Optical tomography: seeing inside the body

Kenneth M. Hanson
Max-Planck-Institut für Plasmaphysik
Garching bei München
Los Alamos National Laboratory

This presentation available under http://home.lanl.gov/kmh/

Overview of presentation

- General problem of inversion of complex simulations
- Introduction to optical tomography
- Modeling of propagation of IR photons in tissue as diffusion process
- Simulation of diffusion process by finite-difference method - "the forward problem"
- Reconstruction of optical properties using adjoint differentiation - "the inverse problem"
- Examples of IR tomographic reconstructions
- Other applications of general technique

Inversion of complex simulations

- There are BIG problems that
- require complex numerical simulations
- are nonlinear in nature
- one would like to fit to data, that is, solve the inverse problem
- Typically approximations are made in forward simulation to facilitate the solution of the inverse problem
- perturbation methods (Born approximation)
- expansion in terms of basis functions
- linearization of the problem
- degrading the resolution
- Advanced methods are needed to invert large numerical simulations

Inversion of complex simulations

- Advanced techniques are required to cope with large data structures and numerous parameters
- Optimization
- gradient-based quasi-Newton methods (e.g., CG, BFGS)
- adjoint differentiation for efficient calculation of gradients
- multiresolution methods for controlling optimization
- Bayesian methods
- overcome ill posedness of inversion
- Markov chain Monte Carlo to characterize uncertainties
- Appropriate higher-order models
- Markov random fields
- deformable geometrical models
- but also consider lowest order, elemental representations

Optical tomography - general idea

- Shine light on tissue sample; measure light out

Optical tomography

- Similar to x-ray computed tomography, so:
- Can one actually do optical tomography?
- What are best operating conditions?
- What are imaging properties and diagnostic uses?

Physics of propagation of light in tissue

- Basic processes are scattering and absorption of photons
- absorption in tissue is minimal in infrared range
- IR photons can actually pass through bone
- for soft tissue, $\mu_{\text {scat }} \approx 1-10 \mathrm{~cm}^{-1}, \mu_{a b s} \approx 0.1 \mathrm{~cm}^{-1}$
- Transport equation generally applies
- Diffusion equation often good approximation
- valid when scattering is isotropic and without energy loss

Proposed experimental scheme

- Shine IR light pulse on tissue sample at several positions
- For each input pulse, measure at several output positions the light intensity vs. time with time resolution $\ll 1 \mathrm{~ns}$.
- prompt, unscattered photons; few survive thick sections
- multiply scattered photons; meander or diffuse through section

Alternative experimental schemes

- Numerous types of measurements of the light transmitted through tissue sample are possible:
- pulsed input, measure full time dependence distribution (delta-function response)
- pulsed input, measure average time $<\mathrm{t}>$ (first moment of time distribution)
- modulated input, measure amplitude and phase of modulated output intensity (Fourier transform of delta-function response)
- constant input, measure amplitude of output (integrated deltafunction response)

Modeling of process

- IR light photons in broad, retarded peak literally "diffuse" by multiple scattering from source to detector
- time is equivalent to distance traveled
- diffusion equation models these multiply-scattered photons
- these photons do not follow straight lines

Example - simulation of light diffusion

$0.7<D<1.4 \mathrm{~cm}^{2} \mathrm{~ns}^{-1}\left(\mu_{a}=0.1 \mathrm{~cm}^{-1}\right)$

- for assumed distribution of diffusion coefficients (left)
- predict time-dependent output at four locations (right)
- reconstruction problem - determine image on left from data on right

Reconstruction problem

- Determine tissue properties from measurements
- diffusion coefficient $D(x, y)$ and absorption coefficient $\mu_{a}(x, y)$, as a function of position - therefore, many unknowns
- Many problems must be overcome
- photon paths depend on properties to be reconstructed
- hence, inverse problem is nonlinear and difficult
- measurements can only be calculated numerically; no analytic expression for measurements in terms of D and μ_{a}
- gradients are desired for speedy gradient-based optimization
- needed with respect to (wrt) many unknowns
- analytic gradients not available
- numerical gradients by perturbation would be time consuming

Diffusion equation

- Infrared light diffuses through tissue and bone
- Partial differential equation describes diffusion process
- $U(x, y, t)$ is intensity of diffused light (no angular dependence)

$$
\frac{\partial U}{\partial t}=\frac{\partial}{\partial x}\left[D \frac{\partial U}{\partial x}\right]+\frac{\partial}{\partial y}\left[D \frac{\partial U}{\partial y}\right]-c \mu_{a b s} U+S
$$

