Uncertainty quantification of simulation codes based on experimental data

Ken Hanson* and François Hemez[†]

*CCS-2, Methods for Advanced Scientific Simulations [†]ESA-WR, Engineering - Weapons Response Los Alamos National Laboratory

This presentation available at http://www.lanl.gov/home/kmh/

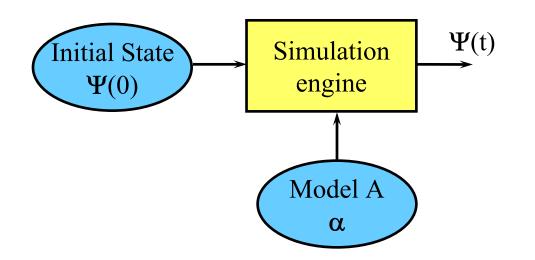
January 7, 2003

AIAA-Aerospace Sciences Conf.

Overview

- Physics simulations codes
 - need to be understood on basis of experimental data
 - focus on physics submodels
- Bayesian analysis
 - ► more than parameter estimation
 - ► uncertainty quantification (UQ) is central issue
 - each new experiment used to improve knowledge of models
- Analysis process
 - employ hierarchy of experiments, from basic to fully integrated
 - ► goal is to learn as much possible from all experiments
- Example of analysis process: material model evolution

Schematic view of simulation code

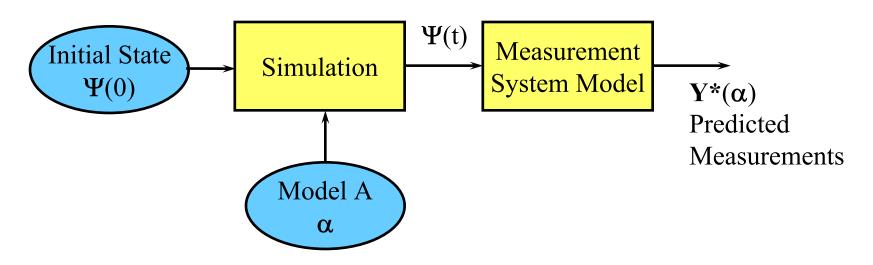


- Simulation code predicts state of time-evolving system $\Psi(t) = time-dependent$ state of system
- Requires as input
 - $\Psi(0) = \text{initial state of system}$
 - description of physics behavior of each system component;
 e.g., physics model A with parameter vector α (e.g., constitutive relations)
- Simulation engine solves the dynamical equations (PDEs)

January 7, 2003

AIAA-Aerospace Sciences Conf.

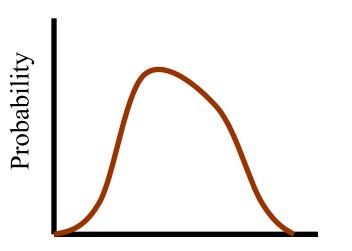
Simulation code predicts measurements



- Simulation code predicts state of time-evolving system $\Psi(t) = time-dependent$ state of system
- Model of measurement system yields predicted measurements

Bayesian uncertainty analysis

- Uncertainties in parameters are characterized by probability density functions (pdf)
- Probability interpreted as quantitative measure of "degree of belief"
- Rules of classical probability theory apply
- Bayes law provides way to update knowledge about models as summarized in terms of uncertainty



