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Tutorial 1
Bayesian approach
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Goals of tutorials
My aim is to 
• present overview of Bayesian and probabilistic modeling
• cover basic Bayesian methodology relevant to nuclear physics, 

especially cross section evaluation
• point way to how to do it

• convince you that 
► Bayesian analysis is a reasonable approach to coping with 

measurement uncertainty

• Many thanks to my T-16 colleagues
► Gerry Hale, Toshihiko Kawano, Patrick Talou
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Outline – four tutorials
1. Bayesian approach

probability – quantifies our degree of uncertainty
Bayes law and prior probabilities

2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo 
Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data

4. Bayesian calculations 
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data
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Slides and bibliography
► These slides can be obtained by going to my public web page:

http://public.lanl.gov/kmh/talks/
• link to tutorial slides
• short bibliography relevant to topics covered in tutorial
• other presentations, which contain more detail about material presented here 

► Noteworthy books:
• D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical 

development of the Bayesian approach with an experimental physics slant
• D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear 

Science and Technology (1991); lots of good advice relevant to 
cross-section evaluation

• G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review, 
(World Scientific, New Jersey, 2003); Bayesian philosophy 

• A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view
• W. R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic 

MCMC text
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Uncertainty quantification
We need to know uncertainty in data: 
• To determine agreement among data, or between data and theory
• Inference about validity of models requires knowing degree of 

uncertainty 
• We typically assume uncertainty described by a Gaussian pdf

► often a good approximation
► width of Gaussian characterized by its standard deviation σ
► σ provides the metric for uncertainty about data
► when combining measurements, weight by inverse variance

• Nomenclature – uncertainty or error?
► error – state of believing what is incorrect; wrong belief; mistake
► uncertainty – lack of certainty, sureness; vagueness 
► uncertainty analysis seems to convey appropriate meaning

2σ −
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History of particle-properties measurements
• Plots show histories of two 

“constants” of fundamental particles 
• Mass of W boson

► logically ordered history
► all within error bar wrt last (best?) 

measurement
• Neutron lifetime

► disturbing history
► periodic jumps with periods of 

extreme agreement
► most earlier measurements disagree 

with latest ones
► plot demonstrates possible 

sociological and psychological 
aspects of experimental physics plots from Particle Data Group 2004
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Neutron fission cross section data for 239Pu
• Graph shows 16 measurements 

of fission cross-section for 
239Pu at 14.7 MeV

• Data exhibit fair amount of 
scatter

• Quoted error bars get smaller 
with time

• Minimum χ2 = 44.6, p = 10-4

indicates a problem 
► dispersion of data larger than 

quoted error bars
► outliers?; three data contribute 

24 to χ2, more than half 
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Neutron fission cross-section data 

• Neutron cross sections measured by many experimenters
► sometimes data sets differ significantly 
► often little information about uncertainties, esp. systematic errors
► many directly measure ratios of cross sections, e.g., 243Am/ 235U
► a thorough analysis must go back to original data and consider all 

discrepancies

243Am fission 
cross section

plot from P. Talou
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Bayesian analysis of experimental data
• Bayesian approach

► focus is as much on uncertainties in parameters as on their best
(estimated) value

► provides means for coping with Uncertainty Quantification (UQ)
► quantitative support of scientific method 
► use of prior knowledge, e.g., previous experiments, modeling 

expertise, subjective
► experiments should provide decisive information
► model-based analysis 
► model checking –

does model agree with experimental evidence? 
• Goal is to estimate model parameters and their uncertainties
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Bayesian approach to model-based analysis
• Models 

► used to describe and analyze physical world
► parameters inferred from data 

• Bayesian analysis
► uncertainties in parameters described by probability density 

functions (pdf)
► prior knowledge about situation may be incorporated
► quantitatively and logically consistent methodology for making 

inferences about models
► open-ended approach

• can incorporate new data
• can extend models and choose between alternatives
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Bayesian approach to model-based analysis
• Bayesian formalism provides framework for modeling

► choice of model is up to analyst (as in any analysis)
► many ways to do it 
► calling an analysis Bayesian does not distinguish it

