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Goals of tutorials

My aim is to
« present overview of Bayesian and probabilistic modeling

* cover basic Bayesian methodology relevant to nuclear physics,
especially cross section evaluation

e point way to how to do it

e convince you that

» Bayesian analysis 1s a reasonable approach to coping with
measurement uncertainty

* Many thanks to my T-16 colleagues
» Gerry Hale, Toshihiko Kawano, Patrick Talou



Outline — three tutorials

1. Bayesian approach
probability — quantifies our degree of uncertainty
Bayes law and prior probabilities
2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo
Bayesian update of cross sections using Jezebel criticality expt.
3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data
4. Bayesian calculations
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data



Slides and bibliography

» These slides can be obtained by going to my public web page:
http://public.lanl.gov/kmh/talks/

e link to tutorial slides

 short bibliography relevant to topics covered in tutorial
« other presentations, which contain more detail about material presented here

» Noteworthy books:

« D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical
development of the Bayesian approach with an experimental physics slant

« D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear
Science and Technology (1991); lots of good advice relevant to
cross-section evaluation

» G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review,
(World Scientific, New Jersey, 2003); Bayesian philosophy

* A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view

« W. R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic
MCMC text 4



Tutorial 2
Bayesian modeling



Peelle’s Pertinent Puzzle (1987)

Overview:

Paradoxical result produced by strong correlations in
uncertainties

Probabilistic view of PPP

Specific probabilistic model for PPP elucidates how correlations
In uncertainties arise

Plausible experimental situation consistent with PPP result
Bayesian approach to coping with uncertainty in model

With probabilistic modeling, you can go beyond simple linear,
additive models

PPP underlines the need to specify how uncertainties contribute
to reported data



Peelle’s pertinent puzzle

Robert Peelle (ORNL) posed the PPP in 1987:
Given two measurements of same quantity X:
m,=1.5; m,=1.0,
each with independent standard error of 10% ,
and fully correlated standard error of 20% .
Weighted average using least-squares 1s X = 0.88 £ 0.22

Peelle asks “under what conditions 1s this result reasonable?”
By extension, 1f this not reasonable, what answer 1s appropriate?

PPP 1s pertinent — 1ts effect has been observed in nuclear data
evaluation for decades

Comment — PPP description of errors 1s ambiguous, which leads
to numerous plausible interpretations



PPP 1n cross-section evaluation

* Although the PPP problem may seem academic, it has significant
real-world consequences 1n cross-section evaluation

» historically, fits to several data sets fall below lowest measurements
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Standard solution to PPP

* The solution given in PPP 1s based on standard matrix equations
for least-squares result:
estimated value Xx=(G'C'G)'G'C'm
covariance in estimate V =(G'C'G)™
where the sensitivity matrix1s G =[1.0 1.0]
and the measurements are the vector m =[1.5 1.0]'

- - - 1.5 (0.1 +0.2)  1.5%1.0%0.2°
with covariance matrix C:[ 57 *(0.17+0.27) 5#1.0%0.2 j

1.5%1.0%0.2> 1.0 #(0.1> +0.2%)

e Resultis Xx=0.88 +0.22

e This result 1s smaller than both measurements, which seems
implausible




Probabilistic view of standard PPP solution

* Consider the probability density
function (pdf) for the variables

X :[Xl Xz]T
P(X| m)ocexp{—% (x—m)T Cl(x—m)}

where measurements are m =[1.5 1.0]'
and their covariance matrix 1s

c_ 1.5 %(0.1°+0.2°)  1.5%1.0%0.2°
1.5%1.0%0.2°  1.0°*(0.1° +0.2°)

* For x=x =x, (diagonal of 2D pdi),
pP(X|m) 1s normal distribution centered
at 0.88

2.5

p(xla X2 | m)
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Probabilistic model for additive error

Represent common uncertainty in measurements by systematic
additive offset A: x, =m, +& +A; X, =m,+¢&, +A
» where the g, represent the random fluctuations
Bayes law gives joint pdf for X and A
p(X,A[m) = p(m|Xx,A)p(x)p(A)
where priors p(X) 1s uniform and p(A) assumed normal (o,= 0.2)
Writing P(X,A[m)ccexp{-¢} and assuming normal distributions

2= (- mlz—A)2 . (x, - mzz—A)2 N Aj
O, O, O

where o,=0.1¥m; o,=0.1*m,; o,=02
Pdf for X obtained by integration: p(X|m)= j P(X,A[m)dA

.
This model equivalent to  p(X|m) o exp {—é (x- m)T C™(x~ ”1‘1)}



Plausible experimental scenario

e Under what conditions 1s PPP result
reasonable?