Parameter value

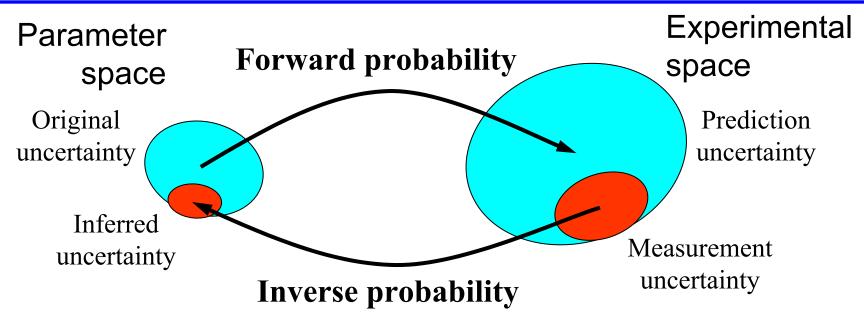
January 7, 2003

Bayesian calibration

Estimation of model parameters **and their uncertainties**

- Bayesian foundation
 - focus is as much on uncertainties in parameters as on their best value
 - ► use of prior knowledge, e.g., previous experiments
 - model checking; does model agree with experimental evidence?

Forward and inverse probability

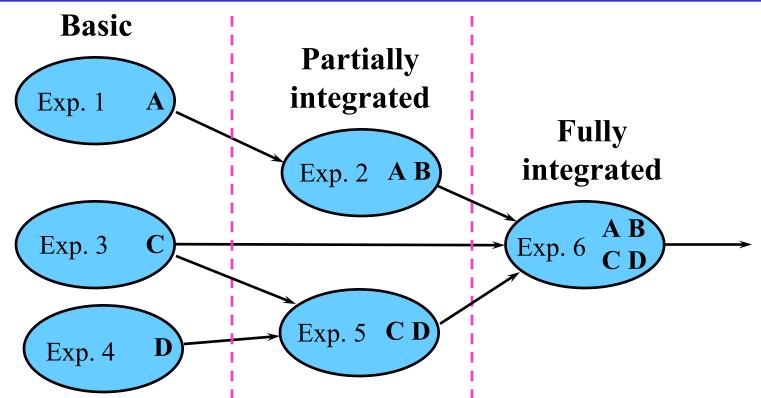


- Model inference
 - if uncertainties in measurements are smaller than prediction uncertainties that arise from parameter uncertainties, one may be able to use measurements to reduce uncertainties in parameters
 - requires that prediction uncertainties are dominated by uncertainties in parameters and not by those in experimental set up
 - ► good experimental technique important for Bayesian calibration

January 7, 2003

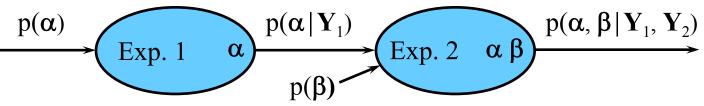
AIAA-Aerospace Sciences Conf.

Analysis of hierarchy of experiments



- Information flow in analysis of series of experiments
- Bayesian calibration
 - analysis of each experiment updates model parameters and their uncertainties, consistent with previous analyses
 - ▶ information about models accumulates
 January 7, 2003 AIAA-Aerospace Sciences Conf.

Graphical probabilistic modeling Propagate uncertainty through analyses of two experiments



- First experiment determines
 α, with uncertainties given by
 p(α | Y₁)
- Second experiment not only determines β but also refines knowledge of α
- Outcome is joint pdf in α and β , p(α , $\beta | \mathbf{Y}_1, \mathbf{Y}_2$) (NB: correlations)

 $p(\boldsymbol{\alpha} | \mathbf{Y}_1) p(\boldsymbol{\beta})$ β_1 $p(\mathbf{Y}_2|\boldsymbol{\alpha},\boldsymbol{\beta})$ $\mathbf{v} \mathbf{p}(\boldsymbol{\alpha}, \boldsymbol{\beta} | \mathbf{Y}_1 | \mathbf{Y}_2)$ α_1

Bayesian calibration for simulation codes

- Goal is to develop an uncertainty model for the simulation code by comparison to experimental measurements
 - determine and quantify sources of uncertainty
 - uncover potential inconsistencies of submodels with expts.
 - possibly introduce additional submodels, as required
- Recursive process
 - aim is to develop submodels that are consistent with all experiments (within uncertainties)
 - a hierarchy of experiments helps substantiate submodels over wide range of physical conditions
 - each experiment potentially advances our understanding

