component of X at a time

» draw new value of X; from conditional q(Xj| X; X;... Xj_g Xj4q-- )
Metropolis-Hastings

» allows use of nonsymmetric trial functions, t(AX; X, )

» uses acceptance criterion I = [t(AX; X, ) q(X* )]/ [t(-AX; X*) q(X, )]
Langevin technique

» variation of Metropolis-Hastings approach

» uses gradient™ of minus-log-prob to shift trial function towards
regions of higher probability

Hamiltonian hybrid algorithm
» based on particle dynamics; requires gradient® of minus-log-prob

» provides potentially higher efficiency for large number of variables

Many others 24
* adjoint differentiation affords efficient gradient calculation



Gibbs algorithm

Vary only one component of X
at a time

Probability(x;, x,)
Draw new value ot X; from X
.. 2

conditional pdf

A(X| X1 Xp--+ Xjq Xjsgoe )

» algorithm typically used only I—I

when draws from ( are o

relatively easy to do l—I
Cycle through all components

25



Hamiltonian hybrid algorithm

e Hamiltonian hybrid algorithm

|

|

|

called hybrid because it alternates Gibbs & Metropolis steps
associate with each parameter X, a momentum p;

define a Hamiltonian

H=o(x) +Z p(2 m;) ; where ¢ =-log (q (X))
new pdf:

q'(x, p) = exp(- H(X, p)) = q(X) exp(-Z p;*/(2 m;))

can easily move long distances in (X, P) space at constant H using

Hamiltonian dynamics, so Metropolis step 1s very efficient

uses gradient™ of ¢ (minus-log-prob)
Gi1bbs step 1n constant p 1s easy
efficiency may be better than Metropolis for large dimensions

* adjoint differentiation affords efficient gradient calculation

26



Hamiltonian algorithm

* (Gibbs step: randomly sample momentum distribution

* Follow trajectory of constant H using leapfrog algorithm:

T, T 0@
pi(t+5)— p; (t _Eﬁ_xi

X(1)

X (t+7) =X (t+7)+— p (t+)
m 2
T 0Q

.
pi(t+7)= pi(t+5)—ga—xi

X(t+7)
where 7 1s leapfrog time step.
* Repeat leapfrog a predetermined number of times

« Metropolis step: accept or reject on basis of H at beginning and
end of H trajectory

27



Hamiltonian hybrid algorithm

Pi

—

k+1 !

k.

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant H, follow by Metropolis

28



Hamiltonian algorithm

Gi1bbs step - easy because draws are from uncorrelated Gaussian

H trajectories followed by several leapfrog steps permit long
jumps 1n (X, p) space, with little change in H

» specify total time = T ; number of leapfrog steps = T/t

» randomize T to avoid coherent oscillations

» reverse momenta at end of H trajectory to guarantee that it is
symmetric process (condition for Metropolis step)

Metropolis step - no rejections if H 1s unchanged

Adjoint differentiation efficiently provides gradient

29



2D correlated Gaussian distribution

2 e e o :
N g} c
E E 3
£ Of !
e | :
Y =
ot
-2 -1 0 1 2 -2 -1 0 1 2

Parameter 1 Parameter

« 2D Gaussian pdf with high correlation (r =0.95)

* Length of H trajectories randomized

30



n-D 1sotropic Gaussian distributions

* Assume that gradient of ¢ are

calculated as quickly as ¢ itself 071 [T e
(e'g°9 uSing adjOint \\

differentiation) Hamiltonian

« MCMC efficiency versus
number dimensions

» Hamiltonian method: drops
little

» Metropolis method: goes as
0.3/n

Efficiency/Function Evaluation

Metropolis

10_5 Lol v el Lol

. . 1 10 100 1000 10004
 Hamiltonian method much log(Dimensian)

more efficient at high
dimensions

31



16D correlated Gaussian distribution

4

21

Parameter 2
O

Parameter 1

e 16D Gaussian pdf related to smoothness prior based on
integral of L2 norm of second derivative

