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Overview of presentation

General problem of inversion of complex ssmulations
Introduction to optical tomography
Propagation of IR photons in tissue, a diffusion process

Simulation of diffusion process by finite-difference
method - “the forward problem’

Reconstruction of optical properties using adjoint
differentiation - “the inverse problem’

Examples of |R tomographic reconstructions
Applications & more details about adjoint differentiation
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Inversion of complex ssimulations

 There are BIG problems that
— require complex numerical simulations to describe phenomena
— are nonlinear in nature
— onewould liketo fit to data, that is, solve the inverse problem

o Approximations are typically made in forward smulation
to facilitate the solution of the inverse problem
— perturbation methods (Born approximation)
— truncated basis-function expansion
— linearization of the problem
— degradation of the spatial resolution

« Advanced methods are needed to invert large numerical
simulations
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Inversion of complex ssimulations

o Advanced techniques are required to cope with large data
structures and numerous parameters

— Optimization
 gradient-based quasi-Newton methods (e.g., CG, BFGYS)
 adjoint differentiation for efficient calculation of gradients
» multiscale methods for controlling optimization process

— Bayesian methods
» overcome ill posedness of inversion through use of prior knowledge
» Markov chain Monte Carlo to characterize uncertainties

— Appropriate higher-order models
* Markov random fields

 deformable geometrical models
 but also consider lowest order, elemental representations
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General uses of adjoint differentiation

Reconstruction: imaging through refractive media
— seismology, medical and NDE ultrasound, ...

Matching large-scale simulations to data:
— atmosphere and ocean models, fluid dynamics, hydrodynamic
Optimization in large engineering design problems:

— optical lens systems, geometry of integrated circuits,
aerodynamic shape, engines

Uncertainty analysis
— senditivity of uncertainty variance to each contributing cause

Markov Chain Monte Carlo
— generation of random samples from a prob. dens. function
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Optical tomography - general idea

Shine light on tissue sample; measure light out

\
\

X-rays
in

light light x-rays
in >out > out

J

Optical tomography X-ray tomography -

« Analogous to x-ray computed tomography, so:
— Can one actually do optical tomography?
— What are best operating conditions?
— What are imaging properties and diagnostic uses?
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Physics of propagation of light in tissue

« Basic processes are scattering and absorption of photons
— absorption in tissueis minimal in infrared range
— IR photons can actually pass through bone
— for soft tissue, ., = 1-10 cmrt, u, . = 0.1 cmrd
« Transport equation generally applies
« Diffusion equation often good approximation
— valid when scattering is isotropic and without energy 10ss
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Proposed experimental scheme

multiple scattered

light
pulse
in

tissue > light
section out

light intensity —»
unscattered

J\

time after input pulse —

o ShinelR light pulse on tissue sample at several positions
« For each input pulse, measure at several output positions
the light intensity vs. time with time resolution << 1 ns.

— prompt, unscattered photons; few survive thick sections
— multiply scattered photons, meander or diffuse through section
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Alternative experimental schemes

* Numerous types of measurements of the light
transmitted through tissue sample are possible:

— pulsed input; measure full time dependence distribution
(delta-function response)

— pulsed input; measure average time < t > (first moment of
time distribution)

— modulated input; measure amplitude and phase of modulated
output intensity (Fourier transform of delta-function response)

— constant input; measure amplitude of output (integral of delta-
function response)
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Modeling of process

multiple scattered

light
pulse
in

light
> out

light intensity —»
unscattered

A

time after input pulse —
 |IR light photons in broad, retarded peak literally
“diffuse” by multiple scattering from source to detector
— timeis equivalent to distance traveled
— diffusion equation model s these multiply-scattered photons
— these photons do not follow straight lines
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Simulation of light diffusion in tissue
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— for assumed distribution of diffusion coefficients (left)
— predict time-dependent output at four locations (right)

— reconstruction problem - determine image on left from
data on right

March 22/23, 2000 Washington/Duke 12



Reconstruction problem

o Determine tissue properties from measurements
— diffusion coefficient D(x,y) and absorption coefficient .,(X,y),
as afunction of position - therefore, many unknowns
« Many problems must be overcome
— photon paths depend on properties to be reconstructed
— hence, inverse problem is nonlinear and difficult

