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Abstrac:

The detectability of featur2s in an image is ultimately limited
by the random fluctuations 1n density or noise present in that
image. The noise in CT reconstructions arising from the stat) .-
cical fluctuations in the one-dimensional! input projection .neas-
urements has an unusual character owing to the reconstruction
procedure. Such CT image noise differs from the “white® noise
normally found in imsges in it3 lack of low-freque.:Zy comnanents.
The noilse power spectrum of CT reconstructions can be relsted to
the effective dengity of x-ray quanta detected in the prujection

megsurements, designated as NEQ (nolse-eguivalent quanta). The
detectability of objects that are gomewhat larger than the spa-
t1al resolution is directly related to NEQ. Since contrast re-

solution may be defined in terms ot the ability to detect ldrge,
low-contrast objects, the meagurement of a CT scanner's NEQ may
be veed to characterize i1ts contrast gsenuitivity.

*Work performed under the auspices of tha UL S Department of
Enarqy, under contract no. W7¢05-ENG-16.

1. INTRODUCTION of the 1mage. There 1s strong evidence
that mos. ot the random
x-tay comput-i tomographic (CT) present-day CT scanners 1is due
nas made it poagible to detect statisticsl inaccuracles arising from
ptesence of lesions of very low the detection of a finite
(New et al., 1978). This dra- trangmitted x-ray quants.
improvement In detection cepabil- erties of this gtatisticai noise
over most conventlonal torms of images will be discugsed :n
imeging (s a3 result of the fol- cle. The goal will be to characterize
lnnovatliong: (1) cthe noise 1in the noise content :n a way
reconstructed CT i1maqes 13 signif:- closely related to tne dctection capa-
raduced through the use of aeffi- bilities inherunt in the image.
x-ray detectors and electronic
processing, thereby improving the utili- It will be ghown in the dimcuusion ot
zotion of the radiation dode; 12) zhe the opticum roececiver that tne abllity to
can be displayed with enhanced detact 5 .arQe-3r9u object in a CT
contrast, thusa oveccoming the minimum i3 chiefly dJdependent on the NEQ,
threshold of the humen eye; total number of nolse-nquivalent quanta
CT reconstruction technique detectod per unit length i1n the projec-
almost completely a)l:'minares the guper: tions used to recongrruct thot
positior. of asnastomic Structures, leadirg A3 3uch, 1t 15 not the tingness
to 2 reduction of “structural” noige. whicnh the x rays ate dotccred
projections (raelacted to apatial
the rcandom noise in & CT image tion), but ;:nply the ¢ftoctive
ultimately limtts +*he abliity of number ot cetected x rays that
tadiologist to discriminate hetween cnceg the lyrge-aren contraet
reqiong of Jdifferent Jdencity. De- tivity of the C7 reconatruction.
1t2 unpredictable nature, such €ixod, large-area contrast sensitivity,
cannJyt be completely eliminated then, an {ncrcase In spatial

resolution

image and will always lead to dces not imply the necrusity tor
§omM@ uncertalnty In he intorpratation
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dose! NEQ, which characterizes the low-
frequency properties orf nolise in a CT
image, can be determined from a CT noise
image by measuring che noise-power Spec-
trum. This paper represents a distilla-
tion of a chapter prepared for Radiology
of the Skin ancd Brajin, Vol. S (Hanson,
1981).

2. PROPERTIES OF <T NOISE

The congdequences of gtatistical noise in
CT reconstructions have been discussed
by numerous authors (Shepp and Logan,
1974; Cho et al., 197S5; Tanaka and
Tinuma, 1975, 1976; Barrett et al.,
1976: Brooks and DiChiro, 1976; Chesler
et al., 1977; Hanson, 1977,1979a;
Huesman, 1975, 1977; Joseph, 1977, 1978;
Hanson and Doyd, 1978; Riederer et al.,
197Ff: Wagner et al., 1979). Several of
these authors have pointed out that the
procens of reconstructicn leads to some
pecullar characteristics of the noise (n
CT images. The propert:e8 of statisti-
cal f(quantum) noise {n CT recon3truc-
tions will be explored in this discus-
sion, Although the precise random noise
pattern of any image cannot be predicted
1 priori, it 18 possible to characterize
the averaqe behavior of the noige by a
variety of methods. Some of these meth-
ods give a complate description of che
noise characteristics, such as the noise
power spoctrum Or the noise autocorrela-~
“1on function, whereas others give only
) partial desgcription, 3uch 38 tme
noige. it wil]l develop that the noise
tluctuaction in one pixel of a CT recor-
struction {s not {independent of the
ncise fluctuations in other pixels.
Rather, the fluctuations in two separate
pixcls are, on the average, correlated.

1the ramplike natute of the noige power
spactrum cxpectead for CT reconstructions
will be cerived tor the filtrred back
projectivn alqorithm, It will be shown
“hat nolfse power gpectr: of EMI CTS005
teconstruceiong possens thig ramp!llke
benavior at low frequencies.

