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Overview of presentation

• General problem of inversion of complex simulations

• Introduction to optical tomography

• Propagation of IR photons in tissue, a diffusion process

• Simulation of diffusion process by finite-difference
method - “the forward problem”

• Reconstruction of optical properties using adjoint
differentiation - “the inverse problem”

• Examples of IR tomographic reconstructions

• Applications & more details about adjoint differentiation
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 Inversion of complex simulations
• There are BIG problems that

– require complex numerical simulations to describe phenomena

– are nonlinear in nature

– one would like to fit to data, that is, solve the inverse problem

• Approximations are typically made in forward simulation
to facilitate the solution of the inverse problem
– perturbation methods (Born approximation)

– truncated basis-function expansion

– linearization of the problem

– degradation of the spatial resolution

• Advanced methods are needed to invert large numerical
simulations
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 Inversion of complex simulations
• Advanced techniques are required to cope with large data

structures and numerous parameters
– Optimization

• gradient-based quasi-Newton methods (e.g., CG, BFGS)

• adjoint differentiation for efficient calculation of gradients

• multiscale methods for controlling optimization process

– Bayesian methods
• overcome ill posedness of inversion through use of prior knowledge

• Markov chain Monte Carlo to characterize uncertainties

– Appropriate higher-order models
• Markov random fields

• deformable geometrical models

• but also consider lowest order, elemental representations
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General uses of adjoint differentiation

• Reconstruction: imaging through refractive media
– seismology, medical and NDE ultrasound, ...

• Matching large-scale simulations to data:
– atmosphere and ocean models, fluid dynamics, hydrodynamic

• Optimization in large engineering design problems:
– optical lens systems, geometry of integrated circuits,

aerodynamic shape, engines

• Uncertainty analysis
– sensitivity of uncertainty variance to each contributing cause

• Markov Chain Monte Carlo
– generation of random samples from a prob. dens. function
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Optical tomography - general idea

• Analogous to x-ray computed tomography, so:
– Can one actually do optical tomography?

– What are best operating conditions?

– What are imaging properties and diagnostic uses?

light
in

light
out

x-rays
out

x-rays
in

• Shine light on tissue sample; measure light out

Optical tomography X-ray tomography
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Physics of propagation of light in tissue

• Basic processes are scattering and absorption of photons
– absorption in tissue is minimal in infrared range

– IR photons can actually pass through bone

– for soft tissue,  µscat  ≈ 1-10 cm-1, µabs  ≈ 0.1 cm-1

• Transport equation generally applies

• Diffusion equation often good approximation
– valid when scattering is isotropic and without energy loss
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Proposed experimental scheme

• Shine IR light pulse on tissue sample at several positions

• For each input pulse, measure at several output positions
the light intensity vs. time with time resolution << 1 ns.
– prompt, unscattered photons; few survive thick sections

– multiply scattered photons; meander or diffuse through section
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Alternative experimental schemes

• Numerous types of measurements of the light
transmitted through tissue sample are possible:
– pulsed input; measure full time dependence distribution

(delta-function response)

– pulsed input; measure average time < t > (first moment of
time distribution)

– modulated input; measure amplitude and phase of modulated
output intensity (Fourier transform of delta-function response)

– constant input; measure amplitude of output (integral of delta-
function response)
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Modeling of process

• IR light photons in broad, retarded peak literally
“diffuse” by multiple scattering from source to detector
– time is equivalent to distance traveled

– diffusion equation models these multiply-scattered photons

– these photons do not follow straight lines
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Simulation of light diffusion in tissue

– for assumed distribution of diffusion coefficients (left)

– predict time-dependent output at four locations (right)

– reconstruction problem - determine image on left from
data on right
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Reconstruction problem

• Determine tissue properties from measurements
– diffusion coefficient D(x,y) and absorption coefficient µa(x,y),

as a function of position - therefore, many unknowns

• Many problems must be overcome
– photon paths depend on properties to be reconstructed

– hence, inverse problem is nonlinear and difficult

– measurements can only be calculated numerically;
no analytic expression for measurements in terms of D and µa

