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Goals of tutorials
My aim is to 
• present overview of Bayesian and probabilistic modeling
• cover basic Bayesian methodology relevant to nuclear physics, 

especially cross section evaluation
• point way to how to do it

• convince you that 
► Bayesian analysis is a reasonable approach to coping with 

measurement uncertainty

• Many thanks to my T-16 colleagues
► Gerry Hale, Toshihiko Kawano, Patrick Talou
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Outline – four tutorials
1. Bayesian approach

probability – quantifies our degree of uncertainty
Bayes law and prior probabilities

2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo 
Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data

4. Bayesian calculations 
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data
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Slides and bibliography
► These slides can be obtained by going to my public web page:

http://public.lanl.gov/kmh/talks/
• link to tutorial slides
• short bibliography relevant to topics covered in tutorial
• other presentations, which contain more detail about material presented here 

► Noteworthy books:
• D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical 

development of the Bayesian approach with an experimental physics slant
• D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear 

Science and Technology (1991); lots of good advice relevant to 
cross-section evaluation

• G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review, 
(World Scientific, New Jersey, 2003); Bayesian philosophy 

• A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view
• W. R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic 

MCMC text
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Tutorial 4
Bayesian calculations
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Forward and inverse probability 

• Forward probability - determine uncertainties in observables 
resulting from model parameter uncertainties; use Monte Carlo

• Inverse probability - infer model parameter uncertainties from 
uncertainties in observables; use Markov chain Monte Carlo 

Parameter 
space

Experimental 
observation 
space

Forward probability – MC

Inverse probability – MCMC 
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MCMC - problem statement 
• Parameter space of n dimensions represented by vector x
• Given an “arbitrary” target probability density function (pdf), q(x), 

draw a set of samples {xk} from it
• Only requirement typically is that, given x, one be able to evaluate 

Cq(x), where C is an unknown constant, that is, q(x) need not be 
normalized 

• Although focus here is on continuous variables, MCMC applies to 
discrete variables as well

• It all started with seminal paper:
► N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, 

and E. Teller, “Equations of state calculations by fast computing 
machine,” J. Chem. Phys. 21, pp. 1087–1091 (1953)

• MANIAC: 5 KB RAM, 100 KHz, 1 KHz multiply, 50 KB disc 
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Uses of MCMC 
• Permits evaluation of the expectation values of functions of x, e.g.,

〈 f(x)〉 = ∫ f(x) q(x) dx ≅ (1/K) Σk f(xk)
► typical use is to calculate mean 〈x〉 and variance 〈(x - 〈x〉)2〉

• Useful for evaluating integrals, such as the partition function for 
properly normalizing the pdf

• Dynamic display of sequences provides visualization of 
uncertainties in model and range of model variations

• Automatic marginalization; when considering any subset of 
parameters of an MCMC sequence, the remaining parameters are 
marginalized over (integrated out)
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Markov Chain Monte Carlo

x2

Probability(x1, x2) = q(x)
accepted step
rejected step

x1

• Metropolis algorithm:
► draw trial step from 

symmetric pdf, i.e.,  
t(Δ x) =  t(-Δ x)

► accept or reject trial step
► simple and generally 

applicable
► relies only on calculation of  

target pdf for any x

Generates sequence of random samples from an 
arbitrary probability density function
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Metropolis algorithm
• Target pdf is q(x)
• Select initial parameter vector x0

• Iterate as follows:  at iteration number k
(1) create new trial position x* = xk + Δx ,

where Δx is randomly chosen from t(Δx)
(2) calculate ratio  r = q(x*)/q(xk)
(3) accept trial position, i.e. set  xk+1 = x* 

if r ≥ 1 or with probability r, if r < 1
otherwise stay put,  xk+1 = xk

• Requires only computation of cq(x), where c is a constant
• Trail distribution must be symmetric: t(Δ x) =  t(-Δ x)
• Maintains detailed balance: p(xk→ xk+1) = p(xk+1→ xk) 
• “Markov chain” since xk+1 depends probabilistically 

only on xk
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Choice of trial distribution
• Algorithm places loose requirements on trial distribution t()

