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Abstracr

The detectability of featur!s in an lmaqe 1s ultl,nately l~mlted
by the ra?dom fluctuations In densl:y or noise present in that
irnaqe. The noise in CT reconstructions arislnq from the stat! .-
clcal fluctuations in the one-dimenslona! input projectLoa .neas-
urements has an unusual character owlnq to the reconacructlon
procedure. SuCn CT image noise differs from the ‘white” noise
normally found in imaqea in its lack of low-freque,:c;components.
The no~ae power spectrum of CT reconstructions can be rel~ted to
the effective density of x-ray quanta detected Ln the prc]ectlon
measurements, designated as NEO (noise-equivalent quanta). TrIe
detectability of objects that are somewhat larger than the spa-
tial resolution is directly related to NEQ. Since contraat re-
solution may be det!ned in terms ot the abillty to detect ldrge,
!ow-contrast objects, the meatrurement of a CT scanner ’a NEQ nay
be ueed to characterize its contrast sensitivity.

‘Work performed under the auspices OK the b 5 Department of
Enerqy, under contract no. W740S-ltNG-36.

1. INTRODUC’I’1ON

7YIC x-r3y computr 1 tomographic (CT)
scanner nas made it posoible to deccct
the pcesencc of lesions of very low
contrast (New et ●l., 1978). Thla dra-
VJtlc improvement In detection capmbll-
lty river most conventional tormu of
x-ray lmpqlng IS a result of the fol-
‘owlnq Innovstlons: (1) the noise tr,
thm r~conttructed CT Amaqea is aiqnif~-
:ontly reducad through the use of effi-
cient x-ray detectorg and ●lectronlc
proces6Anq, thereby Improviriqthe utili-
zation of :he radiation dooe; (2) the
Images can b- displayed with enhanced
contrast, thue ov~rcominq the minimum
centrast tnroshold of the human
lJ)

eye ;
che CT rt?construction techntquc

almost completely ●l?minateo tha #up@r.
pnfiitior,ot JfIatOMiC structures, leadirl;
to J roduct.!onof “structural” noise.

It is the rendom noime in a CT imaq~
rh~t ultimately Ilmlts ●ha Jblilty of
th? radiologist tu dlscrtmlnat~ hecwecn
two rcaions of different deng~ty. Be-
csuae of i?: unpr-d~ctable nature, such
notna cannJt b~ completely ●laminated
trom the lmaae and will •lu~ys le.ul tu
uome ul)caltainty in :he Lncorpretation

of the imaqe. There 11 ~tronq ev~dencc
chat mo9L 01 the random lIols(T Ln
present-day C? acanner~ 1s due co th,?
~tatistlcal Anaccuracieu arkslnq irom
the detection of a fin~te number of
::anamltted x-ray quanta. The ?rop-
ercles of this st~t~atlc~i nokne in CT
Images wlil be discussed in thlg Jrzi-
C112. The goal WI1l be to charactcrir.c
the noise content :n a wa~’ : ;;,1r. is
closely related to tno dccc,:tton cJpa-
btlltiea lnherunL 111che Imaqc.

It will bu shown in che dlac,u~slon ot
the opti,:uft,rccc~ver r!~attl]eability to
detact J iarqe-.lrqd ob]ect :n J CT Lmaqo
:3 chiefly dependent on the N!LO, the
totJl number of noise-?qulvaient quanta
detected par unit length In the pro]ec-
tlonc used to reconorrll(.cth.~t image,
AS 3uch, it. lb :Iuc thQ ; Ln~?nOa,:w~th
whlcn th,, Y rJy8 acc dctccrrd in thu
projectlont (related tu .spatlal roaolu-
tlon}, I)ut ;illply tne eftccti,te t.eta)
number or detected n ray5 that influ-
ence tl)e !hrqe-~re<l contraot aonal-
tlvity Gf the Cl’ reconstruction. For J
firfo(l, Iarq@-ares contrast sen~itlvkty,
then, an incrcab~ in spatial rebJlution
dcaa not Imply the neccual?y tor hlqher-——
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doee ! NEO, which characterizes the low-
frequency properties ot noise in a CT
image, can be determined from a CT noise
image by meaaurinq che noise-power spec-
trum. This paper represents a distilla-
tion of a chapter prepared for Radioloqy
of :he Skin and Brain, Vol. 5 (Hanson,
1981).