- where $D(x, y)$ is position-dependent diffusion coefficient,
$\mu_{a b s}(x, y)$ is the linear absorption coefficient,
c is the speed of light,
$S(x, y, t)$ is a source term;
$D=c\left[3\left(\mu_{a b s}+\mu_{s c a t}^{\prime}\right)\right]^{-1}\left(\mu_{s c a t}^{\prime}=\right.$ eff. scattering coefficient $)$

Method of finite differences

- Approximate derivatives by finite differences
- wrt time: $\frac{\partial U}{\partial t} \Rightarrow \frac{\Delta U}{\Delta t}=\frac{U_{i, n+1}-U_{i, n}}{\Delta t}$
- wrt position: $\frac{\partial^{2} U}{\partial x^{2}} \Rightarrow \frac{U_{i+1, n}-2 U_{i, n}+U_{i-1, n}}{(\Delta x)^{2}}$
- Differential equation then becomes a set of linear equations to be solved to obtain time-step update
- calculate time evolution, starting with initial conditions
- Question: at what time should second derivative wrt position be calculated, n or $n+l$?

Calculation of finite differences

- For diffusion equation, need
- temporal first order derivative
- spatial second order derivative
- Explicit technique
- for step from time n to $n+1$, evaluate spatial derivative at n
- unstable for moderate time steps
- Implicit technique
- for step from time n to $n+1$, evaluate spatial derivative at $n+1$
- inherently stable

Explicit method

- Evaluating position derivatives at n

$$
\frac{U_{i, n+1}-U_{i, n}}{\Delta t}=D_{i} \frac{U_{i+1, n}-2 U_{i, n}+U_{i-1, n}}{(\Delta x)^{2}}-c \mu_{i} U_{i, n}+S_{i, n}
$$

- for clarity, ignore position dependence of D and y coord.
- yields set of linear equations:

$$
\mathbf{U}_{n+1}=\mathbf{B} \mathbf{U}_{n}+b \mathbf{S}_{n} \quad(b \text { is a scalar constant })
$$

- Result is \mathbf{U}_{n+1} at new time $n+1$ given explicitly in terms of state at previous \mathbf{U}_{n}
- Easy to calculate time steps
- Unfortunately, inherently unstable for moderate Δt

Implicit method

- Evaluating position derivatives at time $n+1$

$$
\frac{U_{i, n+1}-U_{i, n}}{\Delta t}=D_{i} \frac{U_{i+1, n+1}-2 U_{i, n+1}+U_{i-1, n+1}}{(\Delta x)^{2}}-c \mu_{i} U_{i, n+1}+\frac{1}{2}\left(S_{i, n+1}+S_{i, n}\right)
$$

- for clarity, ignore position dependence of D and y coord.
- yields set of linear equations:

$$
\mathbf{A} \mathbf{U}_{n+1}=\mathbf{U}_{n}+a \mathbf{S}_{n} \quad(a \text { is a scalar constant })
$$

- Result is that \mathbf{U}_{n+1} at new time $n+l$ is given implicitly in terms of state at previous time \mathbf{U}_{n}
- Must solve set of linear eqs. to calculate time steps
- Inherently stable for moderate Δt

Finite-difference calculation

- Data-flow diagram shows calculation of time-dependent measurements by finite-difference simulation
- Calculation marches through time steps Δt
- new state $\mathbf{U}_{\mathrm{n}+1}$ depends only on previous state \mathbf{U}_{n}

Inversion of forward calculation

- To find parameters $\alpha=\left(D, \mu_{a}\right)$, minimize minus-loglikelihood of data:

$$
\phi(\alpha)=-\ln p(\mathbf{Y} \mid \alpha)=\frac{1}{2} \sum_{m} \frac{\left(Y_{m}-Y_{m}^{*}\right)^{2}}{\sigma_{m}^{2}}=\frac{1}{2} \chi^{2}
$$

- where Y_{m} is the m th measurement
$Y_{m}{ }^{*}$ its predicted value ($=U_{s, n}$ at appropriate s and n)
σ_{m} is rms noise in measurement
- measurements are at fixed position, but at all times
- Problems for inverting diffusion process
- inversion may be ill posed, a theoretical issue
- have only numerical solution of forward simulation, so calculation of gradient poses practical problem