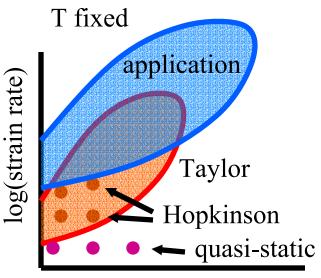
January 7, 2003

Motivating example

- Problem statement
 - design containment vessel using high-strength steel, HSLA 100
 - predict depth of vessel-wall penetration for specified shrapnel fragments at specified impact velocity
 - estimate uncertainty in this prediction to estimate safety factor
- Approach
 - determine what experiments are needed to characterize stress-strain relationship for plastic flow of metal
 - ► follow the uncertainty through the analysis of expt. data
 - variables to consider: temperature, strain rate, variability in material composition, processing, behavior

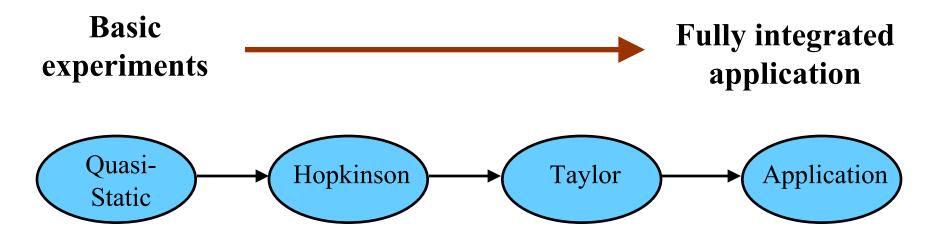
Hierarchy of experiments - plasticity

- Basic characterization experiments measure stress-strain relationship at specific stain and strain rate
 - ► quasi-static low strain rates
 - ► Hopkinson bar medium strain rates
- Partially integrated expts. Taylor test
 - covers range of strain rates
 - extends range of physical conditions
- Full integrated expts.
 - mimic application as much as possible
 - projectile impacting plate
 - may involve extrapolation of operating range; so introduces addition uncertainty
 - ► integrated expts. can help reduce model uncertainties



Strain

Analysis of hierarchy of experiments



- Series of experiments to determine plastic behavior of a metal
- Information flow shown for analysis sequence
- Bayesian calibration
 - analysis of each experiment updates model parameters and their uncertainties, consistent with previous experiments
 - information about models accumulates throughout process

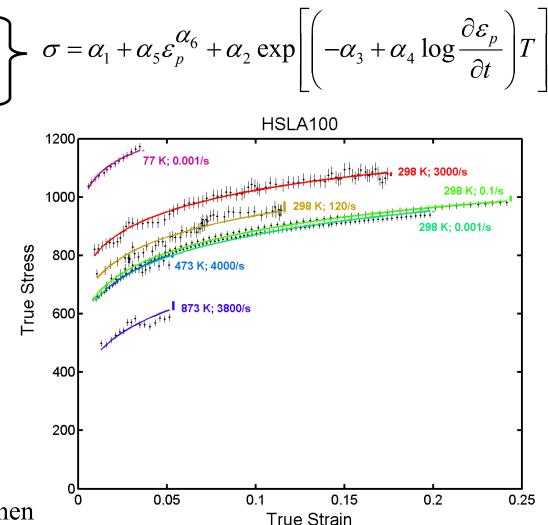
Stress-strain relation for plastic deformation

Analysis of quasi-static and Hopkinson bar measurements[†]

- Zerilli-Armstrong model for rate- and temperaturedependent plasticity
- Parameters determined from Hopkinson bar measurements and quasistatic tests
- Full uncertainty analysis

 including systematic
 effects of offset of each
 data set
 (6 + 7 parms)

[†]data supplied by Shuh-Rong Chen January 7, 2003 AIAA-A



AIAA-Aerospace Sciences Conf.

