Optical tomography: seeing inside the body

Kenneth M. Hanson
Los Alamos National Laboratory

This presentation available under http://home.lanl.gov/kmh/

Overview of presentation

- General problem of inversion of complex simulations
- Introduction to optical tomography
- Modeling of propagation of IR photons in tissue as diffusion process
- Simulation of diffusion process by finite-difference method - "the forward problem"
- Reconstruction of optical properties using adjoint differentiation - "the inverse problem"
- Examples of IR tomographic reconstructions
- Other applications of general technique

Acknowledgements

- Optical tomography
- Suhail Saquib, Greg Cunningham
- Andreas Hielscher, Alexander Klose, David Catarious
- Bayes Inference Engine
- Greg Cunningham
- Xavier Battle, Bob McKee
- Applications to hydrodynamics
- Rudy Henninger, Maria Rightley
- General discussions
- C. Thacker, J. Skilling, S. Gull, R. Silver, J. Gee
- R. Giering, P. Maudlin, L. Margolin, B. Travis

Inversion of complex simulations

- There are BIG problems that
- require complex numerical simulations to describe phenomena
- are nonlinear in nature
- one would like to fit to data, that is, solve the inverse problem
- Approximations are typically made in forward simulation to facilitate the solution of the inverse problem
- perturbation methods (Born approximation)
- truncated basis-function expansion
- linearization of the problem
- degradation of the spatial resolution
- Advanced methods are needed to invert large numerical simulations

Inversion of complex simulations

- Advanced techniques are required to cope with large data structures and numerous parameters
- Optimization
- gradient-based quasi-Newton methods (e.g., CG, BFGS)
- adjoint differentiation for efficient calculation of gradients
- multiscale methods for controlling optimization process
- Bayesian methods
- overcome ill posedness of inversion through use of prior knowledge
- Markov chain Monte Carlo to characterize uncertainties
- Appropriate higher-order models
- Markov random fields
- deformable geometrical models
- but also consider lowest order, elemental representations

Optical tomography - general idea

- Shine light on tissue sample; measure light out

Optical tomography

- Similar to x-ray computed tomography, so:
- Can one actually do optical tomography?
- What are best operating conditions?
- What are imaging properties and diagnostic uses?

Physics of propagation of light in tissue

- Basic processes are scattering and absorption of photons
- absorption in tissue is minimal in infrared range
- IR photons can actually pass through bone
- for soft tissue, $\mu_{\text {scat }} \approx 1-10 \mathrm{~cm}^{-1}, \mu_{a b s} \approx 0.1 \mathrm{~cm}^{-1}$
- Transport equation generally applies
- Diffusion equation often good approximation
- valid when scattering is isotropic and without energy loss

Proposed experimental scheme

- Shine IR light pulse on tissue sample at several positions
- For each input pulse, measure at several output positions the light intensity vs. time with time resolution $\ll 1 \mathrm{~ns}$.
- prompt, unscattered photons; few survive thick sections
- multiply scattered photons; meander or diffuse through section

Alternative experimental schemes

- Numerous types of measurements of the light transmitted through tissue sample are possible:
- pulsed input; measure full time dependence distribution (delta-function response)
- pulsed input; measure average time $<\mathrm{t}>$ (first moment of time distribution)
- modulated input; measure amplitude and phase of modulated output intensity (Fourier transform of delta-function response)
- constant input; measure amplitude of output (integral of deltafunction response)

Modeling of process

- IR light photons in broad, retarded peak literally "diffuse" by multiple scattering from source to detector
- time is equivalent to distance traveled
- diffusion equation models these multiply-scattered photons
- these photons do not follow straight lines

Example - simulation of light diffusion

$0.7<D<1.4 \mathrm{~cm}^{2} \mathrm{~ns}^{-1}\left(\mu_{a}=0.1 \mathrm{~cm}^{-1}\right)$

- for assumed distribution of diffusion coefficients (left)
- predict time-dependent output at four locations (right)
- reconstruction problem - determine image on left from data on right

Reconstruction problem

- Determine tissue properties from measurements
- diffusion coefficient $D(x, y)$ and absorption coefficient $\mu_{a}(x, y)$, as a function of position - therefore, many unknowns
- Many problems must be overcome
- photon paths depend on properties to be reconstructed
- hence, inverse problem is nonlinear and difficult
- measurements can only be calculated numerically; no analytic expression for measurements in terms of D and μ_{a}
- gradients are desired for speedy gradient-based optimization
- needed with respect to (wrt) many unknowns
- analytic gradients are not available
- numerical gradients by perturbation would be time consuming