2. PROPERTIES OF CT NOISE

The concrequencesof statistical noise in
CT reconstructions have been discussed
by numerous authors Ishepp and Logan,
1974; Cho et al., 1975: Tanaka and
Iinuma, 1375, 19761 Bsrrett et al.,
1976: Brooks and DiChiro, 1976! Chesler
et al., 1977; Hanson, 1977,1979a;
Euesman, 1975, 1977; Joseph, 1977, 1978;
Hanson and tloyd, 19781 Riederer et al.,
197F: Wagner et al., 1979). Several of
these authors have pointed out that the
procens of reconstruction !eads to som~
peculiar characteristics of the noise in
CT Amaqes. The properties of statisti-
cal (auantum) noise in CT reconstruc-
tions will be explored in this discus-
sion. Although the precise random noise
pattern of any !maqe cannot be predicted
1 ,vriori, it is possible to characterize
tl~eavmraue behavior of the noise by a
‘~ariceyOt methods. Some of theee nleth-
ods give a complete d~scription of che
noise characteristics, such as the noise
power spectrum or the no~se autocorrela-
:Ion functaon, whereas others give only
! partial description, such as rmts
no13e. it will develop that the noise
fluctuation in one pixel of n CT recom-
structlon is not independent of the
ncise fluctuat~’a in other pixels.
Rather, :F.efluctljationa In two Sepsrate
plxcls dr~, on tha average, correlated.

lhe rampllke nat’Jre of the nolae power
s!mctrum expected for CT roconstructlons
WII1 be 6ariverl for the filt}red back
prolect:on alqorlthm, It will be shown
“!l,ltnoise power .spectr:.of EMI CT5005
:P[.onntructfono possens this rampilk~
50nnvIor 4t low frequencies.

Dcfor? praceodinq, Lt ohould b. mon-
t:oncd th~t tne praaant discuaaion is
(’uncqrn~d only with the random nnlae
?!l.lt renults from the statistical
‘~erlatlon in th@ number of detected
m-ray auanta . CT reconotructlon m&y
Jl!io contain unwanted f~atures that
ar:le from deElcicnciaa An the data
rr)ll?ctmd such ●s too few views, not
?nough c.lmpl~~ taken in ●ach view
(ali,>uinz~,beam hardeninq of tl~epoly-
chromatic ~-ray beam, partial volume
f?ftPctm, ●tc. (Jeaeph, 1981, Ilerman,
1$?9,) Thmae unwan(ed aiynaln Mr.

termed artifacts. They will not change
in a series of identical scans 9ince
they arise from systematic errors.
Artifacts may be arbitrarily reduced by
lrnprov.?dscanning and reconstruction
procedures. However, 9tati9tical noise
can only be reduced by increasing the
number of detected x rays either throuqh
an improvement in x-ray detection effi-
ciency (many of today’s scanners are
within a factor of two of the mo9t
practical efficiencies attainable) or
through an increase in patient dose.

2.1 ORIGIN OF IMAGE NOISE

The energy in x-radiation is transmitted
in the form of individual chunks of
energy called quanta. Hence, the res-
ponse of an x-ray detector is actually
tne result of detecting a finite number
of x-ray quanta. The number of detected
quanta will vary from one measurement to
the next, because of statistical fluctu-
atlona that naturally arise in the
“counting= proce9s. As more quantti are
detected in each measurement, che re-
lative accuracy of each measurement
improves. Stac19tical noise tn x-ray
imaqes arises from the fluctuaclons :n-
herent in the detection of a finite
number of x-ray quanta. Statistical
noise ❑ay also be called quantum noise
and la often referred to ●a quantum
mottle in film radiography,