Parameter estimation by fitting data

- Diagram describes general approach (analytical and computational)
- Find parameters (vector α) that minimize $-\ln p\left(\mathbf{Y} \mid \mathbf{Y}^{*}(\alpha)\right)$
- Result is maximum likelihood estimate for α
- also known as minimum-chi-squared or least-squares solution
- Optimization process is accelerated by using gradient-based algorithms; therefore need gradients of simulation and measurement processes

Differentiation of sequence of transformations

- Data-flow diagram shows sequence of transformations A->B->C that converts data structure \mathbf{x} to \mathbf{y} to \mathbf{z} and then scalar φ
- Desire derivatives of φ wrt all components of \mathbf{x}, assuming φ is differentiable
- Chain rule applies: $\frac{\partial \varphi}{\partial x_{i}}=\sum_{j, k} \frac{\partial y_{j}}{\partial x_{i}} \frac{\partial z_{k}}{\partial y_{j}} \frac{\partial \varphi}{\partial z_{k}}$
- Two choices for summation order; the one that reverses data flow is preferable, because it avoids large intermediate matrices of derivatives

Adjoint Differentiation In Code Technique ADICT

- For sequence of transformations that converts data structure \mathbf{x} to scalar φ
- Derivatives $\frac{\partial \varphi}{\partial \mathbf{x}}$ are efficiently calculated in the reverse (adjoint) direction
- Code-based approach: logic of adjoint code is based explicitly on the forward code or on derivatives of the forward algorithm
- Not based on the theoretical equations, which forward only approximate
- Only assumption is that φ is a differentiable function of \mathbf{x}
- CPU time to compute all derivatives is comparable to forward calculation

Sequence of forward and adjoint calculations

- Normal sequence for ADICT
- first do full forward calculation (i.e., for all time steps)
- then do full adjoint calculation
 in reverse direction, from final time back to beginning
- Adjoint calculation may need state of system from forward calculation
- required link shown as vertical dashed lines
- all necessary state variables must be saved from forward calculation to provide information to adjoint calculation

Check pointing forward results

- Adjoint calculation may need state of system from forward calculation
- this requirement may exceed available memory
- Check pointing
- first do full forward calc., saving state of system at selected times
- then do adjoint calc. piecewise, repeating forward calc. to obtain states intermediate to those saved
- trades off memory for compute time (for N time steps save $\sim \sqrt{\mathrm{N}}$
 storage for one extra forward calc.)

Adjoint differentiation in diffusion calculation

- Adjoint differentiation calculation precisely reverses direction of forward calculation
- Each forward data structure has associated derivative - where \mathbf{U}_{n} propagates forward, $\frac{\partial \varphi}{\partial \mathbf{U}_{n}}$ goes backward $\left(\varphi=\frac{1}{2} \chi^{2}\right)$

Adjoint differentiation of forward calculation

- Sensitivity of $\varphi=\frac{1}{2} \chi^{2}$ wrt parameters $\alpha_{i}=\left(D \text { or } \mu_{a}\right)_{i}$

$$
\frac{d \varphi}{d \alpha_{k}}=\sum_{i, n} \frac{d \varphi}{d U_{i, n}} \frac{\partial U_{i, n}}{\partial \alpha_{k}}
$$

- Get second factor from update formula

$$
\mathbf{A U}_{n}=\mathbf{U}_{n-1}+a \mathbf{S}_{n}
$$

- For explicit α_{k} sensitivity, differentiate wrt α_{k}, taking \mathbf{U}_{n-1} as constant:

$$
\frac{\partial \mathbf{A}}{\partial \alpha_{k}} \mathbf{U}_{n}+\mathbf{A} \frac{\partial \mathbf{U}_{n}}{\partial \alpha_{k}}=0
$$

which leads to $\frac{\partial \mathbf{U}_{n}}{\partial \alpha_{k}}=-\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \alpha_{k}} \mathbf{U}_{n}$