— measurements can only be calculated numerically;
no analytic expression for measurements in terms of D and 1,
— gradients are desired for speedy gradient-based optimization
 analytic gradients are not available
* numerical gradients by perturbation too time consuming
 adjoint differentiation crucial to success
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Parameter estimation by fitting data

Measurements, Y

” Y(1) |—> Inp(Y [Y*)
Initial State : : M easurement >
Simulation —> —> =1 2

¥(0) o System Model |y (g l—_2*

Parameters
o

Diagram describes general approach (analytical and computational)
Find parameters (vector o) that minimize -In p(Y | Y* (o))
Result ismaximum likelihood estimate for o

— aso known as minimum-chi-squared or |east-squares solution

Optimization process is accelerated by using gradient-based algorithms;
therefore need gradients of simulation and measurement processes
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Diffusion equation

 Infrared light diffuses through tissue and bone

 Partial differential equation describes diffusion process
— U(x,y,b) isintensity of diffused light (no angular dependence)

0 _2[p]. 061 o, s
ot ox| oJx | ady| 9y

— where D(X,y) is position-dependent diffusion coefficient,
Ws(X,Y) IS the linear absorption coefficient,
c isthe speed of light,
S(x,y,t) isasource term;
D =c[3(u,, + 1o )] (uiy = effective scattering coefficient)
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Method of finite differences

Approximate derivatives by finite differences
—wrttime: oU AU U, ., -U;,

— =
ot At At
— wrt position; 92U N Un—2U,+U
OX° (AX)?

o Differential equation then leadsto a set of linear
equations to be solved to obtain time-step update
— calculate time evolution, starting with initial conditions

e Question: at what time should second derivative
wrt position be calculated, n or n+17?
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Calculation of finite differences

 For diffusion equation, need

— temporal first order derivative 1 T e TTE
— gpatial second order derivative § Xi.1 ®
 Explicit technique e oo
— for step from time n to n+1, v Yoo ®
evaluate spatial derivative at n _
— unstable for moderate time steps by b Ly UME -
 Implicit technique § % ®
— for step from time n to n+1, 8 x oo
evaluate spatial derivativeat n+1 v x o
— Inherently stable
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Explicit method

Evaluating position derivatives at n

U U Ui+1n_2Uin+Ui—1n
=D — ¢ ——culU;, +3,
At (AX) ’ ’
— for clarity, ignore position dependence of D and y coord.

— yields set of linear eguations:

intl  ~i.n

U,,=BU,+bS | (bisascaar constant)

U, a new timen+1 isgiven explicitly in terms of
state at previous U,

Easy to calculate time steps (just matrix multiplication)
Unfortunately, inherently unstable for moderate At
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lmplicit method

Evaluating position derivatives at time n+1

Uin+1_Uin Ui+1n+1_2Uin+1+Ui—ln+1 1

’ — =D ’ ’ ——cu U, .+ +

At I (AX)Z lul I,n+1 2(3,n+1 Sn)
— for clarity, ignore position dependence of D and y coord.

— yields set of linear eguations:

AU, =U +aS,| (aisascaar constant)

U, a new timen+1isgiven implicitly in terms of
state at previoustime U,

Must solve set of linear egs. to calculate time steps
Inherently stable for moderate At
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Finite-difference calculation

o Data-flow diagram shows calculation of time-dependent
measurements by finite-difference ssmulation

 Calculation marches through time steps At
— new state U,,,, depends only on previous state U,

D’ “a »...

~n n ~n+1 n+1
20-Y7)? 10y
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lnversion of forward calculation

e Tofind parameters o, = (D, 1), minimize minus-10g-
likelithood of data: (Y Y *Y?
pla)=—Inp(Y |o)=; )~ =" 2

m m

— where Y, is the mth measurement,
Y., itspredicted value (= Uy, at appropriate s and n),
G, ISrms noise in measurement

— measurements are at fixed position, but at all times

* Problemsfor inverting diffusion process
— Inversion may beill posed, atheoretical issue

— have only numerical solution of forward simulation,
so calculation of gradient poses practical problem
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Parameter estimation by fitting data

Measurements, Y

(1)
—>

Initial State Simulation
‘¥(0)

Parameters
o

Find parameters (vector o) that minimize -In p(Y | Y* (o))