– gradients are desired for speedy gradient-based optimization
• analytic gradients are not available

• numerical gradients by perturbation too time consuming

• adjoint differentiation crucial to success
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Parameter estimation by fitting data

Initial State
Ψ(0)

Simulation

 Parameters
α

Ψ(t)
Measurement
System Model Y*(α)

Measurements, Y

- ln p(Y | Y*)
= 1/2 χ2

• Diagram describes general approach (analytical and computational)

• Find parameters (vector α) that minimize -ln p(Y| Y*(α))

• Result is maximum likelihood estimate for α
– also known as minimum-chi-squared or least-squares solution

• Optimization process is accelerated by using gradient-based algorithms;
therefore need gradients of simulation and measurement processes
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Diffusion equation

• Infrared light diffuses through tissue and bone

• Partial differential equation describes diffusion process
– U(x,y,t) is intensity of diffused light (no angular dependence)

– where D(x,y) is position-dependent diffusion coefficient,
µabs(x,y) is the linear absorption coefficient,
c is the speed of light,
S(x,y,t) is a source term;

                                    (        = effective scattering coefficient)
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Method of finite differences

• Approximate derivatives by finite differences
– wrt time:

– wrt position:

• Differential equation then leads to a set of linear
equations to be solved to obtain time-step update
– calculate time evolution, starting with initial conditions

• Question: at what time should second derivative
wrt position be calculated, n or n+1?
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Calculation of finite differences
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• For diffusion equation, need
– temporal first order derivative

– spatial second order derivative

• Explicit technique
– for step from time n to n+1,

evaluate spatial derivative at n

– unstable for moderate time steps

• Implicit technique
– for step from time n to n+1,

evaluate spatial derivative at n+1

– inherently stable
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Explicit method

• Evaluating position derivatives at n

– for clarity, ignore position dependence of D and y coord.

– yields set of linear equations:

                                                      (b is a scalar constant)

• Un+1 at new time n+1 is given explicitly in terms of
state at previous Un

• Easy to calculate time steps (just matrix multiplication)

• Unfortunately, inherently unstable for moderate ∆t
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Implicit method

• Evaluating position derivatives at time n+1

– for clarity, ignore position dependence of D and y coord.

– yields set of linear equations:

                                                      (a is a scalar constant)

• Un+1 at new time n+1 is given implicitly in terms of
state at previous time Un

• Must solve set of linear eqs. to calculate time steps

• Inherently stable for moderate ∆t
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Finite-difference calculation

• Data-flow diagram shows calculation of time-dependent
measurements by finite-difference simulation

• Calculation marches through time steps ∆t

– new state Un+1 depends only on previous state Un
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Inversion of forward calculation

• To find parameters α = (D, µa), minimize minus-log-
likelihood of data:

– where Ym is the mth measurement,
Ym

*
  its predicted value (= Us,n at appropriate s and n),

σm is rms noise in measurement

– measurements are at fixed position, but at all times

• Problems for inverting diffusion process
– inversion may be ill posed, a theoretical issue

– have only numerical solution of forward simulation,
so calculation of gradient poses practical problem
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Parameter estimation by fitting data

Initial State
Ψ(0)

Simulation

 Parameters
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

- ln p(Y | Y*)
= 1/2 χ2

• Find parameters (vector α) that minimize -ln p(Y| Y*(α))

• Result is maximum likelihood estimate for α
– also known as minimum-chi-squared or least-squares solution

• Prior information can be used to overcome ill-posedness

• Bayesian approach
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Maximum likelihood estimation by optimzation

Initial State
Ψ(0)

Simulation

 Parameters
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

- ln p(Y | Y*)
= 1/2 χ2

• Find minimum in  -ln p(Y| Y*(α)) =          by iteration over parameters α
• Optimization process is accelerated by using gradient-based algorithms;

therefore need gradients of simulation and measurement processes

• Adjoint differentiation facilitates efficient calculation of gradients,
i.e. derivative of scalar output (       ) wrt parameters α21
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Derivative calculation by finite differences

• Derivative for function defined as limit of ratio of finite differences:

Wish to estimate derivatives of calculated function for which there is no
analytic relation between outputs and inputs