Netore proceeding, 1t gshould be men-
tioned thet tne preaent discussion |8
cuncerned only with the random nnise
~hat rmesults from ¢the gtatiatical
veari1ation tn the number of detected
X-ray auanta. CT reconetruction may
3lso contain unwanted (eatures that
ar:ge trom deficiencies In the data
collactad 3such as too few views, not
enough samples taken |in each view
falisuina), beam hardening of the poly-
chromatic x=-ray beam, partial volume
cftects, estc. (Jesaph, 1981, Herman,
1§79, Theae unwanted signalc acve

termed artifacts. They will not change
in a gseries of identical scans 3since
they arise from systematic errors.
Artifacts may be arbitrarily reduced by
improved scanning and reconstruction
procedures. However, statistical noise
can only be reduced by increasing the
number of detected x rays either through
an improvement in x-ray detection effi-
ciency (many of today's 8scanners are
within a factor of ¢two of the most
practical efficiencies attainable) or
through an increase in patient dose.

2.1 ORIGIN OF IMAGE NOISE

The energy in x-radiation is transmitted
in the form of individual <chunks of
energy called gquanta. Hence, the res-
ponse of an x-ray detector is actually
tne result of detecting a finite number
of x~ray quanta. The number of dctected
quanta will vary from one measurement to
the next, because of statistical fluctu-
ations that naturally arise in the
"counting®" process. As more quanta are
detected in each measurement, the ce-
lative accuracy of each measurement
improves. Stacistical noise in x-ray
images arigses from the fluctuations .n-
herent in the detection of a finite
nueber of x-ray quanta. Statistical
noigse may also be :callad quantum noise
and {8 often ceferred to as Qquantum
mottle 1n film radiography.

Statistical nolse clearly represents a
fundamental limitation In x-ray radio-
graphic processes. The only way to re-
duce the effects of statistical noise is
to increage the number oL detected x-ray
quanty. Normally this {8 achieved by
increasing the number of transmitted

X rays through an increase :in dose.
Figure 1 gshows a 3eries of goans taken
on a8 GE CT/T 76800 scanner* using a phan-
tom designed to test contrast senaiti-
vity. The reduction 1n the noise caused
by incressing the x-ray exposutrc (milli-
Ampere seconds) {8 gQraphically demon-
strated.

In processing aelectric aignals, elec-
tronic circuits i{nevitably add some
noige to the signalu. Analog circuits,
those which pirncess continuously varying
signalgs, atc most susceptible to acddi-
tional notse, Thus the gtaye most
likely to inject acdditional elactronic
noise {(u tvhat of enalog signal proces-
8ing of the x-ray detector's ourpurn The
difficulty of noise suppremsion (@ com-
pounded by the fact that for soma types
of a-ray detectors, the electronic sig-
nals are very small. There (s evidence
(Cohen, 1979) that many commercially
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available CT scanners ace sufficiently
well engineered to reduce the contribu-
tinn of electronic roise under normal
operating conditions to a fraction of
the statistical noise contribution.

2.2 FOURIER ANALYSIS--NOISE {OWER
SPECTROM

Any signal may be thought of as a sum of
sine waves of approp-iate frequency,
amplitude, and position (phase). This
decumposition of a signal into its fre-
auency components is called Fourier
analysis. It is often helpful to apply
Fourier analysis to imaging 3ystems
(cameras, television, x-ray radiographs,
etc.) because of the ease with which the
imaging properties of various stages of
the systems cowbine in thei: £fregquency
representations. To be sure, Fourier
analysis is only useful for linear sys-
tems, but most 1maging techniques are
anproximately linear for small changes
\n signal amplitudes. A good int:oduc-
tion to the application of Pourier anal-
ysis to radiography may be found |in
Johns and Cunningham (1969), and to image
analysis in Dainty and Shaw (1974).

The noise power gdpectrum (8 related to
the freavency decompos'tion of the 1mage
noise, The ncise power spectrum lis
often referred to as the Wiener 3spec-
vrum. Often the response of the aysrum
13 agsumed to ba circularly syemetric.
Then the two-dimensional nnise power
fpectrum may be reduced to a one-
dimensional gpectrum that is a function
of only the radial frequency (distance
from zero frequency in two dimensions;.

The noise found {n conventionai radio-
araphs 18 ttypified by a8 noise power
spectrum that i{s <oughly constant over a
vwide range of frequencies. Such a noine
power gpectrum 13 called "whitoe" In
analogy to white lighct, whizh conraing a
mixture of iight of all frequencies
within the vigible spectrum. A white
noine power spectrum indicates that the
rendom fluctuations at one polnt in the
image s uncorrelated with or {ndepen-
dens from fluctuations at another point.
In conventional radiographs this comea
about eincc separate x rays ar. detected
at twvo different points. Thus, the sta-
tistical fluctuations giving rise to
noise at one point are¢ not related to
vhe fluctuationa occuring at a different
position. Statements such as this can
Le made only if the pointas are separated
by v distance sufficiently large to
avoid "croes talk" berween the points.
Conseguently, the nolse power spectra of
all physical systema must eventually
fal)l to zero at high frequencies.

