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Overview of presentation

• General problem of inversion of complex simulations

• Introduction to optical tomography

• Modeling of propagation of IR photons in tissue as
diffusion process

• Simulation of diffusion process by finite-difference
method - “ the forward problem”

• Reconstruction of optical properties using adjoint
differentiation - “ the inverse problem”

• Examples of IR tomographic reconstructions

• Other applications of general technique
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 Inversion of complex simulations
• There are BIG problems that

– require complex numerical simulations

– are nonlinear in nature

– one would like to fit to data, that is, solve the inverse problem

• Typically approximations are made in forward simulation
to facilitate the solution of the inverse problem
– perturbation methods (Born approximation)

– expansion in terms of basis functions

– linearization of the problem

– degrading the resolution

• Advanced methods are needed to invert large numerical
simulations
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 Inversion of complex simulations
• Advanced techniques are required to cope with large data

structures and numerous parameters
– Optimization

• gradient-based quasi-Newton methods (e.g., CG, BFGS)

• adjoint differentiation for efficient calculation of gradients

• multiresolution methods for controlling optimization

– Bayesian methods
• overcome ill posedness of inversion

• Markov chain Monte Carlo to characterize uncertainties

– Appropriate higher-order models
• Markov random fields

• deformable geometrical models

• but also consider lowest order, elemental representations
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Optical tomography - general idea

• Similar to x-ray computed tomography, so:
– Can one actually do optical tomography?

– What are best operating conditions?

– What are imaging properties and diagnostic uses?

light
in

light
out

x-rays
out

x-rays
in

• Shine light on tissue sample; measure light out

Optical tomography X-ray tomography
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Physics of propagation of light in tissue

• Basic processes are scattering and absorption of photons
– absorption in tissue is minimal in infrared range

– IR photons can actually pass through bone

– for soft tissue,  µscat  ≈ 1-10 cm-1, µabs  ≈ 0.1 cm-1

• Transport equation generally applies

• Diffusion equation often good approximation
– valid when scattering is isotropic and without energy loss
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Proposed experimental scheme

• Shine IR light pulse on tissue sample at several positions

• For each input pulse, measure at several output positions
the light intensity vs. time with time resolution << 1 ns.
– prompt, unscattered photons; few survive thick sections

– multiply scattered photons; meander or diffuse through section
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Alternative experimental schemes

• Numerous types of measurements of the light
transmitted through tissue sample are possible:
– pulsed input, measure full time dependence distribution

(delta-function response)

– pulsed input, measure average time <t> (first moment of time
distribution)

– modulated input, measure amplitude and phase of modulated
output intensity (Fourier transform of delta-function response)

– constant input, measure amplitude of output (integrated delta-
function response)
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Modeling of process

• IR light photons in broad, retarded peak literally
“diffuse” by multiple scattering from source to detector
– time is equivalent to distance traveled

– diffusion equation models these multiply-scattered photons

– these photons do not follow straight lines
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Example - simulation of light diffusion

– for assumed distribution of diffusion coefficients (left)

– predict time-dependent output at four locations (right)

– reconstruction problem - determine image on left from
data on right
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0.7< D <1.4 cm2ns-1 (µa=0.1 cm-1)
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Reconstruction problem

• Determine tissue properties from measurements
– diffusion coefficient D(x,y) and absorption coefficient µa(x,y),

as a function of position - therefore, many unknowns

• Many problems must be overcome
– photon paths depend on properties to be reconstructed

– hence, inverse problem is nonlinear and difficult

– measurements can only be calculated numerically;
no analytic expression for measurements in terms of D and µa

– gradients are desired for speedy gradient-based optimization
• needed with respect to (wrt) many unknowns

• analytic gradients not available

• numerical gradients by perturbation would be time consuming
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Diffusion equation

• Infrared light diffuses through tissue and bone

• Partial differential equation describes diffusion process
– U(x,y,t) is intensity of diffused light (no angular dependence)

