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Goals of tutorials
My aim is to 
• present overview of Bayesian and probabilistic modeling
• cover basic Bayesian methodology relevant to nuclear physics, 

especially cross section evaluation
• point way to how to do it

• convince you that 
► Bayesian analysis is a reasonable approach to coping with 

measurement uncertainty

• Many thanks to my T-16 colleagues
► Gerry Hale, Toshihiko Kawano, Patrick Talou
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Outline – three tutorials
1. Bayesian approach

probability – quantifies our degree of uncertainty
Bayes law and prior probabilities

2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo 
Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data

4. Bayesian calculations 
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data
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Slides and bibliography
► These slides can be obtained by going to my public web page:

http://public.lanl.gov/kmh/talks/
• link to tutorial slides
• short bibliography relevant to topics covered in tutorial
• other presentations, which contain more detail about material presented here 

► Noteworthy books:
• D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical 

development of the Bayesian approach with an experimental physics slant
• D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear 

Science and Technology (1991); lots of good advice relevant to 
cross-section evaluation

• G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review, 
(World Scientific, New Jersey, 2003); Bayesian philosophy 

• A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view
• W. R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic 

MCMC text
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Tutorial 2
Bayesian modeling
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Peelle’s Pertinent Puzzle (1987)
Overview:
• Paradoxical result produced by strong correlations in 

uncertainties
• Probabilistic view of PPP
• Specific probabilistic model for PPP elucidates how correlations

in uncertainties arise
• Plausible experimental situation consistent with PPP result
• Bayesian approach to coping with uncertainty in model
• With probabilistic modeling, you can go beyond simple linear, 

additive models
• PPP underlines the need to specify how uncertainties contribute 

to reported data
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Peelle’s pertinent puzzle
• Robert Peelle (ORNL) posed the PPP in 1987:

Given two measurements of same quantity x: 
m1 = 1.5;  m2 = 1.0 ,

each with independent standard error of 10% ,
and fully correlated standard error of 20% .
Weighted average using least-squares is x = 0.88 ± 0.22

• Peelle asks “under what conditions is this result reasonable?”
• By extension, if this not reasonable, what answer is appropriate?
• PPP is pertinent – its effect has been observed in nuclear data 

evaluation for decades
• Comment – PPP description of errors is ambiguous, which leads 

to numerous plausible interpretations
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PPP in cross-section evaluation
• Although the PPP problem may seem academic, it has significant 

real-world consequences in cross-section evaluation
► historically, fits to several data sets fall below lowest measurements

from Pronyaev, 
INDC(NDS)-438, 
p. 163 (2003)

6Li(n,t)

note large data 
discrepancies
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Standard solution to PPP
• The solution given in PPP is based on standard matrix equations 

for least-squares result:
estimated value
covariance in estimate

where the sensitivity matrix is 
and the measurements are the vector

with covariance matrix

• Result is   x = 0.88 ± 0.22
• This result is smaller than both measurements, which seems 

implausible

2 2 2 2

2 2 2 2
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Probabilistic view of standard PPP solution
• Consider the probability density 

function (pdf) for the variables

where measurements are  
and their covariance matrix is

• For                  (diagonal of 2D pdf), 
p(x|m) is normal distribution centered 
at 0.88

( ) ( )11

2
( | ) exp

T
Tx m x m C x m−⎧ ⎫⎪ ⎪∝ − − −⎨ ⎬

⎪ ⎪⎩ ⎭
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1 2[ ]Tx = x x
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1 2x = x = x

p(x1, x2 | m)
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Probabilistic model for additive error
• Represent common uncertainty in measurements by systematic 

additive offset D:
► where the εi represent the random fluctuations 

• Bayes law gives joint pdf for x and D

where priors p(x) is uniform and p(D) assumed normal (sD= 0.2)
• Writing                                     and assuming normal distributions

where
• Pdf for x obtained by integration: 

• This model equivalent to 

1 1 1 2 2 2;x = m x = mε ε+ + Δ + + Δ

( , | ) ( | , ) ( ) ( )m mΔ = Δ Δp x p x p x p

{ }( , | ) expm ϕΔ ∝ −p x

( ) ( )2 2 2
1 1 2 2

2 2 2
1 2

x - m x - m
2 =ϕ

σ σ σΔ

− Δ −Δ Δ
+ +

0.1 ; 0.1 ; 0.2σ σ σ1 1 2 2 Δ∗ ∗= m = m =

( | ) ( , | ) dp x p x= Δ Δ∫m m

( ) ( )11

2
( | ) exp

T
Tx m x m C x m−⎧ ⎫⎪ ⎪∝ − − −⎨ ⎬

⎪ ⎪⎩ ⎭
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Plausible experimental scenario
• Under what conditions is PPP result 

reasonable?
• Suppose that 

► measurements made in intervals 
shown

► from experience with apparatus, 
we know background increases 
linearly in time