► stationary; independent of position
• Often used functions include

► n-D Gaussian, isotropic and uncorrelated
► n-D Cauchy, isotropic and uncorrelated

• Choose width to “optimize” MCMC efficiency
► rule of thumb: aim for acceptance fraction of about 25%
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Choice of trial distribution – experiments
• Target distribution q(x) is n dimensional Gaussian

► uncorrelated, univariate (isotropic with unit variance)
► most generic case

• Trial distribution t(Δx) is n dimensional Gaussian
► uncorrelated, equivariate; various widths

target

trial

xk
xkxk
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MCMC sequences for 2D Gaussian
• Results of running Metropolis 

with ratios of width of trial pdf
to target pdf of 0.25, 1, and 4

• When trial pdf is much smaller 
than target pdf, movement 
across target pdf is slow

• When trial width same as target, 
samples seem to better sample 
target pdf

• When trial width much larger 
than target, trials stay put for 
long periods, but jumps are 
large

0.25

1

4
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MCMC sequences for 2D Gaussian
• Results of running Metropolis with 

ratios of width of trial pdf to target pdf
of 0.25, 1, and 4

• Display accumulated 2D distribution 
for 1000 trials

• Viewed this way, it is difficult to see 
difference between top two images

• When trial pdf much larger than target, 
fewer splats, but further apart

0.25

1

4
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MCMC - autocorrelation and efficiency
• In MCMC sequence, subsequent parameter values are usually 

correlated 
• Degree of correlation quantified by autocorrelation function:

► where y(x) is the sequence and l is lag
• For Markov chain, expect exponential 

• Sampling efficiency is

• In other words,        iterates required to achieve one statistically 
independent sample 
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Autocorrelation for 2D Gaussian

• Plot confirms that the 
autocorrelation drops 
slowly when the trial 
width is much smaller 
than the target width; 
MCMC efficiency is poor

• Sampling efficiency is

• Best efficiency occurs 
when trial about same size 
as target (for 2D)

Normalized autocovariance for 
various widths of trial pdf

relative to target:  0.25, 1, and 4

1
4
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Efficiency as function of width of trial pdf
► for univariate, uncorrelated 

Gaussians, with 1 to 64 
dimensions

► efficiency as function of 
width of trial distributions

► boxes are predictions of 
optimal efficiency from 
diffusion theory
[A. Gelman, et al., 1996]

► efficiency drops 
reciprocally with number 
of dimensions 

1

2

4
8

32

64

16
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Efficiency as function of acceptance fraction
• For univariate Gaussians, 

with 1 to 64 dimensions
• Efficiency as function of 

acceptance fraction
• Best efficiency is achieved 

when about 25% of trials are 
accepted for moderate number 
of dimensions 

• Optimal statistical efficiency:  
η ~ 0.3/n

► for uncorrelated, equivariate Gaussian
► generally decreases correlation and 

variable variance
► consistent with diffusion theory 

derivation [A. Gelman, et al., 1996]

Acceptance fraction (%)

64

1
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Further considerations
• When target distribution q(x) not 

isotropic
► difficult to accommodate with 

isotropic t(Δx) 
► each parameter can have different 

efficiency
► desirable to vary width of different 

t(x) to approximately match q(x)
► recovers efficiency of univariate case

• When q(x) has correlations
► t(x) should match shape of q(x) 

q(x)

t(Δx)
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MCMC - Issues
• Identification of convergence to target pdf

► is sequence in thermodynamic equilibrium with target pdf?
► validity of estimated properties of parameters (covariance)

• Burn in
► at beginning of sequence, may need to run MCMC for awhile to 

achieve convergence to target pdf
• Use of multiple sequences

► different starting values can help confirm convergence
► natural choice when using computers with multiple CPUs

• Accuracy of estimated properties of parameters
► related to efficiency, described above 

