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Overview of presentation

 Introduction
— time-dependent simulation codes

« Example
— analysis of simple experiment

e General approach to analyzing of single experiments
— estimation of model parameters and uncertainty assessment

« Graphical probabilistic modeling

— analysis of numerous experiments in terms of many physical
models

e Summary

Dec. 9, 1998 Cdtech/V&V Symp 2



Simulation code
Predicts state of time-evolving physical system

* Future state of systekH(t)

predicted from initial stat&’(0) @

e Code consists of two parts:
— PDEs describing basic dynamics

— models for material behavior W(0) —> PDE - ()
e To determine accuracy 8(t) Solver
— determine accuracy of PDE solver \
(verification)
— determine effects of uncertainties in @

material models ol(t) (validation)
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Uncertainty in ssmulation predictions

e Assumptions about simulation code:

— appropriate physics modules included

— simulation uncertainties dominated by uncertainties in physics
modules, which can be determined through carefully designed

experiments (validation issue)
— numerically accurate (verification issue)

e Other stochastic effects in simulation may be included later
— variability in densities
— chaotic behavior
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Validation Experiments
Full validation requires hierarchy of experiments

e Basic experiments determine wO — B up

elemental physics models @

o Partially integrated experiments
Involve combinations of two or

more elemental models 65

* Fully integrated experiments @ @
require complete set of models PDE

needed to describe final s

application of simulation code QS
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Uncertainty Analysis

Uncertainties in model parameters characterized by probability
density function (pdf)

Require complete characterization of uncertainties in experiments
— Incorporate “systematic” uncertainties
— include uncertainties in experimental conditions

Must include correlations among uncertainties

Combine results from many (all) experiments
— reduce uncertainties in model parameters
— require consistency of models with all experiments
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|sothermal dependence of gas pressure on density
Example of smple basic physics model

* Assume linear model to
describe dependence (ideal ga 1

« Determine two parameters, 1o

intercept and slope, by w 8
minimizing chi-squared based 3
on four available measurement & .
e Use this linear model in o
simulation code where pressur o
of gas is needed and density is  °* °" °L. 0 °F %
calculated
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|sothermal dependence of gas pressure on density
Representation of uncertainties in inferred model

28 =

« Uncertainties in parameters, derived
from uncertainties in
measurements, given by Gaussian
pdf in 2-D parameter space "

— correlations evidenced by tilt U o b |
— points are random draws from pdf - /]

10
 However, focus should be on | ]
implied uncertainties in dependen 5 |
. 6 5
of pressure vs. density i P
o 40 ]

— light lines are plausible model | 7 |
realizations drawn from parameter pc 20 ¥ _:

— characterize uncertainty in depender — Ofitmn o, :
0.00 0.10 0.20 0.30 0.40 0.50

DENSITY
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|sothermal dependence of gas pressure on density
|mportance of correlations in uncertainties

e Correlations in uncertainties are .
critically important ol

e Plot shows random samples from

e
uncertainty in slope and intercept z .-
ignoring correlations A
 Uncertainties in dependence of of
pressure vs. density far exceed ol
uncertainties in measurements 000 010 020 030 040 050

DENSITY
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|sothermal dependence of gas pressure on density
Uncertainties in model affect overall uncertainy

e Quadratic might account for
suspected departure from linearity

— curve constrained to go through origir 5~ .
 Comparison with previous linear 1o}

model demonstrates increased ., st

uncertainties in model outside of % of

density measurement range 2
e Conclusion: basic physics N

experiments should cover full oz

Operating range of physica| 000 010 020 030 040 050

DENSITY

variables used by simulation code,
extrapolation increases uncertainty
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Anaysis of many experiments involving
several models

Difficulties
— complexity of analyzing large number of experiments
— logic and dependencies of analyses are difficult to follow
— need to combine information from all experiments (global analysis)
— correlations between uncertainties in parameters are induced by analys
dependent on several models
A comprehensive methodology is needed

Suggest probabilistic approach based on graphical
representation of linked analyses
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Simulation code

" Y(t)
Initial State : :
>
W(0) Simulation
Model A
a

« Simulation code predicts state of time-evolving system
- Y(1) = time-dependent state of system
- Y(0) = initial state of system
* Properties of one system component described by physics model A with
parameter vectax
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Comparison of simulation with experiment

Initial State : : M easurement
Simulation [—> — =1 X2
W(0) System Model Y*(a) X

Measurements, Y

W(t) Ll PCY |Y*)

Model A
o

Measurement system model transforms the simulated state of the physical
system(t) into measuremends* that would be obtained in the

experiment

Match to data summarized by minus-log-likelihood,R{Y | Y*) = 4, X2

13
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Parameter estimation - maximum likelithood