– where D(x,y) is position-dependent diffusion coefficient,
µabs(x,y) is the linear absorption coefficient,
c is the speed of light,
S(x,y,t) is a source term;

                                    (        = eff. scattering coefficient)
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Method of finite differences

• Approximate derivatives by finite differences
– wrt time:

– wrt position:

• Differential equation then becomes a set of linear
equations to be solved to obtain time-step update
– calculate time evolution, starting with initial conditions

• Question: at what time should second derivative
wrt position be calculated, n or n+1?

t

UU

t

U

t

U nini

∆
−

=
∆

∆⇒
∂

∂ + ,1,

2
,1,,1

2

2

)(

2

x

UUU

x

U ninini

∆
+−

⇒
∂
∂ −+



April 26, 1999 TU Graz, Austria 14

Calculation of finite differences

tn tn+1tn-1 time
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• For diffusion equation, need
– temporal first order derivative

– spatial second order derivative

• Explicit technique
– for step from time n to n+1,

evaluate spatial derivative at n

– unstable for moderate time steps

• Implicit technique
– for step from time n to n+1,

evaluate spatial derivative at n+1

– inherently stable
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Explicit method

• Evaluating position derivatives at n

– for clarity, ignore position dependence of D and y coord.

– yields set of linear equations:

• Result is Un+1 at new time n+1 given explicitly in
terms of state at previous Un

• Easy to calculate time steps

• Unfortunately, inherently unstable for moderate ∆t
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Implicit method

• Evaluating position derivatives at time n+1

– for clarity, ignore position dependence of D and y coord.

– yields set of linear equations:

• Result is that Un+1 at new time n+1 is given implicitly
in terms of state at previous time Un

• Must solve set of linear eqs. to calculate time steps

• Inherently stable for moderate ∆t
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Finite-difference calculation

• Data-flow diagram shows calculation of time-dependent
measurements by finite-difference simulation

• Calculation marches through time steps ∆t

– new state Un+1 depends only on previous state Un
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Inversion of forward calculation

• To find parameters α = (D, µa), minimize minus-log-
likelihood of data:

– where Ym is the mth measurement
Ym

*
  its predicted value (= Us,n at appropriate s and n)

σm is rms noise in measurement

– measurements are at fixed position, but at all times

• Problems for inverting diffusion process
– inversion may be ill posed, a theoretical issue

– have only numerical solution of forward simulation,
so calculation of gradient poses practical problem
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Parameter estimation by fitting data

Initial State
Ψ(0)

Simulation

 Parameters
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

- ln p(Y | Y*)
= 1/2 χ2

• Diagram describes general approach (analytical and computational)

• Find parameters (vector α) that minimize -ln p(Y| Y*(α))

• Result is maximum likelihood estimate for α
– also known as minimum-chi-squared or least-squares solution

• Optimization process is accelerated by using gradient-based algorithms;
therefore need gradients of simulation and measurement processes
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Differentiation of sequence of transformations

A
x

B C
zy ϕ

• Data-flow diagram shows sequence of transformations A->B->C that
converts data structure x to y to z and then scalar ϕ

• Desire derivatives of ϕ wrt all components of x, assuming ϕ is
differentiable

• Chain rule applies:

• Two choices for summation order; the one that reverses data flow is
preferable, because it avoids large intermediate matrices of derivatives
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Adjoint Differentiation In Code Technique
ADICT

A
x

B C
zy ϕ

• For sequence of transformations that converts data structure x to scalar ϕ
• Derivatives      are efficiently calculated in the reverse (adjoint) direction

• Code-based approach: logic of adjoint code is based explicitly on the
forward code or on derivatives of the forward algorithm

• Not based on the theoretical equations, which forward only approximate

• Only assumption is that ϕ is a differentiable function of x
• CPU time to compute all derivatives is comparable to forward calculation
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Sequence of forward and adjoint calculations

tn tn+1tn-1

simulation time
• Normal sequence for ADICT

– first do full forward calculation
(i.e., for all time steps)

– then do full adjoint calculation
in reverse direction, from final
time back to beginning

. . .. . .