• Optimization of efficiency of MCMC
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MCMC – convergence and burn in
• Example: sequence obtained for 2 

D unit-variance Gaussian pdf
► Metropolis algorithm
► starting point is (4, 4)
► trial pdf is Gaussian, σ = 0.2
► 1000 steps
► avg acceptance = 0.87

• Observe:
► large number of steps required 

before sequence has converged to 
core region (burn in)

► hard to tell whether sequence has 
converged, either from 2D plot or 
by looking at individual coordinate 
(convergence)
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Annealing
• Introduction of fictitious temperature

► define functional ϕ(x) as minus-logarithm of target probability 
ϕ(x) = - log(q(x))

► scale ϕ by an inverse “temperature” to form new pdf
q'(x, T) = exp[- ϕ(x)/ T]

► q'(x, T) is flatter than q(x) for T > 1  (called annealing)
• Uses of annealing (also called tempering)

► allows MCMC to move between multiple peaks in q(x)
► simulated-annealing optimization algorithm (takes lim T → 0)
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Annealing helps handle multiple peaks 
► Scale minus-log-prob:  q'(x, T) = exp[- ϕ(x)/T] ,  T = temperature
► Example: target distribution is three narrow, well separated peaks
► For original distribution (T = 1), an MCMC run of 10000 steps rarely 

moves  between peaks
► At temperature T = 100 (right), MCMC moves easily between peaks and 

through surrounding regions

T = 1 T = 100

from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)
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Other MCMC algorithms
• Gibbs

► vary only one component of x at a time
► draw new value of xj from conditional  q(xj| x1 x2... xj-1 xj+1... ) 

• Metropolis-Hastings 
► allows use of nonsymmetric trial functions, t(Δx; xk)
► uses acceptance criterion  r = [t(Δx; xk) q(x* )] / [t(-Δx; x*) q(xk )]

• Langevin technique 
► variation of Metropolis-Hastings approach
► uses gradient* of minus-log-prob to shift trial function towards 

regions of higher probability
• Hamiltonian hybrid algorithm

► based on particle dynamics; requires gradient* of minus-log-prob
► provides potentially higher efficiency for large number of variables

• Many others
* adjoint differentiation affords efficient gradient calculation
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Gibbs algorithm
• Vary only one component of x

at a time
• Draw new value of xj from 

conditional pdf
q(xj| x1 x2... xj-1 xj+1... )

► algorithm typically used only 
when draws from q are 
relatively easy to do

• Cycle through all components

x2

Probability(x1, x2)

x1
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• Hamiltonian hybrid algorithm
► called hybrid because it alternates Gibbs & Metropolis steps 
► associate with each parameter xi  a momentum pi

► define a Hamiltonian  
H = ϕ(x) + Σ pi

2/(2 mi)  ;  where ϕ = -log (q (x ))
► new pdf: 

q'(x, p) = exp(- H(x, p)) = q(x) exp(-Σ pi
2/(2 mi))

► can easily move long distances in (x, p) space at constant H using 
Hamiltonian dynamics, so Metropolis step is very efficient 

► uses gradient* of ϕ (minus-log-prob)
► Gibbs step in constant p is easy
► efficiency may be better than Metropolis for large dimensions

Hamiltonian hybrid algorithm

* adjoint differentiation affords efficient gradient calculation
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• Gibbs step: randomly sample momentum distribution 
• Follow trajectory of constant H using leapfrog algorithm:

where τ is leapfrog time step.  
• Repeat leapfrog a predetermined number of times 
• Metropolis step: accept or reject on basis of H at beginning and 

end of H trajectory

Hamiltonian algorithm
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Hamiltonian hybrid algorithm

xi

pi

k

k+1

k+2

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant H, follow by Metropolis
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• Gibbs step - easy because draws are from uncorrelated Gaussian
• H trajectories followed by several leapfrog steps permit long 

jumps in (x, p) space, with little change in H
► specify total time = T ; number of leapfrog steps = T/τ
► randomize T to avoid coherent oscillations
► reverse momenta at end of H trajectory to guarantee that it is 

symmetric process (condition for Metropolis step)
• Metropolis step - no rejections if H is unchanged