► background subtraction for m1 is 
1.5 times larger than for m2 ; 
leads to stated covariance matrix

• For this scenario, the additive 
model is appropriate, and the PPP 
solution, 0.88, is the correct answer

±20%

background
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Probabilistic model for normalization error
• Represent common uncertainty in measurements by systematic 

error in normalization factor c:
► where the εi represent the random fluctuations

• Following same development as before, where prior  p(c)
assumed normal with expected value of 1 and sc = 0.2

• Writing 

where
• Divide p(cx, c) by Jacobian  J = 1/c to get p(x, c), which is a 

log-normal distribution
• p(x) obtained by numerical integration: 
• This approach promoted by D. Smith (1991)

1 1 2 2;cx = m  + cx = m + ε ε

{ }( , | ) expp cx c ϕ∝ −m

( ) ( ) ( )2 2 2

2 2 2
1 2

1
ϕ

σ σ σ
1 2 −

+ +
c

cx - m cx - m c
2 =

0.1 ; 0.1 ; 0.2σ σ σ1 1 2 2∗ ∗ c= m = m =

( | ) ( , | )dp x p x c c= ∫m m



14

Probabilistic view of normalization error
• Consider the probability density 

function (pdf) for variables

where measurements are  
► also, divide p(cx, c) by Jacobian J = 

1/c to get p(x, c),
► for                   (diagonal of 2D pdf), 

p(x|m) is not a simple normal distribution
► max at: xmax = 1.074
► posterior mean and rmsd: 

x = 1.200 ± 0.276

[1.5 1.0]Tm =

1 2[ ]Tx = x x

1 2x = x = x
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2 1 1 2 2

1 1 2 2

1 ;

;

χ
ρ ρ σ

σ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞− − −
= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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c
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Probabilistic model for normalization error
• Compare pdfs for two models 

for correlated effect:
A – additive offset
B – normalization factor

• Observe significant difference 
in two results
► emphasizes need to know 

which kind of effect leads to 
correlation 

• Probabilistic modeling is 
capable of handling a variety of 
known effects  
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But which model should we use?
• Ambiguity in specifying source of 

correlation leads to uncertainty 
about which model to use

• Bayesian approach can handle 
model uncertainty

► for two equally likely models 
M1 and M2

• Answer is average both pdfs!!
x = 1.04 ± 0.30

1 2
1 1

2 2

( | ) ( , | )d

( | , ) ( )d

( | , ) ( | , )
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∫
∫

p x p x M M

= p x M p M M

= p x M p x M

1.04 0.30x = ±

solid black line is 
average of A and B
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An alternative approach
• Devinder Sivia offers an variation 

on this approach
• Use data to help decide which 

model to use 

► where wi is proportional to the 
evidence integral for 

• Answer is: x = 0.96 ± 0.27
• Comment: relative weights depend 

heavily on resp. priors; perhaps not 
a good situation

1 1 2 2

( | ) ( , | )

( | , ) ( | )

( | , ) ( | , )

i
i

i i
i

p x p x M

= p x M p M

= w p x M w p x M

=

+

∑

∑

m m

m m

m m

solid black line is 
weighted average of 

other two distributions

0.96 0.27= ±x

from D. Sivia, Proc. AMCTM Conf., 

(World Scientific, 2005)

( | )ip M m
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Conclusions
• PPP result is consistent with plausible experimental scenario

► in which correlated (systematic) error contributes additively to result
• Ambiguous statement of the PPP leads to other interpretations

► some of which yield more plausible answers
• Analysts need better information to analyze data without guessing

• Probabilistic modeling can cope with various known uncertainty 
effects
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Conclusions
• Experimenters – please provide measurement details
• Some of the details needed:

► specify standard errors as precisely as possible, indicating where 
uncertainties in their assessment lie

► specify components in uncertainties and whether they are 
• independent, or correlated, e.g., systematic errors
• given relative to measured quantities or inferred values
• additive (background subtraction) or multiplicative 