ZA parameters and their uncertainties

Parameters +/- rms error:

 $\alpha 1 = 103 \pm 33$ $\alpha 2 = 954 \pm 63$ $\alpha 3 = 0.00408 \pm 0.00059$ $\alpha 4 = 0.000117 \pm 0.000029$ $\alpha 5 = 996 \pm 22$ $\alpha 6 = 0.247 \pm 0.021$

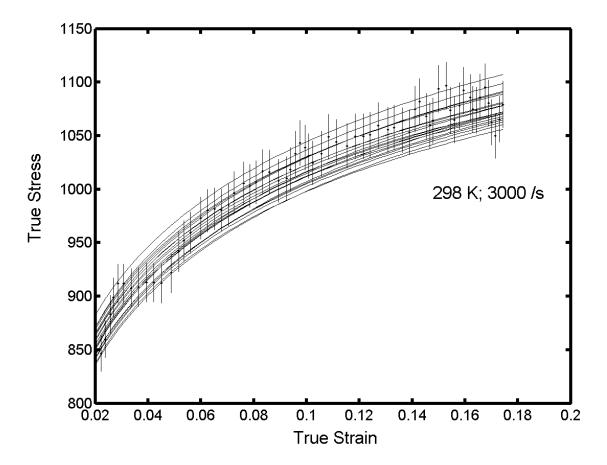
RMS errors, including correlation coefficients, crucially important!

Correlation coefficients

	α1	α2	α3	α4	α5	α6
α1	1	-0.083	0.372	0.207	-0.488	0.267
α2	-0.083	1	0.344	0.311	0.082	0.130
α3	0.372	0.344	1	0.802	0.453	-0.621
α4	0.207	0.311	0.802	1	0.271	-0.466
α5	-0.488	0.082	0.453	0.271	1	-0.860
α6	0.267	0.130	-0.621	-0.466	-0.860	1

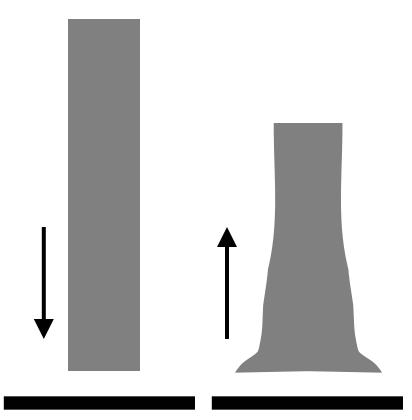
Monte Carlo sampling

• Use Monte Carlo to draw random samples from uncertainty distribution for Zerilli-Armstrong parameters



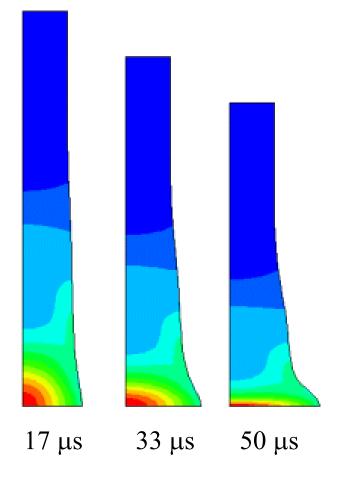
Taylor impact test

- Propel cylinder into rigid plate
- Measure profile of deformed cylinder
- Deformation depends on
 - cylinder dimensions
 - ► impact velocity
 - plastic flow behavior of material at high strain rate
- Useful for
 - determining parameters in materialflow model
 - validating simulation code (including material model)