2.] VISUAL EXAMPLE

The relationship between the noigse power
spectrum and the noise it characterizes
may be displayed visually. Figure 2
shows images containing two typee of
noise, one typifving white noise, and
the other, CT noise. The rms devliation
of the noise is the same 1n both 1mages.
The noise power spectra of these 1mages
1s shown in PFig. 3. White nolse, typl-
cal of film radiography (see above) 1is
characterized by a flat power spectrum
at low frequencies. In this example its
power spectrum falls off at intermediate
frequencies because of &n assun.ed
Gaussian modulation :ransfer function
(MTP), that is, exp(-af’). As discussed
later, trhe CT noisSe power spectrum typl-
caliy 1s linear at low frequencies going
toward zero at zero freguency. In this
exampie the CT noise power spectrum
peaks at midfrequencies and then falls
off with the same MTF as the white no‘se
3pectrum. The major difference between
the two noise power spectra of Fig. ] 1is
the greatly diminished contgribution at
low frequencies typicil of CT noise.
Since low trequency corresponds to large
digtance, the CT noise image would be
expected to have little contribution
from clumps o noise with large area.
The r-~duced blotchiness of the CT noise
can be seen 1n Fi1g. 2, especlially when
the fiqure 1s obgerved from a distance
30 the eye ia tuned to large-area struc-
ture.

¢.4 DEPENNENCE ON RECONSTRUCTION
ALGORITHM AND NEQ

The nol3e power 3pectrum for CT noise
has bteoen derived by Riederter et al.
(1978). The derivation 18 based on the
fil.ecad back projection algorithm
(Shepp and Loqgan, 1974) for a parallel-
beam qeometry (n which a conutant den-
sity of x cvays i35 detected 1in ail the
projections. The correcrive filter
applied to the Fourler transforms of tha
projoctions i3 ssgumed to be

G(f) = 18" H(E) | (1)
where f 18 the frequancy, and H 10 a
weighting (or apodization) factor. The

principal regtriction on H 18 that 1t bhe
nearly unity fur very low frequenciles f,
it may Dbe shown that the noise power
gpectrum S for stati{stical CT noise can
be written as follows (Ricderer et al..
1978, Hanagon, 1979a, Wagner et al.,
1979):

1 £ H2 £)

S({) = i (2)



where NEQ, the number of noise-
equivalent gquanta, is the total effec-
tive number of x~ray guanta detected per
unit distance alon3y the projections
(summed over all the projection measure-

ments). If there is no source of noise
other *han statistical and the recon-
struction algorithm is efficient, then
NEQ will be just the total number of
detected x rays per unit projection
length. The presence of other sources
of noise can reduce NEQ compared with
Lthe actual number of detected gquanta.
2Also, the measurement of t'ie x-ray flu-

ence by means of an energy-integrating
detector (as is done on esgsentially all
commercial CT 3canners) leads to a
slicht reduction (~10%) in NEQ compared
ro that attainable through x-ray coun-
ting. In equation 2 it is assumed that
the recongstruction image attenuation
coefficient 1 given in units of (cm™ 'y,
Then S will be dimersionless and NEQ
will nave dimension (em'), as it should.

gquation 2 indicates that the noise
power gspectra of CT reconstructions
should have a ramplike dependerice at low
freguencies (where H = 1), The slope of
S at low freguencies 1is determined by
NEC. As such, NEQ may be used to char-
acterize the Jarge-area, low-contrast
detection capabilities of CT images (see

discugsion of optimum recelver). It
shall be shcwn that equation 2 implies
there i3 no lo8s 1n detection perfor-

mance 1n a filtered back projection
rrnconstruction compared to the input
projection data for large objects. As
more aquanta are detected, S will be re-
duced 1inversely and the CT image noise
will dirinish.

The dependence of S on the weighting
factor 'Hl of the algorithm should be
roted. H may be reqgarcd~d ag the MTF

yssociated with the recontruction algo-
rithm in the absence of oirning problems

agsociated with the finite s§i122 of the
tecorstruction ypixels (Hangon, 1979b).
The MTF of the complete scanner syatem

ts the ptoduct ¢f al!l the MTP3 that con-

tribute =0 the spatial reyolution of the
f£inal 1mage. for meny CT ascanner sys-
temg the dowminant contribu-ion {s the

MTF ansocisted with the tinite width of
the radiation ream uwed in the projec-
cion mepsurements (Barnes et al., 1979).
Thus, aithough the tctal noige of the CT
scanner 15 closely reloted to tne spa-
tial resolution of the reconstruction
algoritnm, ‘¢ mey have only : weak de-
pendence on the overall spatial cegolu-
tion, 1t ghould #l30 be reslized that

*EMI Medical Inc., MNorthbrook,
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the image noise is not dependent on the
pixel size except insofar as the latter
affects the choice of H.