» Efficiency/(function evaluation) =
2.2% (Hamiltonian algorithm)
0.11% or 1.6% (Metropolis; without and with covariance
adaptation) 32



Conclusions — Hamiltonian MCMC

« MCMC provides good tool for exploring the Bayesian posterior
and hence for drawing inferences about models and parameters

« Hamiltonian method

>

>

based on Hamiltonian dynamics

efficiency for isotropic Gaussians 1s about 7% per function
evaluation, independent of number of dimensions

caveat — must be able to calculate gradient of minus-log-posterior in
time comparable to the posterior itself (e.g., through adjoint
differentiation)

much better efficiency than Metropolis for large dimensions
more robust to correlations among parameters than Metropolis

33



Conclusions — MCMC

MCMC provides good tool for exploring the posterior and hence
for drawing inferences about models and parameters

For valid results, care must be taken to
» verify convergence of the sequence
» exclude early part of sequence, before convergence reached
» be wary of multiple peaks that need to be sampled
For good efficiency with Metropolis alg., care must be taken to

» adjust the size and shape of the trial distribution; rule of thumb is to
aim for 25% trial acceptance for 5 <n <100

A lot of MCMC research 1s going on

Software libraries for MCMC are available for most computer

languages, or as stand-alone applications, €.g., OpenBUGS
(formerly WinBUGS) 34



Ross1 analysis — example of MCMC

Goal: measure flux as function of time, ®(t), to obtain alpha, a
measure of criticality, versus time

1 dd d(Ind)
d dt dt
Experimental 1ssues

a(t) =

» measurements made using Rossi technique
» signal displayed on oscilloscope, photographed, read
» recorded signal 1s band limited

Analysis complicated by intricate error model for measurements

35



The Ross1 technique

* Rossi technique -
photograph oscilloscope screen

» horizontal sweep 1s driven
sinusoidally in time

-
F, §
| X
i5 %
f ;
¥ 3

» signal amplitude vertical

* Records rapidly increasing
signal while keeping trace in
middle of CRT, which = |
minimizes oscilloscope g e
nonlinearities s

Amplitude
\V

i Ep N e e e Pt e
g s e K b e Rl P o N A e El
RN St BN S T T R i v g e e

-

ey R e
L e

<

X=X;cos(2rft+¢,)
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Bayesian analysis of an experiment

* The pdf describing uncertainties in model parameter vector a,
called posterior:
> p(ald) ~p(djd*) p(a)  (Bayes law)
where d is vector of measurements, and
d*(a) is measurement vector predicted by model

» p(d|d*) is likelihood, probability of measurements d given the
values d* predicted by simulation of experiment

» P(@) 1s prior; summarizes previous knowledge of a

» “best” parameters estimated by
« maximizing posterior (called MAP solution)

* mean of posterior

» uncertainties in a are fully characterized by p(a|d)

37



Cubic spline expansion of alpha curve

» Expand «a(t) in terms of basis

functions:

where
* 3, 1s the expansion coefficient,

ah=3 2 ¢! 5]

¢ 1s a spline basis function,
t, is the position of the kth knot

At 1s the knot spacing

» Use 15 evenly-space knots

» Parameters a, are to be determined

spacing chosen on basis of

limited bandwidth of signal y
e two are outside data interval to handle

end conditions

o
<
a
<

Alpha(tlme)
.o T
0.8 ]
0.6 - f##___.--""f -
Qi
Q0.2
OO0 '

0 1 2 3
Time
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Modeling the Ross1 data

>

(1) represented as cubic spline

» measurement model predicts data

» can include systematic effects of measurement system

1.0f

Alpha(time)
0 1 2 3
Time

Measurement

x-y data (used in calc.)

