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With a change of variables the Abel transform gives the projection of a
2-D distribution with circular symmetry. Thus the Abel inversion formula allows one to
determine the radial dependence of such a distribution from its projection. However, this
inversion formula is very sensitive to noise in the projection data. When the projection
data are derived from radiographic measurements, further difficulties arise from the ne-
cessity to invert the exponential dependence of the measured x-radiation intensity upon
material thickness. These difficulties are shown to be overcome by applying a maximum a
posteriori (MAP) method, which was developed to accomodate nonlinear measurements,
to this tomographic reconstruction problem. The MAP method yields a smooth solution
in regions where the signal-to-noise ratio is low while maintaining good spatial resolution
in regions where it is high.

1 Introduction

In 1826 Abel [ l ] p rovided a method for recovering the density distribution of a two-
dimensional, circularly symmetric object from its projection. It is possible to extend this
2-D analysis to reconstruct the cross section of a three-dimensional, axially symmetric
object from a single radiograph, as depicted in Fig. 1. In industrial radiography, where
many objects have nearly circular symmetry, such an approach offers significant benefits
as an image analysis tool [ 2 ]. These benefits include improved delineation of material
boundaries, enhanced display of deviations from axial symmetry (e. g., possibly caused
by defects), and estimation of the radial dependence of the attenuation coefficients of
the materials. It is often possible to observe in the reconstruction subtle features of
the object that are unobservable in the original radiograph. The improvements brought
about by the tomographic method are due to the effective removal of overlying material
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Figure 1: Overview of the tomographic method. An object with axial symmetry is
radiographed with the radiographic axis perpendicular to the axis of symmetry. The
reconstruction procedure transforms the radiograph into an estimate of the cross section
of the object.

from the radiograph and the consequent increase in contrast with which it is possible to
display the reconstruction.

Abel inversion has been considered over the years by many authors, most recently in
[3,4,5,6]. It has even been scrutinized on a number of occasions by Milt Wing, together
with various colleages  [7,8,9]. In its discrete form, Abel inversion is nonsingular except
at the axis of symmetry. When projection measurements are derived from a radiograph
of an object, they are nonlinearly related to the line integral of the linear attenuation
values through the object. Near the center of a dense object, the optical density can
approach the fog level of the film, resulting in a poor signal-to-noise ratio. This effect,
together with the divergence of the Abel inversion at the axis, can result in overwhelming
noise in that region of the reconstruction of the object’s density. The growth of noise in
the reconstruction can be controlled through a nonlinear maximum a posteriori  (MAP)
formulation in which the known uncertainty in the optical density data caused by film
noise is balanced with the suspected smoothness in the object’s density [10]. In this
approach it is possible to include other constraints on the reconstruction, such as non-
negativity. The usefulness of this approach is demonstrated by the reconstruction of a
solid metal object with axial symmetry from a single radiograph. The MAP approach
presented here may be of interest to applied mathematicians because it represents yet
another means of obtaining a regularized solution in which prior knowledge about the
object function can be incorporated in a consistent way.
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2 Statement of the problem

The line integral along a line that is a distance R from the origin of a 2-D function
possessing circular symmetry f(r) is given by

( 1 )

By a change of variables, Eq. (1) can be shown to be equivalent to the Abel transform.
A solution for f(~), given a known projection p(R),  was derived by Abel more than a
century and a half ago [ l ]. D irect evaluation of the Abel inversion formula can lead to
mathematical difficulties, which can be overcome by a suitable revision of the formula
[ 5 ]. An alternative approach based on a discrete model avoids these difficulties. An
object with axial symmetry is considered to be composed of a series of nested annuli,
as depicted in Fig. 2, whose amplitudes are to be determined. The outermost annulus,
whose projection is shown in Fig. 2, is the only annulus that contributes to the ends of
the projection interval. Thus, it is possible to determine the amplitude of the outermost
annulus  from these projection values and consequently its contributions to each inner
projection sample. The same analysis is applied to the next annulus  and so on until the
center is reached. Hence, the solution is easily realized by ‘peeling the onion’ from the
outside to the inside.