* Suppose that

» measurements made in intervals m,
shown

Rate

+20%

» from experience with apparatus, _ )f
we know background increases | =T
linearly in time

» background subtraction for m, 1s
1.5 times larger than for m, ;
leads to stated covariance matrix

* For this scenario, the additive
model 1s appropriate, and the PPP
solution, 0.88, 1s the correct answer "



Probabilistic model for normalization error

Represent common uncertainty in measurements by systematic
error in normalization factor C: cx=m +¢&; cx=m,+¢g,

» where the g, represent the random fluctuations

Following same development as before, where prior p(C)
assumed normal with expected value of 1 and o7,= 0.2

Writing p(cx,c|m) o exp {—gp}

(cx-m,) (c-1)
02 " 02 " CTZ
1 2 Cc

(cx-m)

200 =

where o, =0.1*m; o0,=0.1*m,; o.=0.2

Divide p(cx, ¢) by Jacobian J = 1/c to get p(X, ¢), which is a
log-normal distribution

P(X) obtained by numerical integration: p(X|m)= j p(x,c|m)dc
This approach promoted by D. Smith (1991) 13




Probabilistic view of normalization error

PPP: X _=1.074; X =1.200
max mean

* Consider the probability density 25

function (pdf) for variables x =[x, X,]' | P(y, X [ m)
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where measurements are m =[1.5 1.0]' A
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» also, divide p(cX, ¢) by Jacobian J = . !

(x)=1.200+0.276

1/c to get p(X, C),
» for X=X, = X, (diagonal of 2D pdf),
pP(X|m) is not a simple normal distribution
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Probabilistic model for normalization error

e Compare pdfs for two models
for correlated effect: 5

A — additive offset
B — normalization factor

LN
an

* Observe significant difference
in two results

» emphasizes need to know
which kind of effect leads to 0.5}
correlation

Probability Density

« Probabilistic modeling is
capable of handling a variety of
known effects

15



But which model should we use?

Ambiguity in specifying source of

correlation leads to uncertainty
about which model to use

Bayesian approach can handle
model uncertainty

p(x|m) = [ p(x,M [ m)dM
= [ p(x]m,M) p(M)dm

1 1
:; p(X| m9M1)+; p(X| maMz)

» for two equally likely models
M, and M,

Answer 1s average both pdfs!!
X=1.04+0.30
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Probability Density

s B (x)=1.04£0.30

solid black line is
average of A and B




An alternative approach

Devinder Sivia offers an variation
on this approach

Use data to help decide which
model to use

p(x|m)=>_ p(x,M; |m)

=2 p(xIm,M;)p(M; | m)

=w, p(X|m,M,)+w, p(x|m,M,)

Pr(w|data,l)

» where W; 1s proportional to the
evidence imtegral for p(M. | m)

Answeri1s: X=0.96 £ 0.27

Comment: relative weights depend
heavily on resp. priors; perhaps not
a good situation

0.5

(x)=0.96+0.27

s
/
s
| _ -

0.5 1 1.5 2
Quantity of interest wu

solid black line is
weighted average of
other two distributions

from D. Sivia, Proc. AMCTM Conf.,
(World Scientific, 2005)
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Conclusions

PPP result 1s consistent with plausible experimental scenario

» 1n which correlated (systematic) error contributes additively to result

Ambiguous statement of the PPP leads to other interpretations

» some of which yield more plausible answers

Analysts need better information to analyze data without guessing

Probabilistic modeling can cope with various known uncertainty
effects

18



Conclusions

 Experimenters — please provide measurement details

 Some of the details needed:

» specify standard errors as precisely as possible, indicating where
uncertainties in their assessment lie

» specify components in uncertainties and whether they are
 independent, or correlated, e.g., systematic errors
 given relative to measured quantities or inferred values

« additive (background subtraction) or multiplicative
(normalization)

* Correlation matrix by itself is not enough

* Another 1ssue in PPP is inconsistency between two measurements:
one can cope with this discrepancy by introducing notion that the
true errors may differ from quoted errors, 1.€., treatment of outliers

19



Monte Carlo techniques

Monte Carlo — represent pdf by a set of point samples

« Typically use MC to draw samples from posterior for parameters,
which are fed into model to get prediction; predictive distribution

* Visualization of pdf, uncertainty
* Numerical calculations
» estimation of mean, standard deviation, correlations
» Integration, marginalization
* Quasi-Monte Carlo — select points with more uniform distribution
» provide more accurate estimates for fixed number of samples
» often deterministic point sets
e Markov chain Monte Carlo
» draw random samples for numerically-defined pdf

» facilitates inference through numerical calculations
20



Voronoi analysis

* Voronoi diagram
» partitions domain into polygons

» points in Ith Voronoi region are closest
to Ith generating point, X;

» boundaries often obtained by geometrical
construction

* Monte Carlo technique for Voronoi analysis

» randomly throw large number of points z,
Into region

» compute distance of each z, to all generating
points {X;}

> Z, belongs to Voronoi region of closest X;

» can compute volume, first moment, radial
moments, identify neighbors, ...