2.5 rms NOISE

Fregquently the rms deviation of the

noise is quoted for CT reconstructions.
It should be clear that the rms noise is

not a complete characterization of CT
noise, gsince it ignores the frequency
dependence of the noise. Specifically,

the rms noise depends critically on the
high frequency damping factor H(f) used
in the reconstruction algorithm, which
will vary from one CT scanner to the
next. It will be shown that the ability
to detect large-area ouvbjects is related
to the low-frequency noise power con-
tent, which is relatively unaffected by
H(f). Thus, detectability is not simply
related to the rmr noise.

The rms noise may be calculated from the
noise power spectrum (by Sarseval's
theorem) as the sguare toot of the total
noise power

g = /_/]dfxdfys(fx,fy)
« /2f S(f) .
2 fag £ sce)

Since ¢! is the inteyral of the noise
power sgpect-um, 1t contains no infor-
mation about the frequency dependence of
the noisge.

(3)

2.6 RESULTS FOR A COMMERCIAJL SCANNER
The noise power gpectrum has been calcu-~
lated for an EMI CTS205 scanner* to de-
monstrate that it has the form predicted
by equation 2 (Hangson, 1979a). The EMI
26-cm ‘diameter water calibration phantom
was scanned six times at 140 kvp, 28 mA
using the normal scan time (20 seconds).
The 320 x 320 reconstructiun matrix was
obtained bv decoding the EMI wmagnetic
tape, The pixe! size is 0.75 mm. These
scans were performed at the University
nf California (Sen Francisco) Medical
Center in Octobar, 1977, and the acanner
was not equipped with the new dose-
tecucing collimator (EMI 522]).

Analysia of the recongtructions showed
that the tma deviation of the noise
(1.28%) wasg congstant over the whole
image to very good accuracy. Further-
more, the Javerage values in the recon-
structions were upiform to botter than
0.19%, figute 4 shows one of the water
acans uged. Any variations geen in Figy.
4 can arise only from either the display



unit or subseqguent film processing. The
presence of the film-roller mark points

out the need for gquality contrel in
these often neglected aspects of CT
technology.

The noise power spectrum of the EMI re-
constructions was calculated in a manner
gimilar to that described in the earlier
discusgssion of noise power gpectrum. The
regulting spectrum, Fig. S, has the pre-
dicted linear behavior at low frequency
(below 0.1 mm-!), The slope of the spec-
trum at midfrequencies (0.1 to 0.3 mn~!)
is greater than at low frequency, indi-
cating that EMI has used a value of H
which is greater than 1 at these fre-
guencies. The resulting edge enhance-
ment sSnarpens edges in the reconstruc-
tion to a slight degree. Such edge
enhancement 1s usually accompanied by
overszhoots and undershoots in the step-
response function.

The NEQ of the EMI scans can be obtained
from Fig., 3 Dby using equation 2. The
regult is NEQ = (1,85 + 0.03) x 107 am~':
Thus, the total number of equivalent
x-ray quanta detecied in each scan (prod-
uct of NEQ times the length of each pro-
jegcion) wag 260 mm x L.85 x 107 mm = § x
107!

There are numerous sources of noise
other than statistical that may contri-
bute to CT reconstructions. These other
noise sources mav or wmay not lead to
noise power spectra similar to that ex-
pected for 3tatistical noise. However,
1t has been verified nat the noise
power spectrum 1as the expected form for
the EMI Mark ! by Waqner et al. (1979)
as well as for the GEB8800 and the 82020
by the -thor.

3. DE?S%TABILITY IN THE PRESENCE OF ZT

N

It is clear from Fig. 1 that a reduction
in the magnitude of the noise leads to
improved detection of contrast differ-
ences. But guppose the game phantom
were g3canned on another scanner with
completely different gpatial resolution
and, more important, a completely dif-
feront reconstruction algorithm. Whar
measurae of noige would allow comparison
of the ability to discriminate contrast
differences in the two scans? This is
the centreal isaue {n the description of
image noise. It in {mportant to use
patameters to chacvacterize the ncise
that is directly and simply related to
detectability. In this discussion tthe

«lose relationship between NEQ and the
detection of l.rye-atea cbjects (g de-
scribed. This c¢~lationsnip is estab-
lished for the optimum receiver, which

fully takes into account tne character-
igstics of CT noise. The connection be-
tween the detection performance of the
optimum receiver and that of the human

observer is not well documented. How-
ever, it is expected that the two per-
formances will track each other 1in a
relative evaluation of similar images.
Thus the basis of comparison dictated by

the optimum receiver will probably be
ugseful 1in the comparison of clinical
images.