A minor variation in this model of nested annuli  is useful. Each annulus  of the sim-
ple model is replaced by two annuli. The density profiles of these two annuli  vary as
i[l + cos(O)]  and $[l  - cos(d)], w h ere t9 is the angle between the radiographic axis and
the vector between the center of the annulus  and its rim. Thus the density of each annu-
lus varies linearly with the transverse distance from the center from zero on one side to
full density on the other side. The tapers of the two annuli  vary in opposite directions
so that, if they are given equal amplitudes, the sum of both densities is the same as
that of the original annulus. The result of this decomposition is that the major contri-
bution to the reconstruction on each side of the rotation axis comes predominately from
the corresponding side of the projection. This model of annuli  with tapered densities is
better than one in which the annuli  on each side are considered to be entirely distinct
because it smoothly bridges both sides. Thus, even when the left and right sides of a
projection might otherwise dictate considerably different values at the origin (produc-
ing a discontinuity there), this tapered model will tend to produce a smoothly varying
reconstruction.

In this discrete model, the relationship between the discretely sampled projections,
represented by the vector p, and the amplitudes of the corresponding annuli,  represented
by the vector f, is given by

p = Hf 9 (2)

where H is the measurement matrix. The H matrix is explicitly displayed for a projection
of 10 discrete samples in Fig. 3. For this model H possesses a bow-tie structure so that
Eq. (2) is easy to solve by a procedure similar to Gaussian elimination in which the
unknowns are determined alternatively from the top and bottom of the set of equations.
If the tapered aspect of the model were not employed, H would have a lower triangular
form and straightforward Gaussian elimination could be used.
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MODEL OF AXISYMMETRIC  OBJECT

PROJECTION OF OUTER ANNULUS

Figure 2: Model of a 2-D object with circular symmetry composed of a series of annuli
whose widths correspond to the width of a pixel in the discretely sampled projection.
Below is the projection of the outer annulus. The dashed line shows the projection of
the outer annulus  when its density is assumed to vary linearly from zero on the left side
to full density on the right.
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4.088 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.083 3.626 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.385
1.893 2.660 3.097 0.000 0.000 0.000 0.000 0.000 0.443 0.541
1.420 1.598 2.157 2.457 0.000 0.000 0.000 0.539 0.639 0.710
1.121 1.159 1.236 1.504 1.571 0.000 0.752 0.824 0.870 0.896
0.896 0.870 0.824 0.752 0.000 1.571 1.504 1.236 1.159 1.121
0.710 0.639 0.539 0.000 0.000 0.000 2.457 2.157 1.598 1.420
0.541 0.443 0.000 0.000 0.000 0.000 0.000 3.097 2.660 1.893
0.385 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.626 3.083
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.088

Figure 3: The H matrix, which describes the projection measurements in the model
shown in Fig. 2 for a projection consisting of 10 discrete samples.

The projections needed as input for tomographic reconstruction, Eq. (2), may be
obtained from radiographic measurements. Suppose that a 3-D object is radiographed
with an essentially monoenergetic x-ray source. If the x-rays are detected by a direct-
recording film, the optical density of the developed film is proportional to the x-ray
intensity. At the intersection of each line segment L that originates at the point source
with the film plane, the optical density of the film is given by

D(P)  = DO + DI exp C-p} , (3)

where the pathlength p is the line integral along line L of the object’s linear attenuation
coefficient distribution p(z,y,z),  evaluated at the x-ray energy. In the above equation,
Do is the background density of the film, which includes the fog level of the film and any
contribution from scattered radiation and Dr is the net density (above Do) that would be
obtained in the absence of the object. Figure 4 illustrates this relationship. The highly
nonlinear behavior of Eq. (3) for optical densities near Do makes the reconstruction there
very sensitive to the choice for Do. This consideration points out the need to know D,-,
very accurately to avoid making serious systematic errors in the reconstruction. Slight
variations in Do arising from variations in the scattered radiation field may be difficult
to take into account.