« Readily extensible to high dimensions
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Centroidal Voronoi1 Tessellation

Plot shows 13 random points (-) and the
centroids of their Voronoi regions (x)

A point set 1s called a Centroidal Voronoi1
Tessellation (CVT) when the generating

points zJ coincide with the centroids their
Voronoi regions; a CVT minimizes

. 2
Z ”ZJ — x‘ dx
I
Algorithm (McQueen)
» start with arbitrary set of generating points

» perform Voronoi analysis using Monte Carlo

» move each generating point to 1ts Voronoi
centroid

» 1terate lasts two steps until convergence

Final CVT points are uniformly distributed

0.6 °*

0.4r

1

0.8f

0.61

0.4;

0.2t .

0

o8l ”

‘X
0.2

0

Start with random points
1 . . .

0 02 04 06 08 1

Final CVT point set

0 02 04 06 08 1
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CVT for multi-variate normal distribution

CVT algorithm works for an arbitrary
density function, e.g., a normal distribution

In above MC algorithm for Voronoi
analysis, simply draw random numbers
from desired distribution

Plots show starting random point set and
final CVT set

Radii of points are rescaled to achieve
desired average variance along axes

CVT points appear uniformly distributed
within constraint of adhering to unit-
variance normal distribution

This kind of distribution may have benefits
for MC calculations and visualizations

Index 2

Index 2

Random, 100

Index 1

CVT, 100

+*
.......

Index 1

23
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Sampling from correlated normal distribution

 Want to draw samples from multi-variate normal distribution with
known covariance C,

» Important to include correlations among uncertainties, 1.e., off-
diagonal elements
* Algorithm:
» perform eigenanalysis of covariance matrix of d dimensions

C.=UAU'

where U 1s orthogonal matrix of eigenvectors and
A 1s the diagonal matrix of eigenvalues

» draw d samples from uncorrelated unit-variance normal distr., &;
» scale this vector by A.”
» transform vector into parameter space using the eigenvector matrix

» to summarize, fluctuations are given by: AX = UA1/2§
24



Sampling from correlated normal distribution

Proof of algorithm:

 Want to draw samples from multi-variate normal distribution
with specified covariance C,

* Algorithm:

» fluctuations given by: Ax = UA"*¢
where §; randomly drawn from uncorrelated normal pdf and
U and A come from an eigenanalysis of C : C, =UAU'
where U 1s orthogonal matrix of eigenvectors and
A 1s the diagonal matrix of eigenvalues

 Proof:
» Covariance of an ensemble of x vectors 18
C=(AxAx")=(UA"EE"A"U")
— UA1/2 <§§T>A1/2 UT — UAUT — CX

» thus, the fluctuations Ax have the desired covariance -



Neutron cross sections

 Plot shows

» measured fission cross sections

for neutrons on %3°Pu; red data
points

» 1nferred cross sections; blue line

» weighted average in 30 energy

bins (groups); green histogram

e PARITSN code simulates neutron
transport based on multigroup,
discrete-ordinates method

>

>

uses 30 energy bins (groups)

calculates criticality for specified
configuration of fissile-material

establish dependence of criticality
experiment to cross sections

Fission Cross Section [b]

239Pu cross sections

T-16 Evaluation
30-group data

25 F

1.5 F

" L aa a3l i N T | L L s a
0.01 0.1 1 10
Incident Neutron Energy [MeV]

cross section evaluation, P. Young et al.
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Neutron cross sections - uncertainties

Analysis of measured cross standard error in cross sections
sections yields a set of
evaluated cross sections

™rT

Differential Data Only

Uncertainties in evaluated cross

SN by
sections are ~ 1.4-2.4 % :

i A s sl L M E e | L a3 3l i R |
0.001 0.01 0.1 1 10
Neutron Energy [MeV]

Uncertainties in the Fission Cross-Section [%]
N

Covariance matrix important _ _
correlation matrix

Strong positive correlations —

caused by normalization | Il
uncertainties in each experiment : -

MNeutron Energy [MeV]