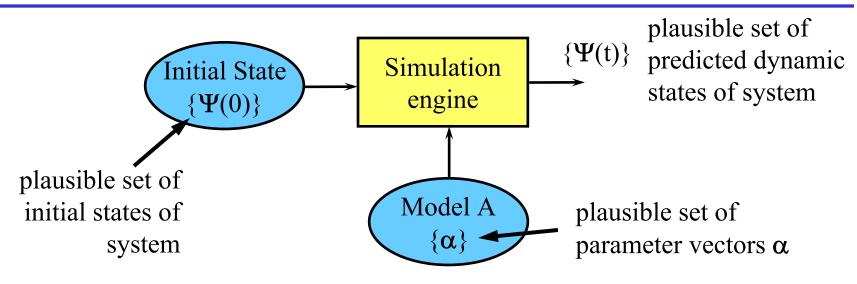


Taylor test simulations

- Simulate Taylor impact test
 - ► Abaqus, commercial FEM code
 - Johnson-Cook model for rate-dependent strength and plasticity
 - ► ignore anisotropy, fracture effects
 - cylinder: high-strength steel
 15-mm dia, 38-mm long
 - impact velocity = 350 m/s
- Effective total strain reaches 250%



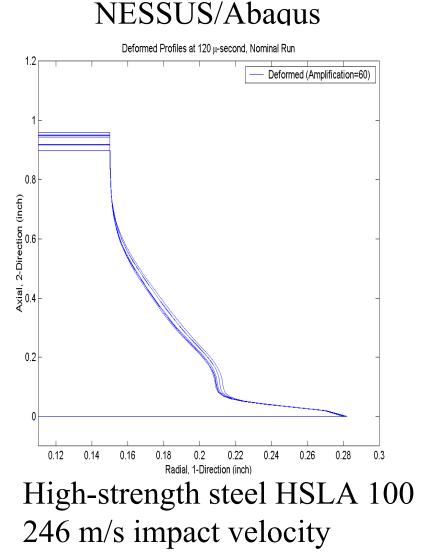
Plausible simulation predictions (forward)



- Generate plausible predictions for known uncertainties in parameters and initial conditions
- Monte Carlo method
 - run simulation code for each random draw from pdf for α , $p(\alpha|.)$, and initial state, $p(\Psi(0)|.)$
 - simulation outputs represent plausible set of predictions, $\{\Psi(t)\}$

Monte Carlo example - Taylor test

- Use MC technique to propagate uncertainties through deterministic simulation code
 - Draw value for each of four parameters from its assumed Gaussian pdf
 - Run Abaqus code for each set of parameters
- Figure shows range of variation in predicted cylinder shape



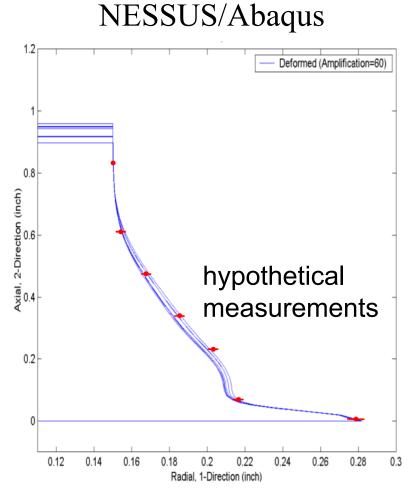
AIAA-Aerospace Sciences Conf.

Taylor test experiment

- Taylor impact test specimen
 - ▶ high-strength steel HSLA 100
 - impact velocity = 245.7 m/s
 - dimensions, final/initial
 length 31.84 mm / 38 mm
 diameter 12.00 mm / 7.59 mm

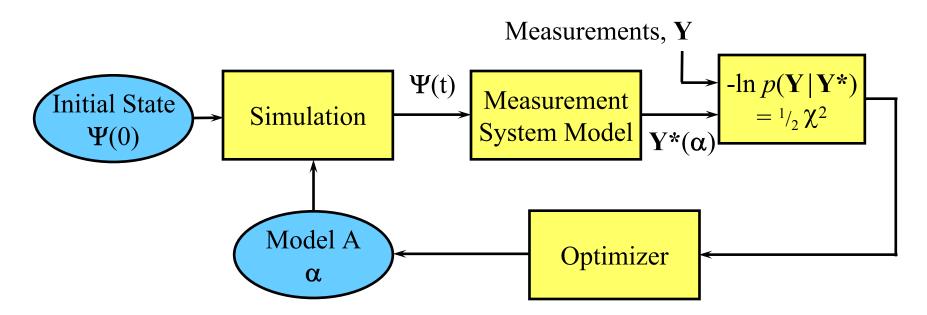
Comparison with experiment

- Don't have measurements of the deformed cylinder yet, but suppose we do
- ZA model parameters can be fit to Taylor data in same way as they were to basic material characterization data
- Results of previous analysis may be used as prior in this analysis