(normalization)
• Correlation matrix by itself is not enough
• Another issue in PPP is inconsistency between two measurements: 

one can cope with this discrepancy by introducing notion that the 
true errors may differ from quoted errors, i.e., treatment of outliers
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Monte Carlo techniques 
Monte Carlo – represent pdf by a set of point samples
• Typically use MC to draw samples from posterior for parameters, 

which are fed into model to get prediction; predictive distribution
• Visualization of pdf, uncertainty
• Numerical calculations

► estimation of mean, standard deviation, correlations
► integration, marginalization

• Quasi-Monte Carlo – select points with more uniform distribution
► provide more accurate estimates for fixed number of samples 
► often deterministic point sets

• Markov chain Monte Carlo
► draw random samples for numerically-defined pdf
► facilitates inference through numerical calculations 
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Voronoi analysis
• Voronoi diagram

► partitions domain into polygons
► points in ith Voronoi region are closest 

to ith generating point, xi

► boundaries often obtained by geometrical 
construction

• Monte Carlo technique for Voronoi analysis
► randomly throw large number of points zk

into region
► compute distance of each zk to all generating 

points {xi}
► zk belongs to Voronoi region of closest xj

► can compute volume, first moment , radial 
moments, identify neighbors, …

• Readily extensible to high dimensions

10 random points

Geometric construction

Monte Carlo
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Centroidal Voronoi Tessellation
• Plot shows 13 random points (·) and the 

centroids of their Voronoi regions (×)
• A point set is called a Centroidal Voronoi 

Tessellation (CVT) when the generating 
points z j coincide with the centroids their 
Voronoi regions; a CVT minimizes

• Algorithm (McQueen)
► start with arbitrary set of generating points
► perform Voronoi analysis using Monte Carlo
► move each generating point to its Voronoi 

centroid
► iterate lasts two steps until convergence 

• Final CVT points are uniformly distributed

Final CVT point set
∑ ∫ −

j

j

j

xxz d
2

V

Start with random points



23

CVT for multi-variate normal distribution
• CVT algorithm works for an arbitrary 

density function, e.g., a normal distribution
• In above MC algorithm for Voronoi 

analysis, simply draw random numbers 
from desired distribution

• Plots show starting random point set and 
final CVT set

• Radii of points are rescaled to achieve 
desired average variance along axes  

• CVT points appear uniformly distributed 
within constraint of adhering to unit-
variance normal distribution

• This kind of distribution may have benefits 
for MC calculations and visualizations 

Random, 100

CVT, 100
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Sampling from correlated normal distribution 
• Want to draw samples from multi-variate normal distribution with 

known covariance Cx

• Important to include correlations among uncertainties, i.e., off-
diagonal elements

• Algorithm: 
► perform eigenanalysis of covariance matrix of d dimensions

where U is orthogonal matrix of eigenvectors and
Λ is the diagonal matrix of eigenvalues

► draw d samples from uncorrelated unit-variance normal distr., ξi

► scale this vector by λi
½

► transform vector into parameter space using the eigenvector matrix
► to summarize, fluctuations are given by:

TUΛUCx =

1/2Δ =x UΛ ξ
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Sampling from correlated normal distribution 
Proof of algorithm:
• Want to draw samples from multi-variate normal distribution 

with specified covariance Cx

• Algorithm:   
► fluctuations given by: 

where ξi randomly drawn from uncorrelated normal pdf and 
U and Λ come from an eigenanalysis of Cx:
where U is orthogonal matrix of eigenvectors and

Λ is the diagonal matrix of eigenvalues
• Proof: 

► Covariance of an ensemble of x vectors is 

► thus, the fluctuations Δx have the desired covariance 

TUΛUCx =

T 1/2 T 1/2 T= Δ Δ =C x x UΛ ξξ Λ U
1/2 T 1/2 T T= = = xUΛ ξξ Λ U UΛU C

1/2Δ =x UΛ ξ
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Neutron cross sections
• Plot shows 

► measured fission cross sections 
for neutrons on 239Pu; red data 
points

► inferred cross sections; blue line
► weighted average in 30 energy 

bins (groups); green histogram
• PARITSN code simulates neutron 

transport based on multigroup, 
discrete-ordinates method
► uses 30 energy bins (groups)
► calculates criticality for specified 

configuration of fissile-material
► establish dependence of criticality 

experiment to cross sections

239Pu cross sections

cross section evaluation, P. Young et al.
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Neutron cross sections - uncertainties
• Analysis of measured cross 

sections yields a set of 
evaluated cross sections

• Uncertainties in evaluated cross 
sections are ~ 1.4-2.4 %

• Covariance matrix important
• Strong positive correlations 

caused by normalization 
uncertainties in each experiment

standard error in cross sections

correlation matrix
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JEZEBEL – criticality experiment
• JEZEBEL experiment (1950-60)