JEZEBEL — criticality experiment

« JEZEBEL experiment (1950-60)

» fissile material 23°Pu

» measure neutron multiplication
as function of separation of two
hemispheres of material

» summarize criticality with

neutron multiplication factor,
K =0.9980+ 0.0019

» Very accurate measurement

e Our goal — use highly accurate
JEZEBEL measurement to
improve our knowledge of 23°Pu
Cross sections

JEZEBEL set up

28



JEZEBEL — sensitivity analysis

* PARITSN code calculates k.. on

' : K.« sensitivity to
basis of neutron cross sections eff y

Cross sections

* Sensitivity of k. to cross sections e p—
found by perturbing cross section ors | =
in each energy bin by 1% and |
observing increase in kg

Relative Sensitivity

0.05 |

 (Observe that 1% increase 1n all | -
cross sections results in 1% v AT

0.01 0.1 1

increase in keff , as expected Neutron Energy [MeV]

10
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Bayesian update

* For data linearly related to the parameters, the Bayesian
(aka Kalman) update for Gaussian distributions 1s

Crx, =Cx, +8,C,'S, (y-¥,)
C/'=C, +S,C.S,

» X, and X, are parameter vectors before and after update
» C,and C, are their covariance matrices

» y and C, are the measured data vector and its covariance
» Y, 1s the value of y for x,,

> S, 1s the matrix of the sensitivity of'y to x; Jy/0x

* For the JEZEBEL case, y 1s a scalar (K.),
C, 1s a scalar (variance), and S 18 a vector

30



Updated cross sections

Plot shows uncertainties 1n cross
sections before and after using
JEZEBEL measurement

Modest reduction in uncertainties;
follows energy dependence of
sensitivity

Correlation matrix 1is significantly
altered

Strong negative correlations

introduced by integral constraint of
matching JEZEBEL’s k

» reduction in uncertainties in future
prediction depends on how closely
its sensitivity matches JEZEBEL’s

standard error in cross sections

Uncertainties in the Fission Cross-Section [%]

MNeutron Energy [MeV]

4
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Linear-response model — output uncertainty

Assume outputs of a model are linearly
related to perturbations in the inputs, Inputs Model

5y=S$5x X y

» where S, 1s sensitivity matrix 0y/0x

Outputs

The covariance 1n the output y 1s
_aT
C,=5,CS,
» when output VY 1s a scalar,

the covariance C, 1s a scalar (variance),
and S, 1s a vector

If linear model 1s sufficient and one knows S then
predictive distribution 1s easily characterized

For complex simulations, S, 1s not usually known

32



Uncertainty 1n subsequent stmulations

Our goal 1s to use updated cross sections 1n new calculations

» expect that integral constraint will reduce uncertainties

Demonstrate usefulness of quasi-MC in form of CVT point sets by
“predicting” k. measured in JEZEBEL

» for this demo, assume linear model with known sensitivity
vector

» under this assumption, we can calculate exact answer and
compare to MC-style sampling to obtain predictive distribution

For a new physical scenario, we would not have sensitivity vector
and would have to do full simulation calculation

» thus, only a modest number of function evaluations can be done

33



Accuracy of predicted k_and its uncertainty

« Prediction based on liner model with know sensitivities
» only 30 sample sets allowed for neutronics calc. because of time

» check accuracy of predicted mean and standard deviation
* Conclude — CVT is more accurate than random sampling
Performance summary from 1000 runs, each with set

of 30 sample vectors; ‘rot’ indicates single sample set
randomly rotated to achieve each new one

est. mean k¢, est. std. dev. k¢
avg. rms dev. avg. rms dev.
random 0.99788 0.00037 0.00191 0.00028
random-rot | 0.99824 0.00010 0.00218 0.00010
CVT-rot 0.99796 0.00001 0.00197 0.00002
exact-linear | 0.99796 - 0.00195 -

34



Summary

In this tutorial:

* Peelles’ pertinent puzzle
» 1mpact on cross-section evaluation

» probabilistic modeling; additive and multiplicative systematic
effects

» experimenters need to provide more than correlation matrices
* Monte Carlo
» generation of samples with specified covariance matrix
» quasi-Monte Carlo — more uniformly spaced points than random
» Centroidal Voronoi Tessellation (CVT) algorithm
* Bayesian updating of cross sections to include integral data
» JEZEBEL criticality experiment
» Integral constraint results in negative correlations

» CVT point set improves prediction accuracy 35



