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Overview

• Bayesian approach to model-based analysis

• Example - tomographic reconstruction from two views

• Deformable geometric models

• Bayes Inference Engine - a radiographic modeling tool

• MAP reconstruction

• Sampling from probability density functions
> Markov Chain Monte Carlo (MCMC) technique

> probabilistic interpretation of priors

• Estimation of uncertainty in reconstructed shape
> Use of MCMC to sample posterior

> Hard truth approach - probe model stiffness
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Bayesian approach to model-based analysis

• Models
> used to analyze physical world

> parameters inferred from data

• Bayesian analysis
> uncertainties in parameters described by probability

density functions (pdf)

> prior knowledge may be incorporated

> quantitatively and logically consistent methodology for
making inferences

> open ended approach
• can incorporate new data

• can extend models and choose between alternatives
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Bayesian viewpoint

• Focus on probability distribution functions (pdf)
> uncertainties in estimates more central than the estimates

themselves

• Bayes law:  p(a|d) ~ p(a) p(d|a)
> where a is parameter vector and d represents data

> pdf before experiment, p(a)  (called prior)

> modified by pdf describing experiments, p(d|a)  (likelihood)

> yields pdf summarizing what is known, p(a|d)  (posterior)

• Experiment should provide decisive information
> posterior much narrower than prior



October 26, 1999 IEEE ICIP/Stochastic Geometry 5

Bayesian model building

• Steps in model building
> choose how to model (represent) object

> assign priors to parameters based on what is known
beforehand

> for given measurements, determine model with highest
posterior probability (MAP)

> assess uncertainties in model parameters

• Higher levels of inference
> assess suitability of model to explain data

> if necessary, try alternative models and decide among them
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Example - tomographic reconstruction
• Problem - reconstruct object from two projections

> 2 orthogonal, parallel projections (128 samples in each view)

> Gaussian noise;
rms-dev 5% of proj. max

Original object

Two orthogonal projections
with 5% rms noise
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Prior information in reconstruction

• Assumptions about object
> object density is uniform

> abrupt change in density at edge

> boundary is relatively smooth

• Object model
> object boundary - deformable geometric model

• relatively smooth

> interior has uniform density (known)

> exterior density is zero

> only variables are those describing boundary
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Deformable geometric models

• Natural to describe objects in terms of their
boundaries

• In data analysis aim is to balance
> internal energy ε: measure of deformation

> external energy, e.g. χ2: measure of mismatch to data

• Constrain smoothness based on curvature κ
> deformation energy, e.g.,  ε ∼   κ2 ds, for curve

> controls number of degrees of freedom of curve

• Analogy to elastic materials - rods, sheets

∫
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Tomographic reconstruction from two views

• Data consist of two orthogonal views
> parallel projections, each containing 128 samples

> Gaussian noise; rms-dev 5% of proj. max

• Object model
> boundary is 50-sided polygon

> smoothness achieved by prior on curvature κ
> uniform (known) density inside boundary

•  ϕ = - log posterior =                          ,
> where S is total perimeter,

>      is sum of squares of residuals divided by noise
variance
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The Bayes Inference Engine

• Flexible modeling tool developed at LANL
> object described as composite geometric and density model

> measurement process (principally radiography)

• User interface via data-flow diagram

• Full interactivity with every aspect of model

• Provides
> MAP estimate by optimization (gradient by ADICT)

> samples of posterior by MCMC

> uncertainty estimates
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The Bayes Inference Engine

• BIE data-flow diagram to find MAP solution

> Optimizer uses gradients calculated by adjoint differentiation
in code technique(ADICT)

Boundary
specification

Boundary
description

Input projections

χ 2
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MAP reconstruction

Reconstructed boundary (gray-scale)
compared with

original object (red line)

• Determine boundary that maximizes posterior
probability
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MCMC
Markov Chain Monte Carlo

• Generate sequence of random samples from
specified probability density function
> represent pdf with finite number of samples

• Markov chain - probability of kth state in sequence
depends only on (k-1)th state

• Monte Carlo procedure
> based on pseudo-random numbers generated by

computer

> estimated quantities always uncertain because of event
statistics
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MCMC - Metropolis algorithm

• Generate sequence of random samples from
probability density function q(x), where x is vector
of parameters

• Start with arbitrary x0

• Recursive loop to generate sequence:  at point xk

> pick new trial vector x* = xk + ∆x,
where ∆x drawn from symmetric p.d.f.