3.1 DETECTION TASK

To simplify matters, only the binary de-
cision problem will be considered here.
The decision to be made is wiather a
specific object is present at a specific
location. Furthermore, 1t :s assumed
that the backg.ound on which the object
i8 superimposed is completely specified.
This detection problem is exemplified by
the phantom in Fig. 1 in which circular
objects are pregsent on a flat backgqround
However, the presence of a row of cir-
cles rather thun a single circle alters
the problem slightly and compiicates the
analysis of the resulrs. The binary
decicion case may be extended to the
multiple decision problem (Goodenough,
1975; Goodenough and Metz, 1874) or to
the problem of the search for obiects
within an image (Wagner, 1977). Hl-
though the binary decision prc¢ lem re-
presents a gross simplification of the
clinical detection situation at present
this simplification is necessary to per-
mit theoretical analysis and psychophys-
1cal testing.

Clinical diagnosis clearly celies heav-
ily on the ability of the radiologist to
vecognize patterns. The general pattern
recognition problem 1s very difticult to
model 1in full detail. However, the
ability to detect component parts of a
pattern must form the basis of pattern
recognition. Thus, tt is hoped and ex-
pected that results obtained from analy-

sis of the simple detection problems
often aencountvred 1n psychophysical
testing will be relevant to the more

complex clinical situation.

J.2 OPTIMNUM RECEIVER--DETECYTION SENSI-
TIVITY INDEXx, d°

Given an object to be detectnd in the

ptesence of a gpecific type of noise,

the best detection nertormance that 1s
possibhle may be determined through ap-
plication of si{gnal detection theory
(Whalen, 1971; van Trees, 1968; Wagnert,
1978). “he beut decision criterion that
can be used in a Jiven de*ection problem
{s referred to ag the "optiiaum recejiver”
in gignal detection theorv. The optimum

.



receiver will depend on the situation at
hand. In particular, the optimum re-
ceiver must take 1ntu account the pro-
perties of the noigse to be ®“optimum.*”
It is often possible to characterize the
detection performance of the optimum
receiver without actually constructing
or implementing the detection criterion.

The detection performance of any detec-
tor applied tc a given detection task
may be summarized by its receiver opera-
ting characterigstic (ROC) curve. The
ROC curve i3 a plot of the probablity of
a "true voBitive" response versus the
probability of a "false positive®” re-
sponse (Chapter 115; Grecen and Swets,
1966) . For additive, Gaussian distrib-
uted noise, the ROC curve for the binary
decision problem may be completely spec-
ified by a single parameter, 3Jengitivity
index d°'. The d' dependa on the ob-
ject's contrast, size, and shape as well
as on the maanitude and correlations of
the nolise. For the optimum receiver d'
may be expressed in terms of the fre-
quency representation of the object R(f)
as follows (Bernard, 1972)

2
' - N R(f) '
OPTINMUM f“fxdfy 5T (4

where S is the noise power spectrum (see
caclier discussion of depandance on re-
construction algoritnm and NEO)._ It is
observed that d OPTIMUM 1B determined by

d

the frequency B8um or integral of the
ratio of the signal power to the noise
power. It should be noted that the de-
sign of an optimum receiver depends
critically on the properties of the
nolse. Thus a receiver that is optimum
for white (uncofrelated) noise will not
be optimum for CT noise.

The plausibiiity of equation 4 may be
11luatrated for *wo limiting cases. For
the first case the following situation
will be considered: S is zero for some
finite fraguency interval in which che
abject power |R|’ is a0t zero. The in-
tegrand in equation 4 would then be in-
tinite over that frequency interval
yirlding an intinite value for
dIOPYTHUH' This |8 reasonable, s8ince

the optimum renaiver would only have to
check the Limage power (after the khown
background was removed) in the appropri-
ate frequency interval. If there was
any power present, ic could only be due
to the object. The optimum receiver
¢ould never make & mistakel Hence,

d'ommun =, 1In the second case, the

gituation {in which |R{? ({8 zero over
some fint'ae freguency 1interval s con-
sidered. Eguation d 1ndicates that
noise puwer in that freguency .nterval

will not influence the op%imim receiver.
Again, this 1is reasonaple, since the
optimum receiver can remove these fre-
quency intervals from consideration by
Fourier transformation of the image
followed by zeroing out the Fourier
amplitudes in the relevant frequency
interval.

Equation 4 Jleads one to an 1nteresting
conclusion coacerning the trade-off
between noise magnitude and spatial
regolution. It is well known that the
rms nolse may be reduced by smoothing
the image. Smoothing also results in a
loss of spatial resgolution, which is
supposed to make it mocre difficult to
detect small objects or to locate the
positions of sharp edges. However,
image 3smoothing is equivalent to the
mrultiplication of the €frequency repre-
sentation 9of the image by a filter,
which generally reduces the high fre-
gquency components of the image. Since
both I'R{?! and S are affected by the
filter in the same way, equation 4 in-
dicates that dIOPTIHUH 18 nct altered by

the smoothing process, unless the filter
18 zero for some finite range of fre-
quencies where |R|? is not zero. Thus,
the performance of the optimum receiver
15 not affected by smoothing (unless
information is lost hy a zero filter)
Indeed, it is not necessary to trade off
between low noise and high spatial reso-
lution for (he optimum receiver.