Putting Eqs. (2) and (3) together, we obtain the overall measurement equation for
the measured optical density vector g

g = ew > (4) 
where, in a change of notation to be consistent with that of Hunt [ll], the attenuation law
is now represented by the function s(p), which operates on each individual component
of the pathlength vector p = Hf with the nonlinear scalar function given by Eq. (3).
Under certain circumstances, direct inversion of Eq. (4) is possible

f* = H%-‘(g) .

This inverse only exists, however, if H is nonsingular (possesses no null space). Such
is the case for the discrete model of the Abel transformation. However, difficulty can
arise in inverting the nonlinear transformation s. When the measured density D is either
above Do +Dr or below Do, which is possible because of noise fluctuations, Eq. (3) cannot
be meaningfully inverted. The MAP method overcomes this difficulty.
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Figure 4: The measurement of x-ray attenuation by film is given by an exponential in the
optical density. Values of the optical density below the fog level Do, 0.5 in this diagram,
are theoretically not allowed.
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Figure 5: Radiograph of an axially symmetric steel object.

Now consider a 3-D object that possesses axial or rotational symmetry. In any plane
that is perpendicular to the symmetry axis, the object’s cross section has circular sym-
metry. If the object is radiographed with a set of parallel x-ray beams all of which lie in
such a plane, the pathlengths obtained by applying Eq. (3) will correspond precisely to
those in the 2-D situation. Thus, the radial distribution of that cross section can be re-
constructed. A line-by-line analysis carried out in this way on each line of the radiograph
that is perpendicular to the symmetry axis then yields the complete radial distribution
of the object.

Figure 5 displays a radiograph of a test object with axial symmetry. The object is a
70-mm-long right circular steel cylinder, 120 mm in diameter, with a 45O cone removed
from one end to a depth of 40 mm. Four Smm-square  grooves were machined on the
flat face as well as on the inside of the cone. The radiograph was taken with a Co-60
source using Kodak AA industrial radiographic film placed in close contact with 0.25-
mm-thick lead screens, front and back. The object was placed with its axis of symmetry
perpendicular to the radiographic axis in a geometry to closely approximate the parallel
beam assumed by the reconstruction procedure. Figure 5 is actually a digital image,
220 by 150 pixels in size with pixel spacing of 0.6 mm. It is displayed here with a
contrast comparable to that in the original radiograph. The grooves with the smallest
diameters are virtually impossible to see because of their extremely low contrast on the
radiograph. The diffuse densities in the radiograph range from about 0.5 to 3.5, the latter
corresponding to that produced by the unattenuated x-ray beam.

When the tomographic reconstruction indicated by Eq. (5) is performed on each line
of the radiograph, Fig. 5, and the reconstructed radial profiles are combined to form
an image, Fig. 6 results. This reconstruction closely resembles the cross section of the
object itself. The value of the linear attenuation coefficient reconstructed for the steel
is approximately the same as the tabulated value for iron at 1.25 MeV, namely 0.042
mm-l. The grooves, which were very difficult to observe in the original radiograph, are
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Figure 6: The reconstruction of the cross section of the object derived from Fig. 5. The
2-mm-square grooves machined in the inner cone and on the end face are much more
readily visible. These grooves were nearly invisible in the original radiograph.

now easily seen. The tomographic reconstruction procedure has redisplayed the data
in such a way that one’s ability to derive information from the image is limited by the
inherent noise, which was not the case for the original radiograph. The attainment of
the ultimate limit in image interpretation dictated by the noise is one of the major goals
of image processing!

However, there is severe enhancement of the noise near the axis of symmetry that
arises from a nearly singular condition in the reconstruction procedure there. This near
singularity is equivalent to the physical statement that as a ring of material with constant
thickness decreases in diameter, it produces a smaller and smaller optical-density signal
on the radiograph, making it increasingly ‘difficult to observe in the presence of nearly
constant film-density noise. The uncontrolled growth of noise in the reconstruction poses
difficulty for visual interpretation of the image. The human eye simply cannot perform
the necessary averaging over noise of such large amplitude. One possible method to
control the noise in the reconstruction is to employ nonlinear maximum a posteriori
probability (MAP) restoration [2], to be discussed next.