M easurement
System Model

L>

-

Y* (o)

-Inp(Y |Y*)
:1/2X2

Optimizer

Result ismaximum likelihood estimate for o
— also known as minimum-chi-squared or |east-squares solution

Prior information can be used to overcome ill-posedness

Bayesian approach
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Maximum likelthood estimation by optimzation

Measurements, Y

(1) Lo {- 1 pey 1v#)

Initial State - : M easurement
Simulation [—> —> -y 2
\P(O) System Model Y*(OC) 2
Parameters Optimizer |<
o

« Find minimumin -Inp(Y| Y*()) = 2 ¥~ by iteration over parameters o
* Optimization processis accelerated by using gradient-based algorithms;
therefore need gradients of simulation and measurement processes

« Adjoint differentiation facilitates efficient calculation of gradients,
i.e. derivative of scalar output (1Y) wrt parameters o

March 22/23, 2000 Washington/Duke 23



Derivative calculation by finite differences

Derivative for function defined as limit of ratio of finite differences:
df . f(xa+ax) - f(x1)
—1 =1im
dX 1 AX—0 AX

Wish to estimate derivatives of calculated function for which thereisno
analytic relation between outputs and inputs

0.0020 ¢

Numerical estimation based on
finite differencesis problematical:

— difficult to choose perturbation Ax
— # function evaluation ~ # variables

0.0010

0.000 %WWWW«MMWW |

-0.0010 - \
-0.0020 o N

Estimation based on functionality o000 o0 010

Error in Estimated Derivative

Implied by computer code is —

. Error in derivative of
more reliable

sin(x) vs. Ax at x = /4
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Differentiation of sequence of transformations

—> A > B > C [—

Data-flow diagram shows sequence of transformations A->B->C that
converts data structures x to y to z and to scalar ¢ (forward calculation)

Desire derivatives of ¢ wrt all components of X, assuming ¢ is
differentiable
Chainrule applies; 99 _ D 9y, 9z, dp

aXi .k aXi ayj aZk

Two choices for summation order:
— doing j before k means derivatives follow data flow (forward calculation)
— doing k before ] means derivatives flow in reverse (adjoint) direction

March 22/23, 2000 Washington/Duke 25



Derivatives for few variables in, many out

y Z Vv
X1 ——> E E E
Xo—>1 A .| B S C >
S ay oz v
X oX, X

Derivatives of afew input variables wrt many output variables
Most efficient approach isto propagate derivatives wrt input variables in
direction of forward calculation

For minputs:
— computation takes about m times longer than forward calculation
— intermediate storage required is mtimes larger than for forward calculation

One obtains derivatives of all variables in forward calculation wrt each
Input
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Derivatives for many variablesin, few out

Z

ﬁ
<

—)Vl
—> V),

> V3

X y
— —>»
-— A <

v, v,
0X oy

oV,
0z

Derivatives of many outputs wrt just afew output variables
Most efficient approach isto propagate derivatives wrt output variablesin

reverse direction (also called adjoint direction)

For n outputs:

— computation takes on order of n times longer than forward calculation
— intermediate storage required is n times larger than for forward calculation

One obtains derivatives of each output variable wrt all variablesin forward

calculation
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Adjoint Differentiation In Code Technique

ADICT
X y Z
—> ——> —> ()
] A e« B - C [—
99 99 99
oX oy 0z
For sequencg of transformations that converts data structure x to scalar ¢
Derivatives a—f are efficiently calculated in the reverse (adjoint) direction

Code-based approach: logic of adjoint code is based explicitly on the
forward code or on derivatives of the forward algorithm

Not based on the theoretical egs., which forward calc. only approximates
Only assumption isthat ¢ isadifferentiable function of x

All derivatives computed in time comparable to forward calculation
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Level of abstraction of implementation

e One can choose to differentiate forward code at
various levels of abstraction - from coarse to fine
— analytic-mode based
* e.g., differentiate partial differential equations and solve
 not advised because forward codes only approximates model

— agorithm based
 differentiate each algorithm (e.q., Bayes Inference Engine)

— code based
e interpret programming code (FORTRAN, C, etc.)
» automatic differentiation utilities

— Instruction based
 reverse sequence of CPU instructions
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Example of agorithm-based approach