• Numerical estimation based on
finite differences is problematical:
– difficult to choose perturbation ∆x

– # function evaluation ~ # variables

• Estimation based on functionality
implied by computer code is
more reliable
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Differentiation of sequence of transformations

A
x

B C
zy ϕ

• Data-flow diagram shows sequence of transformations A->B->C that
converts data structures x to y to z and to scalar ϕ  (forward calculation)

• Desire derivatives of ϕ wrt all components of x, assuming ϕ is
differentiable

• Chain rule applies:

• Two choices for summation order:
– doing j before k means derivatives follow data flow (forward calculation)

– doing k before j means derivatives flow in reverse (adjoint) direction
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Derivatives for few variables in, many out

A
x1

B C

zy

• Derivatives of a few input variables wrt many output variables

• Most efficient approach is to propagate derivatives wrt input variables in
direction of forward calculation

• For m inputs:
– computation takes about m times longer than forward calculation

– intermediate storage required is m times larger than for forward calculation

• One obtains derivatives of all variables in forward calculation wrt each
input
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Derivatives for many variables in, few out

• Derivatives of many outputs wrt just a few output variables

• Most efficient approach is to propagate derivatives wrt output variables in
reverse direction (also called adjoint direction)

• For n outputs:
– computation takes on order of n times longer than forward calculation

– intermediate storage required is n times larger than for forward calculation

• One obtains derivatives of each output variable wrt all variables in forward
calculation
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Adjoint Differentiation In Code Technique
ADICT

A
x

B C
zy ϕ

• For sequence of transformations that converts data structure x to scalar ϕ
• Derivatives      are efficiently calculated in the reverse (adjoint) direction

• Code-based approach: logic of adjoint code is based explicitly on the
forward code or on derivatives of the forward algorithm

• Not based on the theoretical eqs., which forward calc. only approximates

• Only assumption is that ϕ is a differentiable function of x
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All derivatives computed in time comparable to forward calculation
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Level of abstraction of implementation

• One can choose to differentiate forward code at
various levels of abstraction - from coarse to fine
– analytic-model based

• e.g., differentiate partial differential equations and solve

• not advised because forward codes only approximates model

– algorithm based
• differentiate each algorithm  (e.g., Bayes Inference Engine)

– code based
• interpret programming code (FORTRAN, C, etc.)

• automatic differentiation utilities

– instruction based
• reverse sequence of CPU instructions
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Example of algorithm-based approach

• Bayes Inference Engine (BIE) created at LANL
– modeling tool for interpreting radiographs

– BIE programmed by creating data-flow diagram liking
transforms, as shown here for 3D reconstruction problem

• Adjoint differentiation crucial to BIE success
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Adjoint differentiation in diffusion calculation

• Adjoint differentiation calculation precisely reverses
direction of forward calculation

• Each forward data structure has an associated derivative
– where Un propagates forward,         goes backward
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Adjoint differentiation of forward calculation

• Differentiate objective function, minus-log-likelihood:

– where Us,n is at the position s and time n corresponding to
the mth measurement

• Derivative wrt each Us,n that contributes to the mth
measurement is
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Adjoint differentiation of forward calculation

• Sensitivity of              wrt parameters αi = (D or µa)i

• Get second factor from update formula

• For explicit αk sensitivity, differentiate wrt αk, taking
Un-1 as constant:

  which leads to
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Adjoint differentiation of forward calculation

• Dependence of Un+1 on Un comes from update formula

• Differentiate wrt Un+1:

• Total derivative of ϕ wrt Un yields propagation rule

– second term is derivative of ϕ wrt Un when all other parameters
are held constant

– first term for Un variation arising from other parameters
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 Comments about diffusion problem

• Algorithm used to solve forward problem was
chosen without regard to inversion process
– adjoint differentiation typically places minimal

requirement on simulation method

• Simplifying aspects of diffusion problem:
– update operation depends only on parameters D(x,y) and

µabs(x,y)  (time independent)
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Bayesian approach to inversion

• Inverse problems are often ill posed, meaning there is
no unique solution

• Bayesian formalism overcomes ill posedness by
introducing prior information through Bayes law:

– where p(α|Y) = posterior probability of the parameters α,
p(Y|α) = likelihood of the data,
p(α) = prior probability of the parameters α

• Bayesian posterior p(α|Y) describes uncertainty in
inferred parameters

Cppp ++= )(ln)|(ln)|(ln ααα YY
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Prior based on Markov Random Field model

• MRF can control local behavior of an intensity field

• Minus-log-prior given by (considering only D)

– where      = diffusion coefficient at ith pixel,
   = D averaged over a neighborhood of ith pixel

– this is added to minus-log likelihood (χ2/2)

• The exponent p controls shape of penalty function
– p = 2 (standard) excessively penalizes large fluctuations

– p ≅ 1 results in better reconstructions

• Parameter β conveniently determined for MRF model
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Examples of OT reconstructions

• Initial project - reconstruct D(x,y) for simple phantom
– Saquib, Hanson, Cunningham (LANL)

• Extension to simultaneously obtain D(x,y) and µa(x,y);
simulations relevant to human tissue
– Hielscher, Klose, Catarious, Hanson (LANL)

• 3D reconstruction; applications to hypothetical
diagnostic cases
– brain, ventricular bleeding, and arthritis in finger joints

– Hielscher, Klose (SUNY - Brooklyn), Hanson (LANL),
Beuthan (FU Berlin)
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Reconstruction of simple phantom

• Measurements
– section is (6.4cm)2, 0.7 < D < 1.4 cm2ns-1 (µabs = 0.1 cm-1)

– 4 input pulse locations (middle of each side)

– 4 detector locations; intensity measured every 50 ps for 1 ns

• Reconstructions on 64 x 64 grid from noisy data (rmsn = 3%)

• Conjugate-gradient optimization algorithm

 p = 1.1 p = 2
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Simultaneously determine D and µa

0.5

1.5
D [cm2/ns]

8 
cm 1.5

6.7

6.70.73

8 cm

Original D Reconstruction

3.39

3.460.6

1.5
1.3

1.46

0.50

D = 0.91

0.48

1.510.91( µs’ =  8.0 )

(D0 = 1)

 40x40 = 1600 pixels, 2 parameters;
16 sources and 15 detectors;

50 time steps

27 iterations ~ 8 min

Time for gradient calcs. for 27 iterations,
relative to time for a single forward calc.,  =

 16x27 = 432 by adj. diff.
1600x2x16x27 = 1,382,400 by finite diff.
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1.0

3.0

cµa  

[1/ns]

8 
cm

8 cm

Original  cµa
Reconstruction

0.44

11.0
2.9

1.022.20
(µa = 0.1)

cµa = 2.20

Simultaneously determine D and µa

 40x40 = 1600 pixels, 2 parameters
16 source and 15 detector positions

50 time steps

27 iterations ~ 8 min

(cµa0 = 2)
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Reconstruction of Infant’s Brain I
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10
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1.55
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(60 iterations ~ 70 min)hematoma (left side) and
cerebrospinal fluid pocket

(upper right)
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Reconstruction of Infant’s Brain II
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(60 iterations ~ 70 min)
blood-filled ventricle

(occurs in 15-30% of all
preterm infants)
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Create Optical Image of Finger Joint
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optical image for source and
detector positions shown
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Reconstruction of Capsule
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3D Reconstruction of Capsule

healthy rheumatoid
isosurface D=0.45 [cm2 ns-1] isosurface D=0.78 [cm2 ns-1]isosurface D=0.78 [cm2 ns-1]

synovial fluidcapsule damaged capsule

  axis of  
the bone

14
 m

m

3D volume: 9 x 30 x 30 = 8100 voxels
8 sources x 8 detectors x 4 layers
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Summary

• Propagation of light in tissue modeled as diffusion process

• Solve forward problem using finite-difference, implicit method

• Diffusion coefficients determined by matching simulated to
actual measurements

• Adjoint differentiation essential to solution by providing
gradients with respect to diffusion coefficients at cost of only
one extra forward calculation