3 The Bayesian Approach

The essence of the Bayesian approach is the assumption that the image to be recon-
structed is a random selection from an identifiable ensemble of similar images. In the
context of medical imaging, an example of such an ensemble is the collection of all hearts
imaged in the same kind of procedure. By using this prior information about the type
of image that is expected, one anticipates that the null-space component of the recon-
struction might be meaningfully estimated, thereby reducing artifacts. The Bayesian
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approach provides a way to incorporate prior information about the structure of the re-
constructed object into the solution. Of course, other types of prior information can also
be incorporated in the Bayesian method of reconstruction. See Refs. [12,13] for a more
complete description of the general situation.

Direct inversion of the measurement equations using Eq. (5) tacitly assumes the mea-
surements can be made with infinite accuracy. In reality, all measurements of continuous
quantities are subject to random fluctuations called noise. Thus, the measurements
should be written as

g=s{Hf}+n, (6)
where n is the noise vector. It must be emphasized that the noise vector is a random
variable. It is different for each set of measurements, and its exact value cannot be
correctly guessed. Each realization of the vector n may be regarded as a random selection
from an infinitely large ensemble, or collection, of noise vectors. In general, the noise
fluctuations may possess an arbitrary probability density distribution. Frequently, the
assumption is made that the noise has a multivariate Gaussian distribution with a zero
mean

P(n) - ezp{-+nTRi’n)  ,

where R, is the noise covariance matrix, of which the ;j element is

The assumption of a normal distribution is often valid. The brackets ( ) indicate an
average taken over all members of the ensemble of noise vectors. The above expression
is general enough to fully characterize noise flucuations  that depend upon the strength
of the signal being measured or upon the position of the measurement. It can even take
into account correlations in the noise. By its definition, R, is a positive-definite matrix,
and its inverse, needed in Eq. (7),  is assured.

Under a wide range of reasonable conditions [14], when averaged over the full en-
sembles of noise and images, the best estimate for the reconstruction is that particular
image f which maximizes the a posteriori  conditional probability density of f given the
measurements g. This probability is given by Bayes’ formula

in terms of the conditional probability of g given f, P(g]f),  and the a priori probability
distributions of f and g separately, P(f) and P(g).

Hunt [11] proposed using the Bayesian approach for improved image recovery. It is
assumed that P(g]f)  is given by P(n), in which g is Gaussian distributed about the mean
s(Hf), as in Eq. (7),

P(g]f)  - ezp(-)(g - s{Hf})TR,l(g  - s(Hf))} .

This conditional probability may be referred to as the probability density distribution of
the measurements, since it follows solely from the distribution of the error fluctuations in
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the measurements. It is also often called the likelihood function [14]. The a priori prob-
ability density function for the ensemble of images P(f) is assumed to be a multivariate
Gaussian distribution with a mean value T and with a covariance matrix Rf :

P(f) N exp{-$(f  - T)TRi’(f  - T)} . (11)

Under these assumptions, the maximum a posteriori  (MAP) solution is easily shown to
satisfy [11] the MAP equation

R;‘( T - f ) + HTSb R,‘(g  - s{Hf})  = 0 , (12)

where Sb comes from the derivative of s:

evaluated at the arguments of s
b; = [Hf]; . (14)

The transpose of H is the familiar backprojection operation in the context of tomographic
reconstruction. The first term comes from the derivative of P(f), given by Eq. (11),  and
the second from P(glf),  Eq. (10). It can be seen that the MAP solution strikes a balance
between its deviation from the ensemble mean T and the solution to the measurement
equation, Eq. (4). This balance is controlled by the covariance matrices Rf and R,
that specify the confidence with which each deviation is weighted, as well as possible
correlations between the deviations.