« BayesInference Engine (BIE) created at LANL
— modeling tool for interpreting radiographs

— BIE programmed by creating data-flow diagram liking
transforms, as shown here for 3D reconstruction problem

e Adjoint differentiation crucial to Bl E success
L)
- . A7 —|_.
Unifarrn 30 Grid
Carrvert ta uniform 30 grid 30 FastSPECT — ", e F
=
_l. o v Weilhited Poisson LikelHood
+ —_—
F l:| Multiply Opt. Wariakle _l.
|
Add Opt. Variable
argulated surface & Seal Dazjwar-am .F : .]
Calar (511 on
A Scalar Wariakle Log Posterior

il

]

u

.]

Log Surface Curvature Prior
g %\
Optimizer Bob
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Adjoint differentiation in diffusion calculation

o Adjoint differentiation calculation precisealy rever ses

direction of forward calculation

 Each forward data structure has an associated derivative
goes backward (¢ =31°)

— where U, propagates forward,

D, Ha

Jde
ouU

n

March 22/23, 2000

AT

Y

AT

1 ,/~N+ n+l o
2(U

ik X X

Washington/Duke

0[’
Y )
-

102
> X

31



Adjoint differentiation of forward calculation

« Differentiate objective function, minus-log-likelihood:

1 Ym_Usn ’ 1 .2
co(oc)=—lnp(YIoc)=§Z( 2’) =5X

m m

— where Ug , Is at the position s and time n corresponding to
the mth measurement

* Derivative wrt each U, , that contributes to the mth
measurement is

a¢ . Ym -U s,n
oU o

sS,n
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Adjoint differentiation of forward calculation

e Sensitivity of ¢ = §z2 wrt parameters o. = (D or /1)

do aUI .
d()(k ; o,

o Get second factor from updateformula
AU =U__.+aS,

» For explicit o, sensitivity, differentiate wrt o, taking
U, , as constant:

oA U, +AaU =0

Jda, o,
which leadsto 9dU, __p oA U

I, dog,
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Adjoint differentiation of forward calculation

Dependence of U, , on U, comes from update formula
AU . =U_+aS,

Differentiatewrt U, :  oU,_, A1
ou,

Total derivative of ¢ wrt U, yields propagation rule

.

dp _|(dU,. | do  do A" dp _ dg

du, du, | dU,,, dU, du oU

— second term is derivative of ¢ wrt U, when all other parameters
are held constant

— first term for U, variation arising from other parameters

n+1
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Comments about diffusion problem

 Algorithm used to solve forward problem was
chosen without regard to inversion process

— adjoint differentiation typically places minimal
requirement on simulation method

o Simplifying aspects of diffusion problem:

— update operation depends only on parameters D(X,y) and
Up(Xy) (time independent)

March 22/23, 2000 Washington/Duke 35



Bayesian approach to inversion

* |nverse problems are often ill posed, meaning thereis
no unigue solution

o Bayesian formalism overcomes ill posedness by
Introducing prior information through Bayes law:
Inp(oc|Y)=Inp(Y |o)+Inp(a)+C
— where p(a|Y) = posterior probability of the parameters o,
p(Y |o) = likelihood of the data,
p(cr) = prior probability of the parameters o
e Bayesian posterior p(o|Y) describes uncertainty in
Inferred parameters
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Prior based on Markov Random Field model

MRF can control local behavior of an intensity field
Minus-log-prior given by (considering only D)
~Inp(D)=4Y |D;-D, [’

— where D, = diffusion coefficient at ith pixel,
D. = D averaged over a neighborhood of ith pixel
— thisis added to minus-log likelihood (y4/2)
The exponent p controls shape of penalty function
— p = 2 (standard) excessively penalizes large fluctuations
— p = 1 results in better reconstructions

Parameter 3 conveniently determined for MRF model
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Examples of OT reconstructions

 |nitial project - reconstruct D(x,y) for ssmple phantom
— Saguib, Hanson, Cunningham (LANL)

« Extension to simultaneously obtain D(x,y) and . (X,y);
simulations relevant to human tissue
— Hielscher, Klose, Catarious, Hanson (LANL)

3D reconstruction; applications to hypothetical
diagnostic cases
— brain, ventricular bleeding, and arthritisin finger joints