• Adjoint differentiation is generally useful when objective
function is differentiable
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References for adjoint differentiation
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Part 2 - More about adjoint differnentiation

• Other applications and uses of adjoint differentiation

• More about level of abstraction of implementation

• Automatic differentiation packages

• Use of check pointing to reduce resources needed to
store forward solutions

• Interesting directions for future research



March 22/23, 2000 Washington/Duke 51

Further applications of adjoint differentiation

• Some significant applications under development
– inversion of transport equation (A. Klose, FU Berlin)

– oceanographics (Ralf Giering, JPL)

– atmospherics (R. Errico, UCAR; R. Fovell, UCLA)
• useful for simulations of up to several days

– hydrodynamics (Rudy Henninger, LANL)
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Potential uses of adjoint differentiation

• Reconstruction: imaging through refractive media
– seismology, medical and NDE ultrasound, ...

• Matching large-scale simulations to data:
– atmosphere and ocean models, fluid dynamics, hydrodynamic

• Optimization in large engineering design problems:
– optical lens systems, geometry of integrated circuits,

aerodynamic shape, engines

• Uncertainty analysis
– sensitivity of uncertainty variance to each contributing cause

• Markov Chain Monte Carlo
– generation of random samples from a prob. dens. function
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Markov Chain Monte Carlo

• Generate random samples from a prob. dens. function
– random walk around probability density function

• Simplest approach is based on evaluation of pdf
(Metropolis)
– efficiency drops for many variables (ε ∼ 0.3/n)

• Gradient of pdf can improve efficiency
– Langevin-Hastings algorithm

– Hamiltonian hybrid method (ε ∼ independent of n)

• Gradient may be efficiently evaluated using adjoint
differentiation
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Further details about adjoint calculation

• Can be implemented a various levels of abstraction

• Automatic differentiation packages can be helpful
– given forward code, provides an auxiliary code to calculate

derivatives

– potentially useful, but may require revising forward code

• Need to save variables from forward calculation
implies huge storage requirements
– check point the forward calculation; save intermediate

results only occasionally
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Level of abstraction of implementation

• One can choose to differentiate forward code at
various levels of abstraction - from coarse to fine
– analytic-model based

• e.g., differentiate partial differential equations and solve

• not advised because forward code only approximates model

– algorithm based
• differentiate each algorithm  (e.g., Bayes Inference Engine)

– code based
• interpret programming code (FORTRAN, C, etc.)

• automatic differentiation utilities

– instruction based
• reverse sequence of CPU instructions
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Example of algorithm-based approach

• Bayes Inference Engine (BIE) created at LANL
– modeling tool for interpreting radiographs

– BIE programmed by creating data-flow diagram, as shown here
for 3D reconstruction problem

• Adjoint differentiation crucial to BIE success



March 22/23, 2000 Washington/Duke 57

Bayes Inference Engine uses modules
– Each module uses an algorithm to calculate:

• its transform in forward direction

• adjoint derivative in reverse direction (implemented as separate code)

– Optimizer (lower right)
• gets objective function from log-posterior; provokes forward data flow

• gets gradient from Parameter module; provokes reverse data flow
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Example of algorithm-based approach
– Calculation of overlap of polyhedron with pixelated grid

• green is area of overlap;

• input is vertex positions, output is overlap with each pixel

– Derivative is limit of change in overlap caused by change in
position of each vertex

• example shown in red;

• adjoint output is derivative of ϕ wrt vertex positions

∆x
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Adjoint differentiation for linear transforms
– Linear transforms represented by matrix multiplications:

  where z and x are vectors containing the variables,
A and B are fixed matrices, and
c is a vector of constants (e.g., measurements)

– Derivative:

– For linear transforms, adjoint differentiation is the same as
multiplication by the transpose of the matrix
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Code-based forward derivative calculation
– Differentiate a few lines of FORTRAN code:

Y = EXP(A*X)
Z = B*Y*SIN(Y)
PHI = ALOG(Z*Z)

where X, Y, and Z are variables and A and B are constants

– The forward derivative code adds lines to forward code:
Y = A*X
DYDX = A*EXP(X)
Z = B*Y*SIN(Y)
DZDX = (B*SIN(Y) + B*Y*COS(Y))*DYDX
PHI = ALOG(Z*Z)
DPHIDX = (2.*Z)*(1./(Z*Z))*DZDX