If s were a linear function, Eq. (12) would be linear in the unknown vector f. This
linearity follows from the assumption of normal distributions for the a priori and measure-
ment-error probability densities. In this circumstance, the MAP reconstruction method
is equivalent to the minimum-variance linear estimator with nonstationary mean and
covariance ensemble characterizations [14]. It is also called the minimum mean-square-
error method [15]. When the blur function, noise, and ensemble image properties are
stationary (do not depend upon position), then H, Rf, and R, are Toeplitz matrices,
and, in the circulant approximation, Eq. (12) is the same as the well-known Wiener
filter [15]. The application of the linear MAP method to tomographic reconstruction was
suggested by Herman and Lent [16].

We wish to address situations in which there is a lack of specific information about
the object to be reconstructed. It is known that in such cases the use of the MAP
method probably cannot provide much benefit in correcting for the null-space deficit in
the reconstruction [12,13].  In the present case of Abel inversion, this deficit exists only
for the nonlinear transformation s, not for the matrix H. Suppose that we wish to have a
smooth solution unless the data legitimately indicate otherwise. Then a common choice
for Rf is

Rf = (V2 V2)-l . (15)
Since V2 V2 is a differentiation operator, Rf is a smoothing operator. Since, in the
absence of very accurate data, we would like the solution to approach something smooth,
we further choose for f a smooth version of the estimate f
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In our calculations Rf is calculated by using a filter that behaves as the inverse fourth
power of the spatial frequency. The addition of a small regularizing term avoids blowup
at zero frequency. The amount of regularization controls the width of the smoothing
function, which in our example is chosen to have a full-width at half-maximum of 11
pixels. To avoid making the analysis any more complicated than necessary, we will
assume that the noise in the radiographic measurements is stationary and uncorrelated.
Then,

R,=C+I, (17)

where ui is the variance of the noise. While this assumption may not be completely
valid, it is a sufficiently good approximation in most instances. Since it is desirable to
control its strength, Rf is multiplied by the factor X, whose value is adjusted to make
the rms residuals approximately match the value expected for the noise. The net effect
on the MAP equation, Eq. (12), is that R, disappears and the coefficient of the HT term
becomes A/O:.

There is a close relationship between the method just described and that of con-
strained least squares (CLS) [15]. In the latter method, the solution minimizes the norm
of some linear operator applied to f, subject to the constraint that the rms residuals
match a specified value. In fact the above choice for Rf amounts to seeking the solution
with minimum curvature. However, the usual version of CLS does not make reference
to f and, in effect, assumes f = 0. Clearly this is not a very good choice for f, as it is
the default value when the data are very noisy. In noisy regions our choice pushes the
solution towards a smoothed value instead of zero, as does the usual CLS algorithm.

Andrews and Hunt [15] suggested that the maximum-entropy algorithm may be
viewed as an alternate form of the constrained least-squares approach. This connec-
tion is most easily seen from the work of Gull and Daniell [17], in which they merge the
maximum-entropy principle with the probabilistic concepts of random noise. They pro-
pose that one find the solution that maximizes entropy, subject to the constraint that the
calculated rms residuals be equal to a predetermined value. The similarity between the
function they wish to minimize and the quadratic form that leads to the MAP equation,
(12),  prompts one to interpret the maximum-entropy technique in terms of a Bayesian
approach [ in which the a priori  probability density has a particular form [13]. Inde-
pendent of whether this Bayesian interpretation is correct or not, the performance of the
maximum-entropy algorithm can be understood and interpreted in terms of what one
would expect for MAP for that particular prior probability distribution.

4 An Iterative Solution Technique

We have adopted an iterative approach to the solution of Eq. (12) based on the scheme
proposed by Hunt [11]. The iteration scheme is given by:

f0 = f (18)

f”+l = f” + ckrk (19)
rk = R;‘( f - f” ) + HTSb R,l(g - s{Hfk }) (20)
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ck - ykTqk

qkTqk

qk = (R;’ + HTSb R,%$,  H)r”

(21)

(22)
where vector rk is the residual of Eq. (12), and the scalar ck is chosen by Eq. (21) to
minimize the norm of rk. When the residual goes to zero, the corresponding f” is clearly a
solution of the MAP Eq. (12). This iterative scheme is very similar to the one proposed by
Herman and Lent [16] for linear  MAP image restoration. Their update scheme consisted
in incrementing f” by Eq. (20) multiplied by Rf, avoiding a potential computational
difficulty if Rf is nontrivial. But it has the disadvantage of providing smooth update
vectors. Consequently, it becomes very difficult to achieve good high-frequency response.