• Adjoint differentiation efficiently provides gradient

Hamiltonian algorithm
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2D correlated Gaussian distribution 

• 2D Gaussian pdf with high correlation (r =0.95)
• Length of H trajectories randomized 
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n-D isotropic Gaussian distributions
• Assume that gradient of φ are 

calculated as quickly as φ itself 
(e.g., using adjoint
differentiation)

• MCMC efficiency versus 
number dimensions
► Hamiltonian method: drops 

little
► Metropolis method: goes as 

0.3/n

• Hamiltonian method much 
more efficient at high 
dimensions

Hamiltonian

Metropolis
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16D correlated Gaussian distribution 

• 16D Gaussian pdf related to smoothness prior based on 
integral of L2 norm of second derivative 

• Efficiency/(function evaluation) = 
2.2% (Hamiltonian algorithm)
0.11% or 1.6%  (Metropolis; without and with covariance

adaptation) 
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Conclusions – Hamiltonian MCMC
• MCMC provides good tool for exploring the Bayesian posterior 

and hence for drawing inferences about models and parameters
• Hamiltonian method

► based on Hamiltonian dynamics
► efficiency for isotropic Gaussians is about 7% per function 

evaluation, independent of number of dimensions
► caveat – must be able to calculate gradient of minus-log-posterior in 

time comparable to the posterior itself (e.g., through adjoint
differentiation) 

► much better efficiency than Metropolis for large dimensions
► more robust to correlations among parameters than Metropolis
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Conclusions – MCMC
• MCMC provides good tool for exploring the posterior and hence 

for drawing inferences about models and parameters
• For valid results, care must be taken to

► verify convergence of the sequence
► exclude early part of sequence, before convergence reached
► be wary of multiple peaks that need to be sampled

• For good efficiency with Metropolis alg., care must be taken to
► adjust the size and shape of the trial distribution; rule of thumb is to 

aim for 25% trial acceptance for  5 < n < 100

• A lot of MCMC research is going on
• Software libraries for MCMC are available for most computer 

languages, or as stand-alone applications, e.g., OpenBUGS
(formerly WinBUGS) 
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Rossi analysis – example of MCMC
• Goal: measure flux as function of time, Φ(t), to obtain alpha, a 

measure of criticality, versus time

• Experimental issues
► measurements made using Rossi technique
► signal displayed on oscilloscope, photographed, read 
► recorded signal is band limited

• Analysis complicated by intricate error model for measurements

α ( ) (ln )t d
dt

d
dt

= =
1
Φ

Φ Φ
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The Rossi technique 
• Rossi technique -

photograph oscilloscope screen
► horizontal sweep is driven 

sinusoidally in time
► signal amplitude vertical

• Records rapidly increasing 
signal while keeping trace in 
middle of CRT, which 
minimizes oscilloscope 
nonlinearities

x x tR R= +cos( )2 0π φf

A
m

pl
itu

de
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Bayesian analysis of an experiment
• The pdf describing uncertainties in model parameter vector a, 

called posterior:
► p(a|d) ~ p(d|d*) p(a)         (Bayes law)

where d is vector of measurements, and
d*(a) is measurement vector predicted by model

► p(d|d*) is likelihood, probability of measurements d given the 
values d* predicted by simulation of experiment

► p(a) is prior; summarizes previous knowledge of a
► “best” parameters estimated by 

• maximizing posterior (called MAP solution)
• mean of posterior 

► uncertainties in a are fully characterized by p(a|d) 
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Cubic spline expansion of alpha curve
► Expand α(t) in terms of basis 

functions:

where
• ak is the expansion coefficient,
• φ is a spline basis function,
• tk is the position of the kth knot
• Δt is the knot spacing