Measurements, Y

L

itial YO | Measurement 2GS (R
Inliee] =eis Simulation [—> —>  =Y,X?
W(0) System Modd Y*(a)

Moc;l(el A Optimizer [<

e Optimizer adjusts parameters (vea)rto minimize -InP(Y |Y*(a))

* Result is maximum likelihood estimate fi(also known as least-squares
solution)
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Adjoint Differentiation of Forward Calculation

X y Z

— > > (I) E
¢ 9 ¢
0X oy 0z

Data-flow diagram shows sequence of transformations A, B, C that convert
data structure toy to z and then scalap.

Derivatives ofp with respect tax are efficiently calculated in the reverse
(adjoint) direction.

CPU time to computall derivatives is comparable to forward calculation
One may need to keep intermediate data structures to evaluate derivatives

Code based: logic of adjoint code derivable from forward code
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Analysis of single experiment

e Likelihood

— p(Y |Y*) = probability of measurements given the value¥* predicted
by experiment simulation. (NBE.* depends om)
e The pdf describing uncertainties in model parameter vegtor
called posterior:
— p@ 1Y) U plr1Y*) p(a) (Bayes law)
— p(@) is prior; summarizes previous knowledgenof

— “best” parameters estimated by maximizing |X) (called MAP
solution)

— uncertainties i are fully characterized by @(Y)
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Parameter uncertaintiesviaMCMC

Posterior p@ |Y) provides full uncertainty distribution

Markov Chain Monte Carlo (MCMC) algorithm generates a
random sequence of parameters that sampleyp(

— results in plausible set of parametean$ {

— representative of uncertainties

— second moments of parameters can be used to estimate covarianc€matr

MCMC advantages
— can be applied to any pdf, not just Gaussians
— automatic marginalization over nuisance variables

MCMC disadvantage
— potentially calculationally demanding
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Markov Chain Monte Carlo

Generates sequence of random samples from atarget probability
density function
Prob(a,, a,)
* Metropolis algorithm: a, accepted step
— draw trial step from symmetric * rejected step
pdf, i.e., TQAa) = T(Aa)
— accept or reject trial step
— simple and generally applicable

— relies only on calculation of
target pdf for anyx

— works well for many
parameters
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Parameter uncertaintiesviaMCMC

Measurements, Y

it YO A" L) MmIPLT Y7
Initial State Simulation —> > =1 X2
{Y(0)} System Mode Y* ()

-InP(a Y
Mc{)ie;lA < vene  |» (alY)

 Markov Chain Monte Carlo (MCMC) algorithm generates a random
sequence of parameters that sample posterior probability of parameters for
given datay, P(a|Y), which yields plausible set of parameteng.{

* Must include uncertainty in initial state of systeri¥¥,(0)}
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Simulation of plausible outcomes -
characterizes uncertainty in prediction

Simulation {>qJ(t)}
W(0)

A

Model A
{a}

« Generates plausible simulated results for known uncertainties in parameters
— {W(t)} = plausible sets of dynamic state of system
— {a} = plausible sets of parameter vector
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Uncertainty analysis with Bayes Inference Engine
Example of reconstruction from just two radiographs

« Reconstruction problem solved with Bayes Inference Engine (BIE)
using deformable boundary

« MCMC generates set of plausible solutions, which characterize
uncertainty in boundary localization

Data flow diagram in BIE

._F
| dga

o [~ e |

= sighted Chi-suared | \}/

IIIIIIII =] I—I

Log Fosterior
FL I 1]
Cony Uniform 20 Grid
Gegrnetric Okject
o 3 M L
i — |
B
tarkov —chain Monte Carlo

Reconstruction with several
plausible boundaries
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Uncertainty in predictions

« Estimate by propagating through simulation code a set of
parameter samples drawn from joint posterior distribution
of all parameters describing constituent physics models

e Assumptions about simulation code:

— appropriate physics models included; can be checked using
carefully designed experiments (validation issue)

— numerically accurate (verification issue)

« Other stochastic effects in simulation may be included
— variability in densities
— chaotic behavior
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Plausible outcomes for many models

Initial State : :
Simulation
{¥(0)}

10}
>

Model A Model B
{a} {B}

* Integrated simulation code predicts plausible results for known
uncertainties in initial conditions and material models
— {W(t)} = plausible sets of dynamic state of system
— {W¥(0)} = plausible sets of initial state of system
— {a} = plausible sets of parameter vectofor material A
— {B} = plausible sets of parameter vecfoior material B
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Graphical probabilistic modeling