• Adjoint calculation may need state of system from
forward calculation
– required link shown as vertical dashed lines

– all necessary state variables must be saved from forward
calculation to provide information to adjoint calculation
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Check pointing forward results

• Adjoint calculation may need state of system from
forward calculation
– this requirement may exceed available memory

tn tn+1tn-1

simulation time
. . .. . .

redo forward calcs

saved

• Check pointing
– first do full forward calc., saving

state of system at selected times

– then do adjoint calc. piecewise,
repeating forward calc. to obtain
states intermediate to those saved

– trades off memory for compute
time (for N time steps save ~
storage for one extra forward calc.)

saved

N
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Adjoint differentiation in diffusion calculation

• Adjoint differentiation calculation precisely reverses
direction of forward calculation

• Each forward data structure has associated derivative
– where Un propagates forward,         goes backward
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Adjoint differentiation of forward calculation

• Sensitivity of              wrt parameters αi = (D or µa)i

• Get second factor from update formula

• For explicit αk sensitivity, differentiate wrt αk, taking
Un-1 as constant:

  which leads to
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Adjoint differentiation of forward calculation

• Dependence of Un+1 on Un comes from update formula

• Differentiate wrt Un+1:

• Total derivative of ϕ wrt Un yields propagation rule

– second term is derivative of ϕ wrt Un when all other parameters
are held constant

– first term for Un variation arising from other parameters
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Adjoint differentiation of forward calculation

• Differentiate objective function, minus-log-likelihood:

– where Us,n is at the position s and time n corresponding to
the mth measurement

• Derivative wrt each Us,n that contributes to the mth
measurement is
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 Comments about diffusion problem

• Algorithm used to solve forward problem was
chosen without regard to inversion process
– adjoint differentiation typically places no requirement on

simulation method

• Simplifying aspects of diffusion problem:
– update operation depends only on parameters D(x,y) and

µabs(x,y)  (time independent)

– adjoint derivatives do not depend on state of system Un

– no need to save Un during forward calculation
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Automatic differentiation

• Several tools exist for automatically differentiating
codes (only available for FORTRAN77)
– TAMC (R. Giering, JPL, prev. MPI-Meteorology)

• operates in both forward and reverse directions

• works for large codes; follows ADICT principle

– GRESS (Hordewel, et al., ORNL)
• operates in both forward and adjoint directions

• can not compute gradients wrt many parameters for large calcs.

• stores derivatives for each line of the forward code

– ADIFOR (Bischof, Griewank, et al., ANL)
• only operates in forward direction

• can not compute gradients wrt many parameters
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Bayesian approach to inversion

• Inverse problems are often ill posed, meaning there is
no unique solution

• Bayesian formalism overcomes ill posedness by
introducing prior information through Bayes law:

– where p(α|Y) = posterior probability of the parameters α
p(Y|α) = likelihood of the data
p(α) = prior probability of the parameters α

• Bayesian posterior p(α|Y) describes uncertainty in
inferred parameters

Cppp ++= )(ln)|(ln)|(ln ααα YY
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Prior based on Markov Random Field model

• MRF can control local behavior of an intensity field

• Minus-log-prior given by (considering only D)

– where      = diffusion coefficient at ith pixel
   = D averaged over a neighborhood of ith pixel

– this is added to minus-log likelihood (χ2/2)

• The exponent p controls shape of penalty function
– p = 2 (standard) excessively penalizes large fluctuations

– p ≅ 1 results in better reconstructions

• Parameter β conveniently determined for MRF model
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Examples

• Initial project - reconstruct D(x,y) for simple phantom
– Saquib, Hanson, Cunningham (LANL)