These sStatements concern.ng the oprimunm
receiver may or may not have bearing on
what might be expected of a human ob-
server., For example, the human observer
may suffer critical band masking between
frequency intervals. Thus, it 13 un-
likely that the human observer could
make uge of information in one frequency
interval that through filtering was re-
duced by a factor 100 relative Lo neigh-
boring frequency intervals. The "opti-
mum receiver," being a conceptual en-
tity, would have no difficulty recouping
the (nformation 1n the att2nuated fre-
quency band.

Although the optimum receiver may not
realistically characterize the perfor-
mance of the human observer, it provides
th> ultimate standard againgt which the
human obgerver may be compared. If it
is found ¢that the performance of the
human observer falls short of this ideal
in the gimple detection task envisioned,
then it may prove ugeful to explore the
treagons for the shortcomings of the hu-
man obseiver.



3.3 APPLICATION TO CT

The application of sional detection
theory to computed tomcgraphy leads to
an interesting resulc concerning the
transfer of detection information from
the projections to the reconstruction
(Hanson, 1979a). The projection data
themselves may be used to detect the
presence of an object within the pro-
jection field. It is founé that when
the totality of projection data 1is
analyzed by the optimum receiver, the
resulting d'OPTIHUH is eygual to or

greater than the d‘OPTIHUH

analysis of the reconstruction. In
other words, the detection in a CT
reconstruction of a gpecific object on a
known background can be no better than
when the detection of the same object is
based on the direct projection measure-
ments. Furthermore, the detection per-
formance based on an efficient recon-
struction can equal that based on the
projections. It has been shown that the
filtered back projection algorithm is
efficient, in this sense, fo- the de-
teccion of large objects (Hangon, 1979a,
1980 . In the practical case of recon-
struction in a discrete pixel array from
discretely sampled projections, there
can be a loss of information leading to
scme degradation In detection gsensitiv-
ity (Hanson, 1979b).

obtained from

The t-equency representation R(f) of
an object with large area s concen-
trated at low frequencies. Then equa-
tion 4 indlcates that the detection sen-
sitivity of large-area objects will
principally be detsrmined by the low-
frequency content of cthe noise power.
Since statical CT noise has a ramplike
noige power spectrum at low freguencies,
the single parameter that characterizes
the slope of the ramp NEQ {8 a suffi-
cient measure of the detection sensitiv-
ity for l.rge objects. It s found
(Hanson, 1979a) that the optimum sensi-
tivity index is

d e

sua'™ Neg - (5)

oPTIMUM "

where 4du is the average contrast of the
object .ith an effective area A. Equa-
tion 5 is a good approximation for most
objects or large area (square, circle,
etc.). This reaylt establishes the in-
timate connection between NEQ and the
detecafbillty of large-area objects.
The A '/~ dependence of d OPTIMUM should

be noted. It arises from the ramplike
nature of the CT noise power gpectrum.
For white noise (f = conatant), d' {8
groportional to A,

3.4 HUMAN OBSERVER

The relationship between the detection
capabilities of the ideal detector and
thoce of the human observer has not been
fully explored for images con*raining CT
noigse. Judy et al. (1981) have found
that human observer's performance dces
follow that of an ideal observer when
the size and contrast of the object to
be detected is varied. It is possible
that human observers may have short-
commings. particularly in their ability
to integrate the noise over the object
area. The unusual correlations present
in CT reconstracticn may prove difficult
for the eye-brain to take into account.
Several psychophysical studies (Hanson,
1%77; Joseph, 1977, 1978; Chew et al.,
1978; Orphanoudakis, 1981) have shown
that under certain circumstances ob-
server detectability of large objects is
improved by smoothing CT images. The
reason for this improvement remains to
be explained. Furthermore, the A% de-
pendence in the threshold contrast for a
cunstart d' predicted in equaticn 5 has
not been verified for human observers
(Cohen, 1979; Cohen and DiBianca, 1979).
The effects of altered viewing
conditions and training have yet to be
investigated.

J.5 TBREE-DIMENSIONAL ASPECTS

The discussion of preceding sect:ions
dealt with the detection of a two-
dimensional object in a single CT scan.
In reality, however, the radiologic
detection problems are threa dimensional
in nature. The difficulties 1in detec-
ting three-dimensional objects in CT
scans are often referred to as “partial
volume® effects. To {l.ustrate the
problem, consiler the detection of a
sphere of diameter d immersed 1n a
uniform background of slightly lower
dengity. 1If the sphere happened to lie
completely within a single CT slice, 1its
effective reconstruction density would
be less than i{tg actual density because
of the partial volume effect. But, 1f
adjacent 3lices happened to split the
sphere in half, its rveconstructed den-
sity would be halved relative to the
case just described. In the latter
situation, the detection of the sphece
is made more difficult by the large :e-
ducrion in {ts recongtruction density,
particularly {f each 8lice {8 viewed
independently. An improvement in de-
tection could ba attained by simply
averaging the two slices, since the rms
nolge would be reduced Ly a factor of



2-i”,  This problem illustrates the de-
sirabili.y of a display system that al-
lows full use of the three-dimensional
information available in CT (Hanson,
1979a).