: : a,
Analysis of experimental datva

Improves on prior knowledge p(Y |) p(a)
about parameter vectar

Bayes law:

p@l]Y) ~p(v |a) p@) pa]Y)
(posterior ~ likelihooc prior)

a
Use bubble to represent effect of '

analysis based on data
p(a) p(a]Y)
In terms of logs: - In@(|Y) =

- In p(Y |a) - In p(@) + constant
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Use of logarithms of probabilities

In terms of log-probability, Bayes law becomes:
-Inp@]Y)=-Inp{|a)-In p) + constant

Parameters are estimated by minimizing - lm|¥()

Gaussian approximation of probability:

-Inp@) =e=@+ (@ -0y K (a—ay),
whereK is the curvature or second derivative matrip¢aka
Hessian) and, is the position of the minimum ip

Covariance matrixC = <(a — ay)(a — ay) ™,
Is inverse oK: C =K-!

Likelihood for Gaussian measurement uncertainties is
AINP(Y |Y*) = 4, X2 =1,2 {(yi - y* )/0;}?
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Gaussian probabilities
L eads to simplified combination of pdfs

In terms of log-probability, Bayes law, gives posterior as:
-Inp@|Y)=-InplY|a)-Inp@) + constant

Bayes law for Gaussians,
-Inp@|Y) =0=@+ (@ - 0y)" Ky (0 —ap) =
(a-a)'K, (a-a)+(a-0p)" Ks (0 —ap) + const.,
where subscripts & P correspond to likelihood & prior

Curvature matrix of posterior i, =K, + K

Covariance matrix of posterior i€, =K1 = [K| +Kg]?

Estimated parameters are, = Ky 1[a, K, + a,K{]
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Graphical probabilistic modeling

p(a) p(a IY@ p(a, BIY L Y),)
Exp.l O Exp.2 af >
P(B)

Output of second bubble:

P, BIY 4, Y ~p(Yy, Y la, By p(a, B)  (Bayeslaw)
~p(Y,|a, B) p(B) plaY )
(likelithood 2 x prior([3) x posterior 1)

~p(Y,|a, B) p(B) p(Y | a) p(a)
(likelithood 2 x prior(f3) x likelihood 1 x prior(a))

Summary: Action of bubble isto multiply input pdfs by
likelihood from experiment to get output joint pdf
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Graphical probabilistic modeling

ﬂ,@ p(alY@ p(@, BIY,, Y))
Exp.l1 a Exp.2 af >
pP(B)

p(a |11) pP(B)
B . I \

First experiment determines with
uncertainties given bya(Y )

Second experiment not only /> ¢
determine$ but also refines : p(Yla, B)
knowledge ofx

Outcome is joint pdf i andf3,
p@, B|Y,Y,) (NB: correlations) p(a, BIY,Y))

~
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Graphical probabilistic modeling

« Diagrams useful for complete analysis of many
experiments related to several models
— displays logic
— explicitly shows dependencies
— organizational tool when many modelers and experimenters are

iInvolved

* Resultis full joint probabillity for all parameters based on

all previously analyzed experiments

— uncertainties in all parameters, including their correlations, which
are crucially important
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Example of analysis of several experiments

>
plaByolY,Y,Y,Y,Yy)

Output of last analysisis full joint probability for all parameters
based on all experiments
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Avoid double counting of data

p(aBy[1234)
p(B)

Outputs of analyses of both Exps. 2 and 3 make use of output
of Expt. 1 and prior on (3. This repetition must be avoided in
overall posterior calculation through dependency analysis:

-Inp(a By|1234) = -Inp(l|a) - Inp(a) - Inp(2|a B) - In p(B)
-Inp(3|a B) - Inp(4]a BY) - Inp(y) + constant
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Model checking
Check that model agreeswith all experimental data

Important part of any analysis a,

Check consistency of full
posterior wrt. each of its
contributions.

Example shown at right:

— likelihoods from Exps. 1 and 2 are
consistent with each other

— however, EXp. 2 Is inconsistent with
posterior (dashed) from all exps.

— inconsistency must be resolved in
terms of correction to model and/or
experimental interpretation
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Summary

 Methodology has been presented to cope with combining
experimental results from many experiments relevant to several
basic physics models in the context of a simulation code

suggest use of a graphical representation of a probabilistic model

e Many challenges remain

correlations in experimental uncertainties
systematic experimental uncertainties

detection and resolution of inconsistencies between experiments and
simulation code

normalization of likelihoods of different types

Inclusion of other sources of uncertainty: material homogeneity, chaotic
behavior

e More on WWW (http://www.lanl.gov/home/kmh/)
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