Stati9tlcal noise clearly represents a
fundamental limitation in x-ray radlo-
qraphic proceaaes. The only way to re-
duce the effects of statistical noise is
to Ancreasc the number OL detected x-ray
quanta. Normally this is achieved by
increaainq the number of transmitted
x rays through ●n lnurea~e in dose.
Fiqurc 1 shows a ~er~es of scans taken
on ● GE CT/T ?800 Scannere usinq J phan-
tom daal.qnad to test contraat 6ienalti-
Vlty. The reduction Ln cPe noise cJueed
by Increaoinq the x-ray expoaurc (mill~-
smpore scconda) la graphically demon-
atrattd.

In processing electric aiqnals, elcc-
Lronlc circuits Inevitably add some
nolac to tha algnalu. Analoq circuits,
thoao which pL’~cQsscontlnuaumly varyiltq
slqnala, arc IIIOSCauaceptlble to ●ridi-
tlonal nolsel Thus tho otsqc moat
likely to inject additional electrol}~c
noise iu that of ●naloq signal praces-
sinq of th. x-ray dotectur’s our.put T\Ie
difficulty of noise aupprennlon LO com-
pounded by the fact that for LrOmo typos
of h-ray detectors, the ●lactronlc slq-
nals are very small, T;lcre is evidence
(Cohon, 1919) thst many commorcibliy
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available CT scanners a(e sufficiently
well engineered to reduce the contribu-
clon of electronic fioise under normal
operatinq conditio~s to a fraction of
the statistical noise contribution.

2.2 FOURIER ANALYSIS--NOISE i@WER
SPECTRUM

Any signal may be thought of as a sum of
sine waves of appropriate frequency,
amplitude, and ~sition (phase). This
decomposition of a slqnal into its fre-
uuency components ie called F@urier
analysi9. It is often helpful to apply
Focrier analysis to imaging systems
(camcra~, television, x-ray radiographs,
etc.) because of the ease with which the
Lmaqinq properties of various staqes of
the systems combine in theii frequency
representations. To b sure, Fourier
analysis is on!y useful for linear sys-
tems, but most Lmaging techniques are
approximately linear for small changea
Ln signal amplitudes. A good int:cduc-
tion co the application of Pourier anal-
ysis to radiography mhy be found in
Johns and Cunningham (1969),snd to image
analysis in Dainty and Shaw [1974).

The noise power spectrum 1s related to
the Ereauency decompaa!tion of the Lmaye
noise, The noi9e power spectrum Is
often referred to an the Wiener spec-
trum. Often the response of the ayst,,m
Is arrsumod to be circularly symmetric.
Then the two-dimanslonal noise power
rpectrum may be reduced to a one-
dirnensional epectrum that is a function
of only the radial frequency (distance
from zero frequency in two dimonsion6; .

The noise found in conventional radio-
graph 1s typified by a noise power
spectrum that is ?ouqhly constant ovor a
wide ranqe of Froquenctea. Such a noine
power 9pectrum 19 called “white” in
analogy CO white light, whi:h conlaina a
m~xture ~f iiqht of all fr’oquencieo
within the visible spectrlJm. A white
noi!le power spectrum indicateb that tl??
rcndom fluctuations at one point In the
imaqc is uncorrclated with or indepen-
dent from fluctllationaat anothar point.
In conventional radioqrapht this cornea
about oincc separate M rayo ar. detected
at two different points. Thuc , tho sta-
tistical fluctuation qivinq rise to
noise at one point Are not related to
~he fluctuations occurlnq at a dlfferont
ponition, 9tatement8 such ●s this CaII
be made only if the points aro aeparatod
by u distance sufficiently larqo to
avoid “cross talk” between the points.
Consoauently, th? noia~ power apoctra of
all physical a}’stems mu-t *ventually
C#ll to zero at hlqh froquoncloa.