4. CONCLUSION

The detection limitations inherent in
statistically limited computed tomo-
qraphic (CT) images have been described
througt. the application of signal detec-
tion theory. The detectability of large
area, low-contrast objects has been
shown to be chiefly dependent on the
low-frequercy content of the noise power
spectral densgity. For projection data
containing uncorre)ated noise, the re-
sulting ramplike, low-frequency behavior
of the noise power spectrum of the CT
teconstruction may be conveniently char-
acterized by the density of noise-
egquivalent auanta (NEQ) detected in the
projection measurements. The NEQ for a
given 1mage can be determined from a
measurement of the noise power spectrum.
The decection 2f large objects 1is as
qood in an eflicient reconstruction
(e.g.. filtered back projection) as that
based on the projection data.

S. REFERENCES

Barnes, G. T., Yester, M. V., and King,
M. A,, Oprtimizing Tomputed Tomography
(CT) Scanner Geometry, Proc. SPIE Appl.
Opt. Instr. in Medicine VII 173, pp.
225-237, 1979.

Barrett, H. RH., Gorden, S. K., and
Hershel, R. S., Statistical Limitations
in Transaxial Tomoqraphy, Comput. Biol.
Med. 6, pp. J107-323, 1976.

Brooks, R. A., and Ci Chirv, G.,
Statistical Limitations in X-ray
Recongtructive Tomography, Med. Phys. 3,
pp. 217-140, 1976.

Chester, D. A. Riederer, S. J., and
Pelc, J. J., Nolse due to Photon
Counting Statistics in Computed S-ray
Tomoaraphy, J. Comput. Assist. Tomogr.
1, pp. 64-74, 1977,

Chew, E., Weiss, G. H., Brooks, R. A.,
and D{ Chiro, G., Fffect of CT Noise on
Detectaobility of Teat Objects, Am. J.
Roentaenol. 131, pp. 681-685, 1978.

Cho, 2. H., Chan J. K., Hsll, E. L.,
Kcuger, R. P., and McCaughey, D. G., A
Compsrative Study of 3-D Image
Reconstruction Algorithms with Reference
to Number of Projections and Noise
Filterina, IEEE Trans. Nucl. Sc¢ci. N§-22,
pp. 244-1358, 197S.

Cohen, G., Contrast-detail-dose Analysis
of Six Di{fferent Computed Tomographic

Scannere, J. Comput. Assist. Tomogr. 3,
Ep. 197-203, 1979.

Cohen, G., and DiBianca, F. A., The Use
of Contrast-detail-dose Evaluation of
Image Quality in a Computed Tomograpiic
Scanner, J. Comput. Assist. Tomogr. 3,
pp. 189-195, 1979.

Dainty, J. C., and Shaw, R,, Image
Science; Principles, Analysis and
Evaluation of Phcotographic-type Imaging
2rocesses, London, 1974, Academic Press,
Inc. Ltd.

Goodenough, D. J., Objective Measures
Related to ROC Curves, Proc. SPIE Appl.
Opt. 1Instr. in Medicine III 47, pPp.
134-141, 1975.

Goodenough, D. J. .
Zffects of Listening Interval on
Auditory Detection Performance, J.
Acoust. Soc. Am. 55, pp. 1l1l1-116, 1974.

Green, D. M., and Swets, J. A., Signal
Detect:ion Theory and Psychophycsics, New
York, 1966, John Wil2y & Sons, Inc.

and Metz, C. E.,

Hanson., K. M., Detectabilit'r in the
Presence of Computed Tomographilc
Recunstruction Noise, Proc. SPIE Appl.
Opt. Instr. in Medicine VI 127, pp.
Jo4-312, 1977.

Hanson, K. M. and Boyd, D. P., The
Characteristics of Computed Tomographic
Reconstruction Nois2 and their Effect on
Detectability., IEEE Trans. Nucl. Sci.,
NS-25, pp. 160-173, 1978.

Hanson, K. M., Detectability in Computed
Tomographic Images, Med. Phys. 6, pp.
441-451, 1979a.

Hanson, K. M., The Detective Quantum
Efficiency of CT KNeconstruction: The
Detection of Small Objects., Proc. SPIE
Appl. Opt. Instr. in Medicine VII 173,
pp. 291-298, 1979b.

Hanson, K. M., On the Optimality of the
Filtered Backprojection Algorithm, J.
Comput. Assigt. Tomogr. 4, pp. 361-363,
1980. -

Hanson, K- M, Noise and Contrast
Discrimination in Computed Tomography,
in Radiology of the Skull and Brain, ed.
Newton, T. H. and Potts, D. G., Vol. 5,
pp. 3941-3955, 1981.