— Hielscher, Klose (SUNY - Brooklyn), Hanson (LANL),
Beuthan (FU Berlin)
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Reconstruction of simple phantom

¢w p=11 p=2

 Measurements
— sectionis(6.4cm)?, 0.7 <D < 1.4 cm?ns?t (1= 0.1 cm?)
— 4 input pulse locations (middle of each side)
— 4 detector locations; intensity measured every 50 psfor 1 ns

e Reconstructions on 64 x 64 grid from noisy data (rmsn = 3%)
« Conjugate-gradient optimization algorithm
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SUNY

Brooklyn  Simultaneously determine D and p,

Reconstruction (D, = 1)

D [cm2/ns] A A A A

1.5
-
. -
| _ 0.01 @1
c =i >
(]
00

Original D

b , oo
. - 0.48 >
I |
- >
v r o
- 8 cm =——> 0.5 V * * *
40x40 = 1600 pixels, 2 parameters; 27 iterations ~ 8 min
16 sources and 15 detectors;,  Timefor gradient calcs. for 27 iterations,
50 time steps relativeto timefor asingleforward calc.,

16x27 = 432 by adj. diff.
1600x2x16x27 = 1,382,400 by finite diff.
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SUNY

Brooklyn -~ Simultaneously determine D and |,

Original cuy 112 Reconstruction (C,g = 2)

ST A A A 4

N -
cl, = 2.20

0.44
(Ly=0.1)

8 CM =

-
Y I =
<«—3cm—> 10 Y ¥ ¥ ¥
40x40 = 1600 pixels, 2 parameters 27 iterations ~ 8 min
16 source and 15 detector positions

50 time steps
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SUNY

Brooklyn Reconstruction of Infant’s Brain |

. Reconstruction
Original MRI data init. guess D = 1 cm2/ns)

- ]] O —

hematoma (left side) and
cerebrospinal fluid pocket

(upper right)
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SUNY

Brooyn Reconstruction of Infant’s Brain ||

. Reconstruction
Original MRI data (init. guess D = 1 cm2/ns)

Sources & Detectors

blood-filled ventricle | | |
(occurs in 15-30% of all (60 iterations ~ 70 min)
preterm infants)
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SUNY

Brooklyn -~ Create Optical Image of Finger Joint

MRI Segmentation (40x40)

hard tissue ligament ~ capsule
1.61

D [cm?2/ns]

- ] 8 MM ——

blood vessel soft tissue & muscle/

Sources fat

Detectors

Simulated data obtained from
optical image for source and
detector positions shown
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Brooklyn Reconstruction of Capsule
Original Reconstruction

healthy

=
il -

D [cm2/ns]

rheumatoid
o
N
ol
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SUNY

Brooklyn 3D Reconstruction of Capsule

health rheumatoid
isosurface D=0.78 [cm2 ns 1|l isosurface D=0.78 [cm2 ns1]

capsule synovial fluid damaged capsule

3D volume: 9 x 30 x 30 = 8100 voxels
8 sources x 8 detectors x 4 layers
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Summary

Propagation of light in tissue modeled as diffusion process
Solve forward problem using finite-difference, implicit method

Diffusion coefficients determined by matching simulated to
actual measurements

Adjoint differentiation essential to solution by providing
gradients with respect to diffusion coefficients at cost of only
one extraforward calculation

Adjoint differentiation is generally useful when objective
function isdifferentiable
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References for adjoint differentiation
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Part 2 - More about adjoint differnentiation

Other applications and uses of adjoint differentiation
More about level of abstraction of implementation
Automatic differentiation packages

Use of check pointing to reduce resources needed to
store forward solutions

Interesting directions for future research
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Further applications of adjoint differentiation

o Some significant applications under devel opment
— Inversion of transport equation (A. Klose, FU Berlin)
— oceanographics (Ralf Giering, JPL)
— atmospherics (R. Errico, UCAR; R. Fovell, UCLA)
o useful for smulations of up to severa days
— hydrodynamics (Rudy Henninger, LANL)
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Potential uses of adjoint differentiation

Reconstruction: imaging through refractive media
— seismology, medical and NDE ultrasound, ...