> calculate:  r = q(x*)/q(xk)
   if greater than 1, accept step; xk+1 = x*
   if less than 1, accept step with probability r
   otherwise, repeat previous point; xk+1 = xk
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MCMC - Metropolis algorithm

x1

x2

Probability q(x1, x2)
accepted step
rejected step

• Metropolis algorithm:
> draw trial step from symmetric

pdf, i.e.,  T(∆x) =  T(-∆x)

> accept or reject trial step based on
q(xk + ∆x)/q(xk)

> relies only on calculation of
target pdf q(x)

> simple and generally applicable

> works well for several parameters

Generates sequence of random samples from an arbitrary target
probability density function, q(x)
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The Bayes Inference Engine

• BIE data-flow diagram to produce MCMC sequence

Boundary
specification

Image

Boundary
specification

Input projections

χ 2
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Probabilistic interpretation of prior
for deformable model

• Probability of shape:

• Sample prior pdf using MCMC
> shows variety of shapes deemed admissible before

experiment

> decide on α = 5 on basis of appearance of shapes

Plausible shapes drawn from prior for α = 5

( ) 
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Visualization of uncertainty

• Problem inherently difficult for numerous parameters
> wish to see correlations among uncertainties in parameters

• View MCMC sequence as video loop
> advantage is one directly observes model in normal way

• View several plausible realizations from MCMC
sequence

• Marginalized uncertainties (one parameter at a time)
> rms uncertainty (or variance) for each parameter

> credible intervals
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Uncertainties in two-view reconstruction

• From MCMC samples from posterior with 150,000
steps, display three selected boundaries
> these represent alternative plausible solutions

compared to MAP estimated objectcompared to original object
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Posterior mean of gray-scale image

• Average gray-scale images over MCMC samples from
posterior

• Value of pixel is probability it lies inside object boundary

• Amount of blur in edge is related to magnitude of
uncertainty in edge localization

• Observe that posterior median nearly same as MAP
boundary
> implies posterior probability distribution symmetric about MAP

parameter set
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Posterior mean of gray-scale image

• Pixels in posterior mean image with value 0.5
represent posterior median boundary position
> similar to MAP boundary

for two-view problem

Posterior mean image
compared to

MAP boundary (red line)
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Uncertainty in edge localization

• Steepness of edge profile of posterior mean image
indicates uncertainty in edge localization
> uncertainty is nonstationary; varies with position

Top, left of center, less well determinedAt top of reconstruction (tangent point)
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Credible interval

• Bayesian "confidence interval"
> probability that actual parameter lies within interval

> different from standard definition of confidence interval,
which is based on (hypothetical) repeated experiments

• For MCMC posterior mean image, determines credible
interval for boundary position
> 95% credible interval is region of posterior mean image

whose pixel values lie between 0.025 and 0.975.
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Credible interval

• 95% credible interval of boundary localization for
two-view reconstruction compared with original
object boundary (red line)
> narrower at tangent points

> 92% of original boundary
lies inside
95% credible interval

• Marginalized measure
of uncertainty -
ignores correlations
among different positions
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Important issues

• Bayesian vs. frequentist approach to uncertainty
assessment
> MCMC sampling of posterior

• single data set, single object

> Monte Carlo simulation of repeated experiments to determine
characteristics of the estimator used

• variety of data sets (variety of objects)

• Advantages of Bayesian approach
> applies to specific data set supplied

> illuminates null space; multiple solutions that yield exactly
same measurements
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Important issues

• Markov Chain Monte Carlo
> efficiency - number of function evaluations required to

obtain given level of accuracy in posterior characterization
• choice of trial step distribution

• account for correlations among different parameters

• for Metropolis algorithm, efficiency ~ (number parameters)-1

> burn in period at beginning of MCMC sequence to reach
equilibrium with target pdf

• how long should burn in be?

> need algorithms to improve efficiency
• hybrid method, based on Hamiltonian dynamics (needs gradient)
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Hard truth method

• Interpret j = - log probability
as potential function; sum of
> deformation energy

>

• Stiffness of model
proportional to curvature of j

• Row of covariance matrix
found by applying a force to
parameters at MAP solution
and reminimizing j

χ 2

2
1

Applying force (white bar) to
MAP boundary (red) moves it to
new location (yellow-dashed)
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