► fissile material 239Pu
► measure neutron multiplication 

as function of separation of two 
hemispheres of material

► summarize criticality with 
neutron multiplication factor, 
keff = 0.9980 ± 0.0019

► very accurate measurement

• Our goal – use highly accurate 
JEZEBEL measurement to 
improve our knowledge of 239Pu 
cross sections

JEZEBEL set up
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JEZEBEL – sensitivity analysis
• PARITSN code calculates keff on 

basis of neutron cross sections
• Sensitivity of keff to cross sections 

found by perturbing cross section 
in each energy bin by 1% and 
observing increase in keff

• Observe that 1% increase in all 
cross sections results in 1% 
increase in keff , as expected

keff sensitivity to 
cross sections
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Bayesian update
• For data linearly related to the parameters, the Bayesian 

(aka Kalman) update for Gaussian distributions is

► x0 and x1 are parameter vectors before and after update
► C0 and C1 are their covariance matrices
► y and Cy are the measured data vector and its covariance
► y0 is the value of y for x0 

► Sy is the matrix of the sensitivity of y to x; ∂y/∂x

• For the JEZEBEL case, y is a scalar (keff), 
Cy is a scalar (variance), and Sy is a vector

yyy SCSCC 1T1
0

1
1

−−− +=

)( 0
1T

0
1

01
1

1 yySCSxCxC yyy −+= −−−
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Updated cross sections
• Plot shows uncertainties in cross 

sections before and after using 
JEZEBEL measurement

• Modest reduction in uncertainties; 
follows energy dependence of 
sensitivity

• Correlation matrix is significantly 
altered

• Strong negative correlations 
introduced by integral constraint of 
matching JEZEBEL’s keff
► reduction in uncertainties in future 

prediction depends on how closely 
its sensitivity matches JEZEBEL’s

standard error in cross sections

correlation matrix
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Linear-response model – output uncertainty
• Assume outputs of a model are linearly 

related to perturbations in the inputs,

► where Sy is sensitivity matrix ∂y/∂x
• The covariance in the output y is

► when output y is a scalar, 
the covariance Cy is a scalar (variance), 
and Sy is a vector

• If linear model is sufficient and one knows Sy, then 
predictive distribution is easily characterized

• For complex simulations, Sy is not usually known

yxyy SCSC T=

Tyδ δ= yS x
Model

x y
Inputs Outputs
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Uncertainty in subsequent simulations 
• Our goal is to use updated cross sections in new calculations

► expect that integral constraint will reduce uncertainties
• Demonstrate usefulness of quasi-MC in form of CVT point sets by 

“predicting” keff measured in JEZEBEL
► for this demo, assume linear model with known sensitivity 

vector
► under this assumption, we can calculate exact answer and 

compare to MC-style sampling to obtain predictive distribution
• For a new physical scenario, we would not have sensitivity vector 

and would have to do full simulation calculation
► thus, only a modest number of function evaluations can be done
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Accuracy of predicted keff and its uncertainty
• Prediction based on liner model with know sensitivities

► only 30 sample sets allowed for neutronics calc. because of time
► check accuracy of predicted mean and standard deviation

• Conclude – CVT is more accurate than random sampling

0.000020.001970.000010.99796CVT-rot

-0.00195-0.99796exact-linear

0.000100.002180.000100.99824random-rot

0.000280.001910.000370.99788random

rms dev.avg.rms dev.avg.

est. std. dev. keffest. mean keff

Performance summary from 1000 runs, each with set 
of 30 sample vectors; ‘rot’ indicates single sample set 
randomly rotated to achieve each new one
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Summary
In this tutorial:
• Peelles’ pertinent puzzle

► impact on cross-section evaluation
► probabilistic modeling; additive and multiplicative systematic 

effects
► experimenters need to provide more than correlation matrices 

• Monte Carlo
► generation of samples with specified covariance matrix
► quasi-Monte Carlo – more uniformly spaced points than random
► Centroidal Voronoi Tessellation (CVT) algorithm

• Bayesian updating of cross sections to include integral data
► JEZEBEL criticality experiment
► integral constraint results in negative correlations
► CVT point set improves prediction accuracy  