Diffusion equation

- Infrared light diffuses through tissue and bone
- Partial differential equation describes diffusion process
- $U(x, y, t)$ is intensity of diffused light (no angular dependence)

$$
\frac{\partial U}{\partial t}=\frac{\partial}{\partial x}\left[D \frac{\partial U}{\partial x}\right]+\frac{\partial}{\partial y}\left[D \frac{\partial U}{\partial y}\right]-c \mu_{a b s} U+S
$$

- where $D(x, y)$ is position-dependent diffusion coefficient,
$\mu_{a b s}(x, y)$ is the linear absorption coefficient,
c is the speed of light,
$S(x, y, t)$ is a source term;
$D=c\left[3\left(\mu_{\text {abs }}+\mu_{s c a t}^{\prime}\right)\right]^{-1}\left(\mu_{s c a t}^{\prime}=\right.$ effective scattering coefficient $)$

Method of finite differences

- Approximate derivatives by finite differences
- wrt time: $\frac{\partial U}{\partial t} \Rightarrow \frac{\Delta U}{\Delta t}=\frac{U_{i, n+1}-U_{i, n}}{\Delta t}$
- wrt position: $\frac{\partial^{2} U}{\partial x^{2}} \Rightarrow \frac{U_{i+1, n}-2 U_{i, n}+U_{i-1, n}}{(\Delta x)^{2}}$
- Differential equation then becomes a set of linear equations to be solved to obtain time-step update
- calculate time evolution, starting with initial conditions
- Question: at what time should second derivative wrt position be calculated, n or $n+l$?

Calculation of finite differences

- For diffusion equation, need
- temporal first order derivative
- spatial second order derivative
- Explicit technique
- for step from time n to $n+1$, evaluate spatial derivative at n
- unstable for moderate time steps
- Implicit technique
- for step from time n to $n+1$, evaluate spatial derivative at $n+1$
- inherently stable

Explicit method

- Evaluating position derivatives at n

$$
\frac{U_{i, n+1}-U_{i, n}}{\Delta t}=D_{i} \frac{U_{i+1, n}-2 U_{i, n}+U_{i-1, n}}{(\Delta x)^{2}}-c \mu_{i} U_{i, n}+S_{i, n}
$$

- for clarity, ignore position dependence of D and y coord.
- yields set of linear equations:

$$
\mathbf{U}_{n+1}=\mathbf{B} \mathbf{U}_{n}+b \mathbf{S}_{n} \quad(b \text { is a scalar constant })
$$

- \mathbf{U}_{n+1} at new time $n+1$ is given explicitly in terms of state at previous \mathbf{U}_{n}
- Easy to calculate time steps (just matrix multiplication)
- Unfortunately, inherently unstable for moderate Δt

Implicit method

- Evaluating position derivatives at time $n+1$

$$
\frac{U_{i, n+1}-U_{i, n}}{\Delta t}=D_{i} \frac{U_{i+1, n+1}-2 U_{i, n+1}+U_{i-1, n+1}}{(\Delta x)^{2}}-c \mu_{i} U_{i, n+1}+\frac{1}{2}\left(S_{i, n+1}+S_{i, n}\right)
$$

- for clarity, ignore position dependence of D and y coord.
- yields set of linear equations:

$$
\mathbf{A} \mathbf{U}_{n+1}=\mathbf{U}_{n}+a \mathbf{S}_{n} \quad(a \text { is a scalar constant })
$$

- \mathbf{U}_{n+1} at new time $n+1$ is given implicitly in terms of state at previous time \mathbf{U}_{n}
- Must solve set of linear eqs. to calculate time steps
- Inherently stable for moderate Δt

Finite-difference calculation

- Data-flow diagram shows calculation of time-dependent measurements by finite-difference simulation
- Calculation marches through time steps Δt
- new state $\mathbf{U}_{\mathrm{n}+1}$ depends only on previous state \mathbf{U}_{n}

Inversion of forward calculation

- To find parameters $\alpha=\left(D, \mu_{a}\right)$, minimize minus-loglikelihood of data:

$$
\phi(\alpha)=-\ln p(\mathbf{Y} \mid \alpha)=\frac{1}{2} \sum_{m} \frac{\left(Y_{m}-Y_{m}^{*}\right)^{2}}{\sigma_{m}^{2}}=\frac{1}{2} \chi^{2}
$$

- where Y_{m} is the m th measurement, $Y_{m}{ }^{*}$ its predicted value ($=U_{s, n}$ at appropriate s and n), σ_{m} is rms noise in measurement
- measurements are at fixed position, but at all times
- Problems for inverting diffusion process
- inversion may be ill posed, a theoretical issue
- have only numerical solution of forward simulation, so calculation of gradient poses practical problem