• Because it is a Bayesian analysis does not necessarily mean it 
is a good analysis; it can also be bad or inappropriate 
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Uncertainties and probabilities
• Uncertainties in parameters are 

characterized by probability density 
functions (pdf)

• Probability interpreted as quantitative 
measure of “degree of belief”

• This interpretation is referred to as 
“subjective probability”
► different for different people with 

different knowledge
► changes with time
► in science, we seek consensus, avoid bias

• Rules of classical probability theory apply
► provides firm foundation with mathematical 

rigor and consistency
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Subjective probability can be quantitative
Example – coin toss 
• Hypothesis: for a specific coin, 

fraction of tosses that come up 
heads = 50%

• Hypothesis seems so reasonable 
that you might believe it is true

• On basis of this subjective 
probability, you might be willing 
to bet with 1:1 odds

• Before any tosses, you might have 
a prior as shown

• After 50 tosses, you would know 
better whether coin is fair
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Coherent bet quantifies subjective probability
• A property of the Gaussian distribution is that random draws from 

it will fall inside the interval from -σ to +σ 68% of time
• Suppose, on basis of what you know, you specify the standard 

error σ of your measurement of a quantity, assuming Gaussian 
• If you truly believe in the value of σ you have assigned, you should 

be willing to accept a bet, randomly chosen between two options:
► 2:1 bet that a much more accurate measurement would differ from 

your measured value by less than one σ
► OR 1:2 bet that a much more accurate measurement would differ 

from your measured value by more than one σ
• Your willingness to take bet either way makes this a coherent bet
• As physicists, we should make honest effort to assign uncertainties 

in this spirit, and communicate what we have done
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Rules of probability
• Continuous variable x; p(x) is a probability density function (pdf)
• Normalization: 
• Decomposition of joint distribution into conditional distribution:

where               is conditional pdf (probability of x given y)
► if                           ,  x is independent of y

• Bayes law follows: 

• Marginalization: 

is probability of x, without regard for y (nuisance parameter)

( ) 1=∫ p x dx

( , ) ( | ) ( )=p x y p x y p y

( ) ( , ) ( | ) ( )= =∫ ∫p x p x y dy p x y p y dy

( | ) ( )( | )
( )

=
p x y p yp y x

p x

( | )p x y
( | ) ( )=p x y p x
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Rules of probability
• Change of variables: if x transformed into z, z = f(x), the pdf in 

terms of z is

where J is the Jacobian matrix for the transformation:

1( ) ( )p p−=z J x
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Bayesian analysis of experimental data
• Bayes rule

► where
d is the vector of measured data values 
a is the vector of parameters for model that predicts the data

► p(d | a, I) is called the likelihood (of the data given the true model 
and its parameters)

► p(a | I) is called the prior (on the parameters a)
► p(a | d, I) is called the posterior – fully describes final uncertainty 

in the parameters
► I stands for whatever background information we have

about the situation, results from previous experience, 
our expertise, and the model used

► denominator provides normalization:
i.e., is integral of numerator

( | , ) ( | )( | , )
( | )

p d a p ap a d
p d

=
I II

I

( ) ( | ) ( ) d= ∫p d p d a p a a
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Auxiliary information – I
All relevant information about the situation may be brought to bear:
• Details of experiment

► laboratory set up, experiment techniques, equipment used
► potential for experimental technique to lead to mistakes
► expertise of experimenters

• Relationship between measurements and theoretical model
• History of kind of experiment
• Appropriate statistical models for likelihood and prior
• Experience and expertise

• We usually leave I out of our formulas, but keep it in mind

more 
subjective
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Likelihood
• Form of the likelihood p(d |a, I) depends on how we model the 

uncertainties in the measurements d
• Choose pdf that appropriately describes uncertainties in data

► Gaussian – good generic choice
► Poisson – counting experiments
► Binomial – binary measurements (coin toss …)

• Outliers exist
► likelihood should have a long tail, i.e., there is some probability of 

large fluctuation
• Systematic errors

► caused by effects common to many (all) measurements
► model by introducing variable that affects many (all) 

measurements; then marginalize it out
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Priors
• Noncommittal prior