Matching large-scale simulations to data:
— atmosphere and ocean models, fluid dynamics, hydrodynamic
Optimization in large engineering design problems:

— optical lens systems, geometry of integrated circuits,
aerodynamic shape, engines

Uncertainty analysis
— senditivity of uncertainty variance to each contributing cause

Markov Chain Monte Carlo
— generation of random samples from a prob. dens. function
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Markov Chain Monte Carlo

Generate random samples from a prob. dens. function
— random walk around probability density function
Simplest approach is based on evaluation of pdf
(Metropolis)
— efficiency drops for many variables (¢ ~ 0.3/n)
Gradient of pdf can improve efficiency
— Langevin-Hastings algorithm
— Hamiltonian hybrid method (e ~ independent of n)

Gradient may be efficiently evaluated using adjoint
differentiation
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Further details about adjoint calculation

e Can beimplemented avarious levels of abstraction

o Automatic differentiation packages can be helpful

— given forward code, provides an auxiliary code to calculate
derivatives

— potentially useful, but may require revising forward code
* Need to save variables from forward calculation
Implies huge storage requirements

— check point the forward calculation; save intermediate
results only occasionally
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Level of abstraction of implementation

e One can choose to differentiate forward code at
various levels of abstraction - from coarse to fine
— analytic-mode based
* e.g., differentiate partial differential equations and solve
» not advised because forward code only approximates model

— agorithm based
 differentiate each algorithm (e.q., Bayes Inference Engine)

— code based
e interpret programming code (FORTRAN, C, etc.)
» automatic differentiation utilities

— Instruction based
 reverse sequence of CPU instructions

March 22/23, 2000 Washington/Duke 55



Example of agorithm-based approach

« BayesInference Engine (BIE) created at LANL
— modeling tool for interpreting radiographs

— BIE programmed by creating data-flow diagram, as shown here
for 3D reconstruction problem

e Adjoint differentiation crucial to Bl E success
L)
- . A7 —|_.
Unifarrn 30 Grid
Carrvert ta uniform 30 grid 30 FastSPECT — ", e F
=
_l. o v Weilhited Poisson LikelHood
+ —_—
F l:| Multiply Opt. Wariakle _l.
|
Add Opt. Variable
argulated surface & Seal Dazjwar-am .F : .]
Calar (511 on
A Scalar Wariakle Log Posterior

il

]

u

.]

Log Surface Curvature Prior
g %\
Optimizer Bob
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Bayes Inference Engine uses modules

— Each module uses an algorithm to calcul ate:
o itstransform in forward direction
 adjoint derivative in reverse direction (Implemented as separate code)
— Optimizer (lower right)
* gets objective function from log-posterior; provokes forward data flow
 gets gradient from Parameter module; provokes reverse data flow

il ] o
= 2 A7 —|_.
Uniform 30 Grid
Carrvert ta uniform 30 grid 30 FastSPECT — ", e F
=
_l. o v Weilhited Poisson LikelHood
+ —_—
F l:| Multiply Opt. Wariakle _l.
. —_—
Add Opt. Wariable
argulated surface & Seal Dazjwar-am .F : .]
Calar 1akle on
& Sealar Variahle Loy Posterior

il

]

I

.]

Log Surface Curvature Prior
g %'\
Optimizer Bob
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Example of agorithm-based approach

— Calculation of overlap of polyhedron with pixelated grid
* greenisareaof overlap;
* input is vertex positions, output is overlap with each pixel
— Derivativeislimit of change in overlap caused by changein
position of each vertex
» example shown in red;
 adjoint output is derivative of ¢ wrt vertex positions

~
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Adjoint differentiation for linear transforms

— Linear transforms represented by matrix multiplications:
Z=BAX
o= |z-cf
where z and X are vectors containing the variables,
A and B are fixed matrices, and
c iIsavector of constants (e.g., measurements)

— Derivative:
do
—~ = 2(z-c¢
1 ( )
99 _ ABTY2 _ATBT2(z - ©)
dx dz

— For linear transforms, adjoint differentiation is the same as
multiplication by the transpose of the matrix

March 22/23, 2000 Washington/Duke 59



Code-based forward derivative calculation

— Differentiate afew lines of FORTRAN code:
Y = EXP(A*X)
7 = B*Y*SIN(Y)
PHI = ALOG(Z*Z)

where X, Y, and Z are variables and 2 and B are constants

— The forward derivative code adds lines to forward code:
Y = A*X
DYDX = A*EXP (X)
7 = B*Y*SIN(Y)