2.3 VISUAL EXAMPLE

The relationship between the noise power
spectrum and the noise it characterizes
may be displayed visually. Figure 2
shows images containing tdo types of
?olse, one typifylnq white noise, and
the other, CT noise. The rms deviation
of the noise is the same in both Lmages.
The noise power spectra of these images
1s shown in Fig. 3. White noise, typi-
cal of film radiography (see above) is
characterized by a flat power spectrum
at low frequencies. In this example its
power spectrum falls off at intermediate
frequencies because of an assu:.,ed
Gatissian modulation :ransfer function
(t4TP),that is, exp(-af:). AS discussed
later, tt.eCT noise power spectrum typa-
caliy 1.Slinear at low frequencies going
toward zero at zero frequency. [n this
exampie the CT noise power spectrum
peaks at mldfrequencies and then falls
off with the same MTF as the white no’se
spectrum. The major difference between
the two noiac power spectra of Fig. 3 is
the greatly diminished contribution at
low frequencle9 typicll of CT noise.
Since low trequency corresponds to larqe
dititance, the CT noise imaqe would be
expected to have llttle contribution
from cl~lmps Wt no19e with large area.
The r?ouccd blotchiness oi the CT noise
can be seen in F~q, 2, ●specially when
the figure 1s observed from a distance
so the eye is tuned to larqe-area atruc-
turc.

4.4 Dependence ON RECONSTRUCTION
ALGURITHM AND NEQ

The nol.se power apect.rum for CT noise
has been derived by Rlederer et J1.
(1978). The derivation la baaed on the
fll:cred back pro;ectlon ●laorlthin
(5hepp and Loqan, 1974) for a parallel-
beam qeomctry in wh~ch J conutanc den-
sity of x rays is detected An ail the
projections, Th@ corrective filter
applied to the Fourier transforms of thti
pro]octionc 1s ●aaumed to ba

G(f) ● !:’ H(f) , (1)

where f iu the froqucrncy,~nd H 10 J
weiqhtlng (or anodization) factor. The
principal restriction OrI H 1S that Lt he
nearly unity fur very lc.wfrequenclea f,
It may be 8hown that tho nolu.? power
npoctrum S for Statlstlcal CT noise can
be written da follows (Ricderer et al, ,
1978: Hanuon, i9?9al Waqnor ut al,,
1979)1

f“ 112f) ,s(c) ●+
+--

(2)



where NEQ, the number of noise-
equivalent quanta, i.s the total effec-
tive number of x-ray quanta detected per
unit distance alon3 the projectiofis
(summed over all the projection measure-
ments) . If there is no source of noise
other than statistical and the recon-
struction algorithm is efficient, then
NE@ will be ]uSt the total number of
detected x rays per unit projection
length. The presence of other sources
of noise can reduce NEQ compared with
the actual number of detected quanta.
PISO, the measurement of t“lex-ray flu-
ence by means of an energy-integrating
detector (as is done on essentially all
commercial C’L’scanners) leads to a
siicht reduction (%109} in NE(? compared
?0 that attainable through x-ray coun-
ting. In equotion 2 it is assumed that
the reconstruction image attenuation
coeff:clent n given in units of (cm-’).
Then S will be dimer,sionles.sund NEO
w1:l }Iavedimension (c~i), as it should.

i?ouation 2 indicates that the noise
oower spectra of CT reconstructions
should have a ramplike dependence at low
freouen~les (~here H - 1)0 The slope of
S at low frequencies is determined by
NEC. As such, NEO may be used to char-
acterize the larqe-area, low-contrast
d?tection capabilities of CT images (see
discussion of optimum receiver). It
shall be shcwn that equation 2 implies
there is no loss Ln detection perfor-
mance in a filtered back projection
reconstruction compared to the input
proiectlon data for larae objects. As
Tore auanta are detected, S will be re-
duced inversely and the CT image noise
will difiinlsh,