Model

@

M

Amplitude, Y

31
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Reading a Rossi trace

* Technician reads points by centering cross hairs of a reticule on
trace; computer records positions, {X;, Y;}

* Points are read with intent to:
» place point at peaks

» achieve otherwise arbitrary placement along curve with even
spacing along trace

40



[Likelihood model - uncertainties in Rossi1 data

(X, model’ y,mode\)‘

@y
C e D

exp yexp

» minus-log-likelihood, p(d|a), for measured point (X, , Yeyp):

2 2 2
A Z (Xexp o Xr’nodel) (yexp - yr’nodel)
- 2 t 2
2 207 20
where (X' .., Y/ .,) is the model point closest to (X

exp’ yexp)
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Smoothness constraint

Cubic splines tend to oscillate in some applications

Smoothness of a(t) can be controlled by minimizing
2

dt

d’a
S(a)=T3j e

where T is the time interval; T3 factor removes T dependence

Smoothness can be incorporated in Bayesian context by setting
prior on spline coefficients to

- log p(a) = 4 5((@))

Hyperparameter A can be determined 1n Bayesian approach by
maximizing p(A|d)

42



MCMC - alpha uncertainty

« MCMC samples from
posterior

» plot shows several a(t)
curves consistent with data

» uncertainties in model
visualized as variability
among curves

* Smoothness parameter,
A=04

1.0}

O
oo
L |

o
-

Alpha = d(InY)/dt
(.
n

O
N

O
o

Time
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MCMC — estimation of A

Strength of smoothness prior given

by A °
Determine A using Bayes law al:
p(Z]d) = p(a,1|d)da ? |
o« [ p(d|a,2) p(a, 4)da .
= p(A)[ p(d|a,4) p(a)da
Last integral, called evidence, is s
estimated as value of integrand at its 0.01 0.10 .00 100
peak times its volume Lambda

Volume given by determinant of
covariance matrix of a, estimated
using MCMC sequence

At maximum A = 0.4 44



MCMC - Alpha

For MCMC sequence with
10° samples, image shows accumulated
MCMC curves 1n alpha domain

Effectively shows PDF for uncertainty
distribution in
alpha, estimated from data

However, does not show correlations
between uncertainties at two different
times, as do individual MCMC samples

Alpha

Time
A =0.4 (best value)

45



MCMC - Alpha

Interpreting accumulated alpha curve
as a PDF, one can estimate o(t) in
terms of

» posterior mean

» posterior max. (MAP estimate)
Or characterize uncertainties

» standard deviations

» covariance matrix (correlations)

» credible intervals (envelope)
Plot on right shows

» posterior mean

» posterior mean +/- standard dev.
(one standard dev. envelope)

1.0

Time

A =0.4 (best value)

46




Background estimation in spectral data

* Problem: estimate background for PIXE spectrum

« Approach is based on assuming background is smooth and
treating resonances as outlying data

* Fully Bayesian calculation using MCMC to estimate spline
parameters, their knot positions, and number of knots

. or
10° _ “ background
: H data ]
[ | | ¢ knot positions ] -100
10° | e
a | ~200 In(P(EID))
= I N Likelihood
3 .- -~~~ In(volume(c) * P(c))
© 10 b — —- In(volume(&) * P(%))
i -300 ]
[ 1 ; ; ; ! ; ; ; ; ! ; ; ; ;
10" E [
E a I
i 05 -
I & i
10° o . [
0 0.1 0.2 0.3 0.4 0.5 05 10 15 20
Energy [arb. units] Number of Spline Knots E

from Fischer et al., Phys. Rev. E 61, 1152 (2000)



Summary

In this tutorial:

« MCMC provides random draws from calculational pdf
e Metropolis algorithm

» choosing the trial function

» diagnositics
e Hamiltonian (hybrid) algorithm

» potentially more efficient than Metropolis,
provided Vo can be calculated as quickly as ¢

« Examples:

» analysis of Rossi traces; complex likelihood function

 possibility of elaborating on model to include systematic effects

» background estimation using splines and treating signal as outliers
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