• Extension to simultaneously obtain D(x,y) and µa(x,y);
simulations relevant to human tissue
– Hielscher, Klose, Catarious, Hanson (LANL)

• 3D reconstruction; applications to hypothetical
diagnostic cases
– brain, ventricular bleeding, and arthritis in finger joints

– Hielscher, Klose (SUNY - Brooklyn), Hanson (LANL),
Beuthan (FU Berlin)



April 26, 1999 TU Graz, Austria 33

Reconstruction of simple phantom

• Measurements
– section is (6.4cm)2, 0.7 < D < 1.4 cm2ns-1 (µabs = 0.1 cm-1)

– 4 input pulse locations (middle of each side)

– 4 detector locations; intensity measured every 50 ps for 1 ns

• Reconstructions on 64 x 64 grid from noisy data (rmsn = 3%)
– conjugate-gradient optimization algorithm

 p = 1.1 p = 2



April 26, 1999 TU Graz, Austria 34

Simultaneously determine D and µa

0.5

1.5
D [cm2/ns]

8 
cm 1.5

6.7

6.70.73

8 cm

Original D Reconstruction

3.39

3.460.6

1.5
1.3

1.46

0.50

D = 0.91

0.48

1.510.91( µs’ =  8.0 )

(D0 = 1)

 40x40 = 1600 pixels, 2 parameters
16 source and 15 detector positions

50 time steps

27 iterations ~ 8 min
derivatives by finite differences

would take 1600x2x16x27 =
1,382,400 forward calculations
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1.0

3.0

cµa  

[1/ns]

8 
cm

8 cm

Original  cµa
Reconstruction

0.44

11.0
2.9

1.022.20
(µa = 0.1)

cµa = 2.20

Simultaneously determine D and µa

 40x40 = 1600 pixels, 2 parameters
16 source and 15 detector positions

50 time steps

27 iterations ~ 8 min
derivatives by finite differences

would take 1600x2x16x27 =
1,382,400 forward calculations

(cµa0 = 2)
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Reconstruction of Infants’ Brain I
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(60 iterations ~ 70 min)hematoma (left side);
cerebrospinal fluid pocket

(upper right)
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Reconstruction of Infants’ Brain II
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0.73 10
0.35
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0.38 3.25
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Sources & Detectors

(60 iterations ~ 70 min)
blood-filled ventricle

(occurs in 15-30% of all
preterm infants)
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Create Optical Image of Finger Joint
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Reconstruction of Capsule
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Reconstruction of Capsule
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3D Reconstruction of Capsule

healthy rheumatoid
isosurface D=0.45 [cm2 ns-1] isosurface D=0.78 [cm2 ns-1]isosurface D=0.78 [cm2 ns-1]

synovial fluidcapsule damaged capsule

  axis of  
the bone

14
 m

m

3D volume: 9 x 30 x 30 = 8100 voxels
8 sources, 8 detectors, 4 layers
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Further applications

• Applications under development
– inversion of transport equation (Alex Klose, FU Berlin)

– oceanographics (Ralf Giering, JPL)

– hydrodynamics (Rudy Henninger, LANL)

• General approach could be useful in
– reconstruction - seismology, ultrasound, imaging through

dispersive media, . . .

– matching large-scale simulations to data, e.g., atmosphere and
ocean models, fluid dynamics

– optimization in large engineering design problems, e.g., best
shape for aerodynamic streamlining
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Potential extensions of adjoint differentiation
• Higher order derivatives

–            requires 2 forward and 2 adjoint calculations

– large intermediate matrices => restrict to

• Incorporate derivatives into data structures
– with each variable vector x, associate       and

– for each transformation f(x), associate      with capabilities for
forward and adjoint propagation

– useful in symbolic languages, such as Maple (S. Gull)

– easy to do in object-oriented setting (Bayes Inference Engine)

• Construct new programming paradigm based on these
composite data structures in OO environment
– view computer code as establishing links between transforms
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