The dependence of S on the weiqhtirvg
factor ‘H1 of the algorithm shauld be
rotcd, H nay be regartad an the F!TF
~ssociated with the reconstruction alqo-
rittl~ in the absence of oirning problems
associated with tbe finite SAZZ of the
rccor.structlon pixclt3 (Hanson, 1979b).
The MTF of the complete scanner system
is the proauct cf J!.1the MTPs tl~atcon-
kr:bu?e to th~ spatial resolution of the
final Arnage. POK meny CT scanner sya-
t.cma the dot,ltnantcontribu’-lon ib the
MTF onsocieted with the fln~te width of
the *adiatinn beam uned in the projec-
clon weosurements (Barnes et al,, 1979).
Thus, ,?ithouqhthe total noise of the CT
scanner IS closely relsted to tne spa-
tial :esoiution of the reconstruction
S)qor’lt.nm,!t may have only ? weak de-
pendence on the overall spatial resolu-
tion. It should slao be raalixed that

the image noise is pot dependent on the
pixel size except insofar as the latter
affects the choice of H.

2.5 rms NOISE

Frequently the rms deviation of the
noise :S quoted for CT reconstructions.
It should be clear that the rms noise AS
not a complate characterization of CT
noise, since it ignores the frequency
dependence of the noise. Specifically,
the rms noise depends critically on the
high frequency damping factor Ii(f)used
in the reconstruction algorithm, which
will vary from one CT scanner to the
next. It will be shown that the ablllty
to detect large-area objects is related
to the low-frequency noisg power con-
tent, which is relatively unaffected by
H(f). Thus, detectab~l~ty is not simply
related to the rms noise.

The rms noise may be calculated from the
noise power spectrum (by ?arseval ’s
theorem) as the square toot of the total

‘“’s”:w%

● Jr2Jdf f S(f) . (3)

Since 31 is the integral of the noise
power spect:um, lt contains no infor-
mation about tha frequency dependence of
the noise.

2.6 RbSULTS FOR A COt4MERCil,l.SCANXER

The noise power spectrum has been calcu-
lated for an E?!ICTSOOS scanner” to de-
monstrate that it has the form predicted
by equation 2 (Hansor!,1979a), The EMI
26-cm diameter water calibration phantom
was scanned six times at 14C kVp, 28 mA
using the normal scan time (20 seconds) .
The 320 x 320 reconstruction matrix was
obtained by decoding the EllI maqnetic
tape, The pixe~ size it?0.;5 mm, These
scana were performed at the Unlve,:sity
of California (San Franciaco) medical
Cmnter in Octobat, i977, findthe acannor
was not equipped with tnu naw dose-
recucinq collimator (EMI S221).

Analysis of the reconstructions ehowwd
that the rma deviation of the noise
(1.28\) waa constant over the whole
image to very good hccuracy, Further-
more, tho aversye valuea in the recon-
atructione were lir?iformto bdtter than
0.1$, k’lgure 4 ahowe one ot th~ water
8cans used. Any variations Been in Fiq,
4 can arlaa only from eithar the display

.
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unit or subsequent film processing. The
presence of the film-roller mark points
out the need for quallty control in
these often neglected aspects of CT
technology.

The noise power spectrum of the ENI re-
constructions was calculated in a manner
similar to that described in the earlier
discussion of noise power spectrum. The
resulting spectrum, Fig. 5, has the pre-
dicted linear behavior at low frequency
(below 0.1 mm-l). The slope of the spec-
trum at midfreauencies (0.1 to 0.3 mm-i)
is greater than at low frequency, indi-
cating that EMI has used a value of H
which is greater than 1 at these fre-
quencies. The resulting edge enhance-
ment snarpens edges in the reconstruc-
tion to a slight degree. Such edge
enhanceriientlS usually accompanied by
overshoots and undershoots in the step-
response function.

The !4&0of the EUI scans can be obtained
from Fig. 5 by using equation 2. The
result is NEO _ (1.85 + 0.03) x 107 mm-’”
Thus , che total number of equivtilenc
x-ray quanta detec<ed in each scan (prod-
UCL of NEQ times the length of each pro-
~;$~tOll)w~a 260 mm X 1.85 X 10’ m “ 5 X

There are numerous sources of noise
other than statistical that may contri-
bute to CT reconstructions. These other
noise sources mav or may not lead to
noise power opectra similar to that ex-
pected for statistical noise, However ,
It has been verified coat the noise
power spectrum has the expected form for
the EMI Mark I by Waqner et al. (1979)
az well as for the GE8800 and the 62020
by Lhe “thor.