Parameter estimation by fitting data

- Diagram describes general approach (analytical and computational)
- Find parameters (vector α) that minimize $-\ln p\left(\mathbf{Y} \mid \mathbf{Y}^{*}(\alpha)\right)$
- Result is maximum likelihood estimate for α
- also known as minimum-chi-squared or least-squares solution
- Optimization process is accelerated by using gradient-based algorithms; therefore need gradients of simulation and measurement processes

Differentiation of sequence of transformations

- Data-flow diagram shows sequence of transformations A->B->C that converts data structure \mathbf{x} to \mathbf{y} to \mathbf{z} and then scalar φ
- Desire derivatives of φ wrt all components of \mathbf{x}, assuming φ is differentiable
- Chain rule applies: $\frac{\partial \varphi}{\partial x_{i}}=\sum_{j, k} \frac{\partial y_{j}}{\partial x_{i}} \frac{\partial z_{k}}{\partial y_{j}} \frac{\partial \varphi}{\partial z_{k}}$
- Two choices for summation order; the one that reverses data flow is preferable, because it avoids large intermediate matrices of derivatives

Adjoint Differentiation In Code Technique ADICT

- For sequence of transformations that converts data structure \mathbf{x} to scalar φ
- Derivatives $\frac{\partial \varphi}{\partial \mathbf{x}}$ are efficiently calculated in the reverse (adjoint) direction
- Code-based approach: logic of adjoint code is based explicitly on the forward code or on derivatives of the forward algorithm
- Not based on the theoretical eqs., which forward calc. only approximate
- Only assumption is that φ is a differentiable function of \mathbf{x}
- CPU time to compute all derivatives is comparable to forward calculation

Adjoint Differentiation Crucial to BIE Success

- Bayes Inference Engine (BIE) created in DX-3
- modeling tool for interpreting radiographs

BIE programmed by creating data-flow diagram, shown here for a 3D reconstruction problem

Adjoint differentiation in diffusion calculation

- Adjoint differentiation calculation precisely reverses direction of forward calculation
- Each forward data structure has an associated derivative - where \mathbf{U}_{n} propagates forward, $\frac{\partial \varphi}{\partial \mathbf{U}_{n}}$ goes backward $\left(\varphi=\frac{1}{2} \chi^{2}\right)$

Comments about diffusion problem

- Algorithm used to solve forward problem was chosen without regard to inversion process
- adjoint differentiation typically places no requirement on simulation method
- Simplifying aspects of diffusion problem:
- update operation depends only on parameters $D(x, y)$ and $\mu_{a b s}(x, y)$ (time independent)
- adjoint derivatives do not depend on state of system \mathbf{U}_{n}
- no need to save \mathbf{U}_{n} during forward calculation

Automatic differentiation

- Several tools exist for automatically differentiating codes (only available for FORTRAN77)
- TAMC (R. Giering, JPL, prev. MIT \& MPI-Meteorology)
- operates in both forward and reverse directions
- works for large codes; follows ADICT principle
- GRESS (Hordewel, et al., ORNL)
- operates in both forward and adjoint directions
- can not compute gradients wrt many parameters for large calcs.
- for adjoint, stores derivatives for each line of the forward code
- ADIFOR (Bischof, Griewank, et al., ANL)
- only operates in forward direction
- can not compute gradients wrt many parameters

Bayesian approach to inversion

- Inverse problems are often ill posed, meaning there is no unique solution
- Bayesian formalism overcomes ill posedness by introducing prior information through Bayes law:

$$
\ln p(\alpha \mid \mathbf{Y})=\ln p(\mathbf{Y} \mid \alpha)+\ln p(\alpha)+C
$$

- where $p(\alpha \mid \mathbf{Y})=$ posterior probability of the parameters α, $p(\mathbf{Y} \mid \alpha)=$ likelihood of the data, $p(\alpha)=$ prior probability of the parameters α
- Bayesian posterior $p(\alpha \mid \mathbf{Y})$ describes uncertainty in inferred parameters

Prior based on Markov Random Field model

- MRF can control local behavior of an intensity field
- Minus-log-prior given by (considering only D)

$$
-\ln p(\mathbf{D})=\beta \sum_{i_{c c c}}\left|D_{i}-\bar{D}_{i}\right|^{p}
$$