► Use 15 evenly-space knots
• spacing chosen on basis of 

limited bandwidth of signal y
• two are outside data interval to handle 

end conditions
► Parameters ak are to be determined

α φ( )t a t t
tk

k

k

= −∑ Δ

Alpha(time)
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Modeling the Rossi data 
► α(t) represented as cubic spline
► measurement model predicts data
► can include systematic effects of measurement system

Alpha(time) x-y data (used in calc.)

xR, x amplitude$
y0

$

Measurement 
Model

$systematic effects
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Reading a Rossi trace 

• Technician reads points by centering cross hairs of a reticule on 
trace; computer records positions, {xi, yi}

• Points are read with intent to:
► place point at peaks
► achieve otherwise arbitrary placement along curve with even 

spacing along trace
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Likelihood model - uncertainties in Rossi data

► minus-log-likelihood, p(d|a), for measured point (xexp , yexp):

where is the model point closest to  (xexp, yexp)

Δ
χ

σ σ

2 2

2

2

22 2 2
=

− ′
+

− ′( ) ( )exp expx x y y

x y

model model

( , )′ ′x ymodel model

(xexp, yexp)

(x´model, y´model)
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Smoothness constraint
• Cubic splines tend to oscillate in some applications
• Smoothness of α(t) can be controlled by minimizing 

where T is the time interval; T3 factor removes T dependence 
• Smoothness can be incorporated in Bayesian context by setting 

prior on spline coefficients to
- log p(a) = λ S(α(a))

• Hyperparameter λ can be determined in Bayesian approach by 
maximizing p(λ|d)

22
3

2( ) dS T dt
dt

αα = ∫
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MCMC - alpha uncertainty
• MCMC samples from 

posterior
► plot shows several α(t) 

curves consistent with data
► uncertainties in model 

visualized as variability 
among curves

• Smoothness parameter, 
λ = 0.4
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MCMC – estimation of λ
• Strength of smoothness prior given 

by λ
• Determine λ using Bayes law

• Last integral, called evidence, is 
estimated as value of integrand at its 
peak times its volume

• Volume given by determinant of 
covariance matrix of a, estimated 
using MCMC sequence

• At maximum λ = 0.4

( | ) ( | )p p , dλ λ= ∫d a d a

( | ) ( )p , p , dλ λ∝ ∫ d a a a

( ) ( | ) ( )p p , p dλ λ= ∫ d a a a
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MCMC - Alpha
• For MCMC sequence with 

105 samples, image shows accumulated 
MCMC curves in alpha domain

• Effectively shows PDF for uncertainty 
distribution in 
alpha, estimated from data

• However, does not show correlations 
between uncertainties at two different 
times, as do individual MCMC samples

A
lp

ha
Time

λ = 0.4 (best value)
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MCMC - Alpha
• Interpreting accumulated alpha curve 

as a PDF, one can estimate α(t) in 
terms of
► posterior mean
► posterior max. (MAP estimate)

• Or characterize uncertainties
► standard deviations
► covariance matrix (correlations)
► credible intervals (envelope)

• Plot on right shows
► posterior mean
► posterior mean +/- standard dev. 

(one standard dev. envelope)

λ = 0.4 (best value)
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Background estimation in spectral data
• Problem: estimate background for PIXE spectrum
• Approach is based on assuming background is smooth and 

treating resonances as outlying data  
• Fully Bayesian calculation using MCMC to estimate spline 

parameters, their knot positions, and number of knots

from Fischer et al., Phys. Rev. E 61, 1152 (2000)
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Summary
In this tutorial:
• MCMC provides random draws from calculational pdf
• Metropolis algorithm

► choosing the trial function
► diagnositics

• Hamiltonian (hybrid) algorithm
► potentially more efficient than Metropolis, 

provided “φ can be calculated as quickly as φ
• Examples:

► analysis of Rossi traces; complex likelihood function
• possibility of elaborating on model to include systematic effects

► background estimation using splines and treating signal as outliers