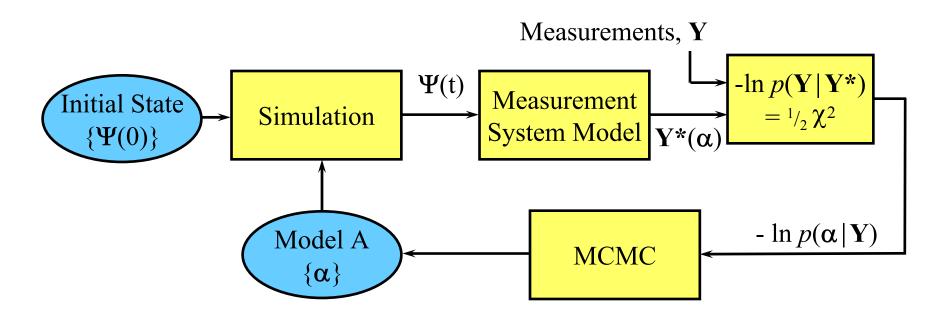
High-strength steel HSLA 100 246 m/s impact velocity

Parameter estimation - maximum likelihood



- Optimizer adjusts parameters (vector α) to minimize $-\ln p(\mathbf{Y} | \mathbf{Y}^*(\alpha))$
- Result is maximum likelihood estimate for α (also known as minimumchi-squared solution)
- Optimization process is accelerated by using gradient-based algorithms along with adjoint differentiation to calculate gradients of forward model

Parameter uncertainties via MCMC



- Markov Chain Monte Carlo (MCMC) algorithm generates a random sequence of parameters that sample posterior probability of parameters for given data Y, *p*(α | Y), which yields plausible set of parameters {α}.
- Must include uncertainty in initial state of system, $\{\Psi(0)\}$

January 7, 2003

Bayesian strategy for UQ of simulation code

- Hierarchy of experiments
 - basic designed to isolate and characterize a basic physical phenomenon at single
 - partially integrated involves more complex combination of phenomena,
 e.g., multiple materials, varying conditions, complex geometry, ...
 - fully integrated attempt to approach application conditions
- Inference use validation experiments to update info about model
 - ► capture info in terms of uncertainties
 - uncertainties indicate degree of confidence in prediction
 - attempt to develop model that is consistent with ALL available experiments
- Ultimate goal Combine results from many (all) experiments
 - reduce uncertainties in model parameters
 - require consistency of models with all experiments

Bibliography

- "A framework for assessing confidence in simulation codes," K. M. Hanson and F. M. Hemez, *Experimental Techniques* 25, pp. 50-55 (2001); application of uncertainty quantification to simulation codes with Taylor test as example
- "A framework for assessing uncertainties in simulation predictions," K. M. Hanson, *Physica D* 133, pp. 179-188 (2000); an integrated approach to determining uncertainties in physics modules and their effect on predictions
- "Inversion based on complex simulations," K. M. Hanson, *Maximum Entropy* and Bayesian Methods, pp. 121-135 (Kluwer Academic, 1998); describes adjoint differentiation and its usefulness in simulation physics
- "Uncertainty assessment for reconstructions based on deformable models," K. M. Hanson et al., *Int. J. Imaging Syst. Technol.* 8, pp. 506-512 (1997); use of MCMC to sample posterior

These and related papers available at http://www.lanl.gov/home/kmh/