► uniform pdf; p(θ) = const. when θ is offset parameter
► uniform in log(θ); p(log θ) = const. when θ is scale parameter
► choose pdf with maximum entropy, subject to known constraints

• Physical principles
► cross sections are nonnegative fl p(θ) = 0 when θ < 0
► invariance arguments, symmetries

• Previous experiments
► use posterior from previous measurements for prior
► Bayesian updating

• Expertise
► elicit pdfs from experts in the field, avoiding common info sources
► elicitation, an established discipline, may be useful in physical 

sciences
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Priors
• Conjugate priors

► for many forms of likelihood, there exist companion priors that 
make it easy to integrate over the variables

► these priors facilitate analytic solutions for posterior
► example: for the Poisson likelihood in n and λ, the conjugate prior 

is a Gamma distribution in λ with parameters α and β, which 
determine the position and width of the prior

► conjugate priors can be useful and their parameters can often be
chosen to create a prior close to what the analyst has in mind

► however, in the context of numerical solution of complicated 
overall models, they loose their appeal
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Posterior
• Posterior p(a | d, I)

► net result of a Bayesian analysis
► summarizes our state of knowledge
► it provides fully quantitative description of uncertainties
► usual practice is to characterize posterior in terms of an 

estimated value of the variables and their variance
• Visualization

► difficult to visualize directly because it is a density 
distribution of many variables (dimensions)

► Monte Carlo allows us to visualize the posterior through it 
effect on the model that has been used in the analysis
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Visualization of uncertainties
• Visualization plays an important role in developing an 

understanding of a model and communicating its consequences
• Monte Carlo is often a good choice – choose sets of 

parameters from their uncertainty distribution and visualize 
corresponding outputs from the model

• Random sampling from posterior is typically done
• Quasi-random sampling is noteworthy alternative; it provides 

more uniform sets of samples
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Probability in weather forecasting
• Metrological forecast for Oct. 30, 2003 for Casper, Wyoming
• 22 predictions of 564 line (500 mb) obtained by varying input 

conditions; indicate plausible outcomes 
• Density of lines conveys certainty/probability of winter storms

7 days 
ahead

what happened? 
20-inches of snow!

4 days 
ahead

1 day 
ahead 

564 line; predictive 
of winter storms

National Geographic, 
June 2005
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Posterior – quantitative results
• Quantitative results are obtained by characterizing the posterior:

► mean (first moment):

• mean minimizes quadratic cost function
► maximum (peak position); same as mean if pdf symmetric
► standard deviation (second moment): 

• standard error
► covariance matrix:

• correlation matrix:
► credible (confidence) interval, e.g., 95% credible interval

• Means for estimating these include:
► can use calculus if posterior is in convenient analytic form 
► second-order approximation around peak (numerical)
► Monte Carlo (numerical)

ˆ ( )= ∫x = x x p x dx

( )2
( )x x x p x dxσ = −∫

( )( )cov( ) ( )= = − −∫Cxyx, y x x y y p x, y dxdy
corr( ) = /σ σ σ= R 2

xy xy x yx, y
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Higher-order inference
• One can make inferences about models, not just parameters 
• The posterior for a model is

► the final integral is the normalizing denominator in original 
Bayes law for p(a|d); it is called the evidence

► while the evidence is not needed for parameter inference, it 
is required for model inference

• May be used for model selection, e.g., deciding between two or 
more models
► e.g., how many terms to include in a functional analysis

( | ) ( , | ) ( , | )p M p M d p M d= =∫ ∫d a d a a d a

( | , ) ( , )

( ) ( | , ) ( | )

p M p M d

p M p M p M d

∝

=

∫
∫

d a a a

d a a a
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Summary
In this tutorial:
• Need for uncertainty quantification 
• Bayesian fundamentals

► subjective probability, nevertheless quantifiable
► Bayesian use of probability theory
► posterior sampling
► visualization of uncertainties – Monte Carlo
► higher-order inference  