Herman, G. T., On the Noise 1i1n Images
Produced by Computed Tomography, Tech.
Report No. MIPGl]l, Suny Buffalo, 1979.

Huesman, R. H., Analysis of Statistical

Errors for Transverce Section
Reconstruction, Lawren:e Berkeley
Laboratory Report 14278, 1975,

University of Californjia, Berkeley, CA.

Huesman, R. H., The Effects of a Finite
Number of Projectlon Angles and Finite
Lateral Sampling of Projections on the



Propagation of Statistical Errors in Schade, Photogr. Sci. Eng. 22, pp-
Transverse Section Reconstruction, Phys. 41-46, 1978

Med. Biol. 22, pp. 511-521, 1977. wWwagner, R. P., Brown, D. G., and Pastel,
Johns, 8. E., and Cunningham, J. R., The M S., The Application of Information

Physics of Radiology, Ed. 3, Theory to the Assessment of Computed

Springfield, 1969, Charles C. Thomas. Tomography, Med. Phys. 6, pp. 83-94,
]

Joseph, P. M., Image Noise and Smoothing 1979.

in Computed Tomography (CT} Scanners, Whalen, A. D., Detection of Signals 1n

Proc. SPIE Appl. Opt. Instr. in Medicine Noi1se, New York, 1971 Academic Press,

vi, 127, pp. 396-399, 1978. Inc.

Joseph, P. M., Artifacts 1in Computed
Tomograohy, in Radiology of the Skull
and Brain, ed. Newton, T. H. and Potts,
D. G., Vol. 5, pp. 3956-3992, 198l.

Judy, P. F., Swensson, R. G., and Szulc,
M., Leagion Detection and Signal-to-nois=
Ratio in CT images, Med. Phys. 8, pp.
13-23, 1981.

New, P. P. J., 35cott, W. R. Schaur, J.
A. Davis, F. R., and Taveras, J. M.,
Computerized Axial Tomography with the
EMI Scanner, Radiolegy 110, pp. 109-123,
1973.

Orphanoudakis, S. C., Birsch, J., Jaffe,
C. C., and Rauschkolb, E., “Receiver
Operating Characteristic Analysis of
Observer Performecnce in Computed
Tomography,™ submitted to Radiology,
1981.

Riederer, S. J., Pele, N. J., and
Chesler, D. A., The Nolse Power Spectrum
in Computed X-ray Tomography, Phys. Med.
Biol. 23, pp. 446-454, 1978.

Shepp. L. A., and Logan, B. F., The
Fourier REconstruction of a Head
Section, IEEE Trans. Nucl. Sci. NS-21,
pp. 21-43, 1974.

Tanaka, E.., aud Iinuma, T. A.,
Corrective Functions for Optimizing the
Reccnstructed Image in Transverse
Section Scan, Phys. Med. Biol. 20, pp.
789-798, 1975. -

Tanaka, E., and I[inuma, T. A., Cor-
rective Functions and Statistical Noises
1n Transverse Section Picture
Reconstruction, Comput, Biol. Med. 6,
pp. 295-306, 1976.

van Trees, H. L., Detection, Estimation
and Modulation Theory, New York, 1968,
John Wiley & Sons, Inc.

Wagner, R, F., Past Fourler Digital
Quantum Mottle Analysis with Application
to Rare Earth Intensifying Screen
5y:tems, Med. Phys. 4, pp. 157-162,
1976.

Wagner, R. P., Toward a Unified View of
Radiological Imaging Systems. II. Noisy
Images, Med. Phys. 4, pp. 279-296, 1977. Fig. 1 Three scans af a contrast sensi-
=" tivicy vhantom taken on a GE CT/T
Wagner, R. F., Decision Theory and the 78U0 scanner at two exposures:
Letall Slgnal-to-noise Ratio of Otto 1152 MAS (ctop) and 307 MAS (bottom).

Higher dose leads to lower nolse
and {mproved contrast sensicivity.
(Courtesy of F. A. DiBlanca,.
Genaral Elaectric).




NOISE POWER

A Il —_i
FREQUENCY

Flg. 3 Noise power gspectrum of the two
images in Fig. 2.

Fig. 2 Comparison of "white' noise (top)
and CT nolse (bottom) each with
the same rms deviation. The lack
of low-frequency structure in the
CT noise s evident especially
when viewed at a disctance.
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Flg. 4 EMI CT-5005 scan of the EAI water Fig. 5 Noise power spectrum for normal
phantom used in caleulation of 20-sec scans on an EMI CT-5005
noise fower spectrum. The light of a 24-cm-diameter water phantom.
spot near the top of the recon- The slope of the specrrum at Low

struction is a roller mark pro-
duced by the film processing unit.
(Courtesy D. P. Boyd, Univeristy
of California, San Francisco.)

frequencies determines NEQ.