DZDX = (B*SIN(Y) + B*Y*COS(Y) ) *DYDX
PHI = ALOG(Z*Z)
DPHIDX = (2.*Z)*(1./(Z*2Z)) *DZDX

— Similar to differentiation of analytic functions
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Code-based adjoint calculation of derivatives

— Differentiate afew lines of FORTRAN code:
Y = EXP(A*X)
7 = B*Y*SIN(Y)
PHI = ALOG (Z*Z)
where X, Y, and Z are variablesand 2 and B are constants

— Thereverse (adjoint) code looks like (note, DPHIDX |s )
DPHIDZ = (2.*Z)*(1./(Z*Z))
DPHIDY = DPHIDZ* (B*SIN(Y) + B*Y*COS(Y))
DPHIDX = DPHIDY*A*EXP (X)

— forward code must be executed before adjoint code
— variables from forward calculation needed for adjoint calculation
— result for bpPHIDX same as for forward calculation

— NB: this example is only meant to indicate how adjoint
calculation isdone; it isnot particularly helpful in this situation
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Code-based adjoint calculation of derivatives

— Differentiate afew lines of FORTRAN code:
Y = EXP(A*X)
7 = B*Y*SIN(Y)
PHI = ALOG (Z*Z)
where X, Y, and Z are variablesand 2 and B are constants

— Thereverse (adjoint) code looks like (note, DPHIDX |s )
DPHIDZ = (2.*Z)*(1./(Z*Z))
DPHIDY = DPHIDZ* (B*SIN(Y) + B*Y*COS(Y))
DPHIDX = DPHIDY*A*EXP (X)

— forward code must be executed before adjoint code
— variables from forward calculation needed for adjoint calculation
— result for bpPHIDX same as for forward calculation

— NB: this example is only meant to indicate how adjoint
calculation isdone; it isnot particularly helpful in this situation
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Automatic differentiation tools

« Several tools exist for automatically differentiating
codes written in FORTRANT77

— ADIFORS3 (Carle, Rice U; Bischof, Griewank, et al., ANL)
» operatesin both forward and reverse directions
» worksfor large codes; follows ADICT principle

— TAMC (R. Giering, JPL, prev. MIT & MPI-Meteorology)
» operatesin both forward and reverse directions
» worksfor large codes; follows ADICT principle

— GRESS (Hordewsel, et a., ORNL)

» operatesin both forward and adjoint directions
 can not compute gradients wrt many parameters for large calcs.
« for adjoint, stores derivatives for each line of the forward code

— ODY SSEE (INRIA, France)
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Seguence of forward and adjoint calculations

 Normal sequence for ADICT
_ _ simulation time —»
— first do full forward calculation ottt .

(i.e., for al time steps) -
— then do full adjoint calculation — «<g«<g-<g—<€-<E<€<4-

In reverse direction, from final
time back to beginning
o Adjoint calculation may need state of system from
forward calculation
— reqguired link shown as vertical dashed lines

— all necessary state variables must be saved from forward
calculation to provide information to adjoint calculation
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Check pointing forward results

o Adjoint calculation may need state of system from
forward calculation

— this reguirement may exceed available memory
e Check pointing

— first do full forward calc., saving

simulation time —»

— then do adjoint calc. piecewise, sajed _Sﬁd«
repeating forward calc. to obtain ,  redoforward cales
- - e e o o
states intermediate to those saved oL

— trades off memory for compute ‘ CH44
time (for N time steps save ~+/N
storage for one extraforward calc.)
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Potential extensions of adjoint differentiation

. Higglzer order derivatives
_ a)ga(/)’(j requires 2 forward and 2 adjoint calcul aaztions
— large intermediate matrices => restrict to Y’ a)gaf(_ X
e Incorporate derivatives into data structures
— with each variable vector x, associate x and d/dx

— for each transformation f(x), associate ot \ith capabilities for
. . oX
forward and adjoint propagation

— useful in symbolic languages, such as Maple (S. Gull)
— facilitated in object-oriented setting (Bayes | nference Engine)

o Construct new programming paradigm based on these
composite data structures in OO environment

— view computer code as establisning links between transforms
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