Adjoint differentiation of forward calculation

- Dependence of \mathbf{U}_{n+1} on \mathbf{U}_{n} comes from update formula

$$
\mathbf{A U}_{n+1}=\mathbf{U}_{n}+a \mathbf{S}_{n}
$$

- Differentiate wrt $\mathbf{U}_{n+1}: \quad \frac{\partial \mathbf{U}_{n+1}}{\partial \mathbf{U}_{n}}=\mathbf{A}^{-1}$
- Total derivative of φ wrt \mathbf{U}_{n} yields propagation rule

$$
\frac{d \varphi}{d \mathbf{U}_{n}}=\left[\frac{d \mathbf{U}_{n+1}}{d \mathbf{U}_{n}}\right]^{\mathrm{T}} \frac{d \varphi}{d \mathbf{U}_{n+1}}+\frac{\partial \varphi}{\partial \mathbf{U}_{n}}=\left[\mathbf{A}^{-1}\right]^{\mathrm{T}} \frac{d \varphi}{d \mathbf{U}_{n+1}}+\frac{\partial \varphi}{\partial \mathbf{U}_{n}}
$$

- second term is derivative of φ wrt \mathbf{U}_{n} when all other parameters are held constant
- first term for \mathbf{U}_{n} variation arising from other parameters

Adjoint differentiation of forward calculation

- Differentiate objective function, minus-log-likelihood:

$$
\varphi(\alpha)=-\ln p(\mathbf{Y} \mid \alpha)=\frac{1}{2} \sum_{m} \frac{\left(Y_{m}-U_{s, n}\right)^{2}}{\sigma_{m}^{2}}=\frac{1}{2} \chi^{2}
$$

- where $U_{s, n}$ is at the position s and time n corresponding to the m th measurement
- Derivative wrt each $U_{s, n}$ that contributes to the m th measurement is

$$
\frac{\partial \varphi}{\partial U_{s, n}}=-\frac{Y_{m}-U_{s, n}}{\sigma_{m}^{2}}
$$

Comments about diffusion problem

- Algorithm used to solve forward problem was chosen without regard to inversion process
- adjoint differentiation typically places no requirement on simulation method
- Simplifying aspects of diffusion problem:
- update operation depends only on parameters $D(x, y)$ and $\mu_{a b s}(x, y)$ (time independent)
- adjoint derivatives do not depend on state of system \mathbf{U}_{n}
- no need to save \mathbf{U}_{n} during forward calculation

Automatic differentiation

- Several tools exist for automatically differentiating codes (only available for FORTRAN77)
- TAMC (R. Giering, JPL, prev. MPI-Meteorology)
- operates in both forward and reverse directions
- works for large codes; follows ADICT principle
- GRESS (Hordewel, et al., ORNL)
- operates in both forward and adjoint directions
- can not compute gradients wrt many parameters for large calcs.
- stores derivatives for each line of the forward code
- ADIFOR (Bischof, Griewank, et al., ANL)
- only operates in forward direction
- can not compute gradients wrt many parameters

Bayesian approach to inversion

- Inverse problems are often ill posed, meaning there is no unique solution
- Bayesian formalism overcomes ill posedness by introducing prior information through Bayes law:

$$
\ln p(\alpha \mid \mathbf{Y})=\ln p(\mathbf{Y} \mid \alpha)+\ln p(\alpha)+C
$$

- where $p(\alpha \mid \mathbf{Y})=$ posterior probability of the parameters α $p(\mathbf{Y} \mid \alpha)=$ likelihood of the data $p(\alpha)=$ prior probability of the parameters α
- Bayesian posterior $p(\alpha \mid \mathbf{Y})$ describes uncertainty in inferred parameters

Prior based on Markov Random Field model

- MRF can control local behavior of an intensity field
- Minus-log-prior given by (considering only D)

$$
-\ln p(\mathbf{D})=\beta \sum_{i_{c} c c}\left|D_{i}-\bar{D}_{i}\right|^{p}
$$

- where $D_{i}=$ diffusion coefficient at i th pixel

$$
\bar{D}_{i}=D \text { averaged over a neighborhood of } i \text { th pixel }
$$

- this is added to minus-log likelihood ($\chi^{2} / 2$)
- The exponent p controls shape of penalty function
$-p=2$ (standard) excessively penalizes large fluctuations
$-p \cong 1$ results in better reconstructions
- Parameter β conveniently determined for MRF model

Examples

- Initial project - reconstruct $D(x, y)$ for simple phantom
- Saquib, Hanson, Cunningham (LANL)
- Extension to simultaneously obtain $D(x, y)$ and $\mu_{a}(x, y)$; simulations relevant to human tissue
- Hielscher, Klose, Catarious, Hanson (LANL)
- 3D reconstruction; applications to hypothetical diagnostic cases
- brain, ventricular bleeding, and arthritis in finger joints
- Hielscher, Klose (SUNY - Brooklyn), Hanson (LANL), Beuthan (FU Berlin)