- where $D_{i}=$ diffusion coefficient at i th pixel, $\bar{D}_{i}=D$ averaged over a neighborhood of i th pixel
- this is added to minus-log likelihood ($\chi^{2} / 2$)
- The exponent p controls shape of penalty function
$-p=2$ (standard) excessively penalizes large fluctuations
$-p \cong 1$ results in better reconstructions
- Parameter β conveniently determined for MRF model

Examples

- Initial project - reconstruct $D(x, y)$ for simple phantom
- Saquib, Hanson, Cunningham (LANL)
- Extension to simultaneously obtain $D(x, y)$ and $\mu_{a}(x, y)$; simulations relevant to human tissue
- Hielscher, Klose, Catarious, Hanson (LANL)
- 3D reconstruction; applications to hypothetical diagnostic cases
- brain, ventricular bleeding, and arthritis in finger joints
- Hielscher, Klose (SUNY - Brooklyn), Hanson (LANL), Beuthan (FU Berlin)

Reconstruction of simple phantom

- Measurements
- section is $(6.4 \mathrm{~cm})^{2}, 0.7<D<1.4 \mathrm{~cm}^{2} \mathrm{~ns}^{-1}\left(\mu_{a \mathrm{bs}}=0.1 \mathrm{~cm}^{-1}\right)$
- 4 input pulse locations (middle of each side)
- 4 detector locations; intensity measured every 50 ps for 1 ns
- Reconstructions on 64×64 grid from noisy data ($\mathrm{rmsn}=3 \%$)
- conjugate-gradient optimization algorithm

${ }^{\text {srovodklyn }} \quad$ Simultaneously determine D and μ_{a}

Original D
 D [cm²/ns]

$40 \times 40=1600$ pixels, 2 parameters
16 source and 15 detector positions 50 time steps
derivatives by finite differences would take $1600 \times 2 \times 16 \times 27=$ 1,382,400 forward calculations

${ }^{\text {Broolk }}$ Silyn Simultaneously determine D and μ_{a}

Brooklyn
 Reconstruction of Infants' Brain I

Reconstruction

Original MRI data

hematoma (left side); cerebrospinal fluid pocket (upper right)

Reconstruction of Infants' Brain II

Original MRI data

blood-filled ventricle (occurs in 15-30\% of all preterm infants)

Reconstruction

(60 iterations ~ 70 min)

Browooklyn Create Optical Image of Finger Joint

Segmentation (40x40)

Simulated data obtained from optical image for source and detector positions shown

Brooklyn
 (14)

Reconstruction of Capsule

Reconstruction of Capsule

3D Reconstruction of Capsule

> 3D volume: $9 \times 30 \times 30=8100$ voxels 8 sources $\times 8$ detectors $\times 4$ layers

Further applications

- Applications under development
- inversion of transport equation (Alex Klose, FU Berlin)
- oceanographics (Ralf Giering, JPL)
- hydrodynamics (Rudy Henninger, LANL)
- General approach would be useful in
- reconstruction: imaging through refractive media (seismology, medical and NDE ultrasound), . . .
- matching large-scale simulations to data: atmosphere and ocean models, fluid dynamics, hydrodynamics
- optimization in large engineering design problems: optical lens, geometry of integrated circuits, aerodynamic shape, engines

Potential extensions of adjoint differentiation

- Higher order derivatives
$-\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}$ requires 2 forward and 2 adjoint calculations
- large intermediate matrices $=>$ restrict to $\sum_{j} \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}} x_{j}$
- Incorporate derivatives into data structures
- with each variable vector \mathbf{x}, associate $\delta \mathbf{x}$ and $\partial / \partial \mathbf{x}$
- for each transformation $f(\mathbf{x})$, associate $\frac{\partial f}{\partial \mathbf{x}}$ with capabilities for forward and adjoint propagation
- useful in symbolic languages, such as Maple (S. Gull)
- facilitated in object-oriented setting (Bayes Inference Engine)
- Construct new programming paradigm based on these composite data structures in OO environment
- view computer code as establishing links between transforms

Bibliography

- "Inversion based on computational simulations," K. M. Hanson, et al., in Maximum Entropy and Bayesian Methods, pp. 121-135 (Kluwer, 1998)
- "Model-based image reconstruction from time-resolved diffusion data," S. S. Saquib, et al., Proc. SPIE 3034, pp. 369-380 (1997)
- "Gradient-based iterative image reconstruction scheme for timeresolved optical tomography," A. H. Hielscher, et al., IEEE Trans. Med. Imag. 18, pp. 262-271 (1999)
- "Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis," A. D. Klose, et al., Proc. SPIE 3566 (1998)

Find these under author's home page http://home.lanl.gov/kmh/