We have found that the above scheme does not work well for this problem even though
it was adequate for the usual 2-D reconstruction case [12]. To obtain better convergence,
we have added a few variations. Instead of using only one update vector, as in Eq. (19),
we have used a second vector, alternatively switching between q” and the vector

H-l(g - s(Hf”})  , (23)

which is similar to the inverse, Eq. 5. We note that the use of the inverse directly did
not appear to work as it overcorrected the residuals. The coefficients for each *of the
updating vectors are computed in a manner similar to that given by Eq. (21). This
iteration scheme encompasses the modification to Hunt’s procedure that was suggested
by Trussell and Hunt [19], but with a different choice for the normalization of the update
vectors. A scheme similar to that of conjugate gradient was also tried in which each
update is constructed to be orthogonal to preceding ones. It appeared to be of little use
in improving convergence. We did find it helpful to gradually admit successively highier
frequency components to the solution, which is accomplished by low-pass filtering of the
update vectors and progressively increasing the cutoff frequency of the filter as the number
of iterations increases. For the low-pass filter we used a Gaussian function centered on
zero frequency. In our example we used 10 iterations. The half-value frequency of the
low-pass filter ranged from 0.210 to 1.0 times the Nyquist frequency, stepping by a factor
of 1.189 after each iteration. The computation time on a VAX 8700 was 45 minutes for
the MAP reconstruction of 150 lines, each 220 pixels long, compared with one minute for
direct inversion.

An advantage to any iterative reconstruction scheme is that constraints may be readily
placed upon the reconstructed function fle+l after each update. Such constraints include
upper and lower limits to the reconstruction value, known region of support, etc.

The application of the above MAP technique to the earlier reconstruction problem
yields Fig. 7, which shows that the extreme noise fluctuations in Fig. 6 have been con-
trolled well. However, the sharp response to the outer edge of the cylinder is preserved.
By reducing extremely large noise fluctuations, the result is rendered more acceptable
to the eye [20]. This wide light region near the vertex of the cone probably arises from
a slight shift in Do caused by variation in the scattered radiation background. Figure 8
shows a comparison between the MAP and direct inversion techniques for a single line
taken from the radiograph.
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Figure 7: The MAP reconstruction derived from Fig. 5 using X = 2.0~  10m5  and a, = 0.01.
Note that in the noisy regions the amplitude of the noise has been reduced relative to
that in Fig. 6, while at the same time maintaining excellent resolution at the outer edge.
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Figure 8: A comparison for one line of data between the reconstruction (top) obtained by
direct inversion of the measurement equations and that (bottom) obtained by the MAP
technique.
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5 Conclusions

It has been shown that the extension of Abel inversion to the reconstruction of a
3-D axially symmetric object from a single radiograph offers significant benefits as an
image analysis tool. It has been demonstrated that the noise amplification caused by the
nearly singular Abel inversion and the potential difficulty in the inversion of the nonlinear
radiographic measurements can be controlled using the MAP method with a simplified
choice of a smoothed value of f for T and a smoothing operator for Rf . With these choices
the MAP algorithm is similar to the constrained least-squares method [15] correspond-
ing to minimum curvature. We have employed a multifaceted iterative reconstruction
algorithm to find the solution with the maximum a posteriori  probability.

In general the Bayesian approach permits the incorporation of information about
the general shape or structure of the object to be reconstructed. Supposing a lack of
prior knowledge about the object to be reconstructed, we have only assumed that the
reconstructed function should be smooth unless otherwise dictated by the data. If more
prior information is available, it may be desirable to incorporate it into the solution.
However, one must be careful not to ‘load the dice’ too heavily or one will obtain only
the expected result [13].
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