– Similar to differentiation of analytic functions
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Code-based adjoint calculation of derivatives
– Differentiate a few lines of FORTRAN code:

Y = EXP(A*X)
Z = B*Y*SIN(Y)
PHI = ALOG(Z*Z)

where X, Y, and Z are variables and A and B are constants

– The reverse (adjoint) code looks like (note, DPHIDX is       ):
DPHIDZ = (2.*Z)*(1./(Z*Z))
DPHIDY = DPHIDZ*(B*SIN(Y) + B*Y*COS(Y))
DPHIDX = DPHIDY*A*EXP(X)

– forward code must be executed before adjoint code

– variables from forward calculation needed for adjoint calculation
– result for DPHIDX same as for forward calculation

– NB: this example is only meant to indicate how adjoint
calculation is done; it is not particularly helpful in this situation

x∂
∂ϕ
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Code-based adjoint calculation of derivatives
– Differentiate a few lines of FORTRAN code:

Y = EXP(A*X)
Z = B*Y*SIN(Y)
PHI = ALOG(Z*Z)

where X, Y, and Z are variables and A and B are constants

– The reverse (adjoint) code looks like (note, DPHIDX is       ):
DPHIDZ = (2.*Z)*(1./(Z*Z))
DPHIDY = DPHIDZ*(B*SIN(Y) + B*Y*COS(Y))
DPHIDX = DPHIDY*A*EXP(X)

– forward code must be executed before adjoint code

– variables from forward calculation needed for adjoint calculation
– result for DPHIDX same as for forward calculation

– NB: this example is only meant to indicate how adjoint
calculation is done; it is not particularly helpful in this situation

x∂
∂ϕ
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Automatic differentiation tools

• Several tools exist for automatically differentiating
codes written in FORTRAN77
– ADIFOR3 (Carle, Rice U; Bischof, Griewank, et al., ANL)

• operates in both forward and reverse directions

• works for large codes; follows ADICT principle

– TAMC (R. Giering, JPL, prev. MIT & MPI-Meteorology)
• operates in both forward and reverse directions

• works for large codes; follows ADICT principle

– GRESS (Hordewel, et al., ORNL)
• operates in both forward and adjoint directions

• can not compute gradients wrt many parameters for large calcs.

• for adjoint, stores derivatives for each line of the forward code

– ODYSSEE (INRIA, France)
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Sequence of forward and adjoint calculations

tn tn+1tn-1

simulation time
• Normal sequence for ADICT

– first do full forward calculation
(i.e., for all time steps)

– then do full adjoint calculation
in reverse direction, from final
time back to beginning

. . .. . .

• Adjoint calculation may need state of system from
forward calculation
– required link shown as vertical dashed lines

– all necessary state variables must be saved from forward
calculation to provide information to adjoint calculation
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Check pointing forward results

• Adjoint calculation may need state of system from
forward calculation
– this requirement may exceed available memory

tn tn+1tn-1

simulation time
. . .. . .

redo forward calcs

saved

• Check pointing
– first do full forward calc., saving

state of system at selected times

– then do adjoint calc. piecewise,
repeating forward calc. to obtain
states intermediate to those saved

– trades off memory for compute
time (for N time steps save ~
storage for one extra forward calc.)

saved

N
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Potential extensions of adjoint differentiation
• Higher order derivatives

–            requires 2 forward and 2 adjoint calculations

– large intermediate matrices => restrict to

• Incorporate derivatives into data structures
– with each variable vector x, associate       and

– for each transformation f(x), associate      with capabilities for
forward and adjoint propagation

– useful in symbolic languages, such as Maple (S. Gull)

– facilitated in object-oriented setting (Bayes Inference Engine)

• Construct new programming paradigm based on these
composite data structures in OO environment
– view computer code as establishing links between transforms

ji xx ∂∂
∂ ϕ2

j
j ji

x
xx∑ ∂∂

∂ ϕ2

x∂∂ /xδ
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