Reconstruction of simple phantom

- Measurements
- section is $(6.4 \mathrm{~cm})^{2}, 0.7<D<1.4 \mathrm{~cm}^{2} \mathrm{~ns}^{-1}\left(\mu_{a b s}=0.1 \mathrm{~cm}^{-1}\right)$
- 4 input pulse locations (middle of each side)
- 4 detector locations; intensity measured every 50 ps for 1 ns
- Reconstructions on 64×64 grid from noisy data ($\mathrm{rmsn}=3 \%$)
- conjugate-gradient optimization algorithm

${ }^{\text {Brooleklyn }}$ Simultaneously determine D and μ_{a}

Original D $D\left[\mathrm{~cm}^{2} / \mathrm{ns}\right] \quad$ Reconstruction $\left(D_{0}=1\right)$

$40 \times 40=1600$ pixels, 2 parameters
16 source and 15 detector positions 50 time steps
derivatives by finite differences would take $1600 \times 2 \times 16 \times 27=$ 1,382,400 forward calculations

${ }^{\text {Broolk }}$ hyn Simultaneously determine D and μ_{a}

Brooklyn
 Reconstruction of Infants' Brain I

Reconstruction

hematoma (left side); cerebrospinal fluid pocket (upper right)

${ }^{\text {Bropeklekn }}$ Reconstruction of Infants' Brain II

Original MRI data

blood-filled ventricle (occurs in 15-30\% of all preterm infants)

Reconstruction

(60 iterations ~ 70 min)

Broooklyn Create Optical Image of Finger Joint

MRI

Segmentation (40x40)

Brooklyn
 (iii)

Reconstruction of Capsule

Reconstruction of Capsule

3D Reconstruction of Capsule

Further applications

- Applications under development
- inversion of transport equation (Alex Klose, FU Berlin)
- oceanographics (Ralf Giering, JPL)
- hydrodynamics (Rudy Henninger, LANL)
- General approach could be useful in
- reconstruction - seismology, ultrasound, imaging through dispersive media, ...
- matching large-scale simulations to data, e.g., atmosphere and ocean models, fluid dynamics
- optimization in large engineering design problems, e.g., best shape for aerodynamic streamlining

Potential extensions of adjoint differentiation

- Higher order derivatives
$-\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}$ requires 2 forward and 2 adjoint calculations
- large intermediate matrices $=>$ restrict to $\sum_{j} \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}} x_{j}$
- Incorporate derivatives into data structures
- with each variable vector \mathbf{x}, associate $\delta \mathbf{x}$ and $\partial / \partial \mathbf{x}$
- for each transformation $f(\mathbf{x})$, associate $\frac{\partial f}{\partial \mathbf{x}}$ with capabilities for forward and adjoint propagation
- useful in symbolic languages, such as Maple (S. Gull)
- easy to do in object-oriented setting (Bayes Inference Engine)
- Construct new programming paradigm based on these composite data structures in OO environment
- view computer code as establishing links between transforms

Acknowledgements

- Optical tomography
- Suhail Saquib, Greg Cunningham
- Andreas Hielscher, Alex Klose, David Catarious
- Bayes Inference Engine
- Greg Cunningham
- Xavier Battle, Bob McKee
- Applications to hydrodynamics
- Rudy Henninger, Maria Rightley
- General discussions
- C. Thacker, J. Skilling, S. Gull, R. Silver, J. Gee
- R. Giering, P. Maudlin, L. Margolin, B. Travis

Bibliography

- "Inversion based on computational simulations," K. M. Hanson, et al., in Maximum Entropy and Bayesian Methods, pp. 121-135 (Kluwer, 1998)
- "Model-based image reconstruction from time-resolved diffusion data," S. S. Saquib, et al., Proc. SPIE 3034, pp. 369-380 (1997)
- "Gradient-based iterative image reconstruction scheme for timeresolved optical tomography," A. H. Hielscher, et al., IEEE Trans. Med. Imag. 18, pp. 262-271 (1999)
- "Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis," A. D. Klose, et al., Proc. SPIE 3566 (1998)

Find these under author's home page http://home.lanl.gov/kmh/