3. DETECTABILITY IN THE PRESENCE OF CT
NOISE

It is clear from Fig, 1 that a reduction
in the magnitude of the hoise leads to
~mproved detection of contract difier-
cnces. But euppoee the 9ame phantom
were scanned on another scanner with
completely different spatial resolution
and, more important, ● completely d~.f-
f~r{>nt reconstruction ●lgorithm. What
metauro of noise would allow comparison
of the ability to diccrimlnate contract
differences irIthe two scans? This iS

the central issue in the description of
image noise. It in important to use
parameter to characterize the ncise
that 1s directly ●nd simply related to
detectability, In this discussion tl’te
~lo~e rel~tion~hii~ betwoon NEQ ●nd the
detection of l..rye-area cbjects Lo de-
scribed. This relationstlip it estab-
llrihed for the optimum recclver, which

fully takes into account tne character-
istics of CT noise. The co~nection be-
tween the detection performance of the
optimum receiver and that of the human
observer 1s not well documented. How-
ever , it is expected that &he two per-
formances will track each other ~n a
relative evaluation of similar images.
Thus the basis of comparison dictated by
the optimum receiver will probably be
useful in the comparison of cllnlcal
images.

3.1 DETECTION TASK

To samplify matters, only the binary de-
cision problem will be considered here.
The decision to be made is wl~ther a
specific object is present at a specific
location. F!]rthermore, lt !S assumed
that the background on which the object
is superimposed is completely speclfled.
This detection problem is exempllf~ed by
the phantom in Fig. 1 in which clrcuiar
objects are present on a flat background.
However, the presence of a row of cir-
cles rather th~n a single circle alters
the problem sllghtly and complicates the
analysis of the results. The binary
decision case may be extended co the
multiPle decision problem (Goodenough,
1975; Goodenouqh and 14etz, 1974) or to
the problem of the search for objects
within an image (Wagner, 1977), f.l-
though the binary decision prc’lem re-
presents a gross Simplification of the
clinical detection situation at present
:his simplification is necessary to per-
mit theoretical analysis and psychophys-
ical te9tlnq.

Ciinical diagnosis clearly (eiies heav-
ily on the ability of the radiologist to
;ecognize patterns. The generai pattern
recognition problem LS very difticolt tr}
model An full oetall, However , the
ability to detect component parts of a
pattern must form the basis of pattern
recognl:ion, Thus, It is huped and ex-
pected that results obtained from annly-
sis of the simple detection problems
often ancountvr~d Ln psychophysical
testing will b~ relevant to the more
complex clinical aituatlon.

3.2 OPTIMUPlRECEIVER--DETECTION SENSI-
TIVITY INDEx, d’

Given an object to be detectnd in the
ptesenco of a specific type of noise,
the beat detection performance that is
pocislble may be determined through ap-
plication of signal det~ctlon theory
(Whalen, 1971\ Van Trees, 19681 Waqner,
1978). ‘t’he beljtdecision criterion that
can be used in a ,]ivende*.ection problem
is referral to as the “optilfiumreceiver”
in signal dat.ection theorv, The opt!,mum



receiver will depend on the situation at
hand. In particular, the optimum re-
ceiver ❑ust take Lnt” account the pro-
perties of the noise to be “optimum.-
It is often possible to characterize the
detection performance of the optimum
receiver without actually constructing
or implementing the detection criterion.

The detection performance of any detec-
tor applied tc a given detection task
may be summarized by its receii~eropera-
ting characteristic (ROC) curve. The
ROC curve i9 a plot of the probabilityof

“true positive= re9ponse versus the
~robability of a “false ~sitive” re-
sponse (Chapter 1151 Green and Swets,
1966). For additive, Gaussian distrib-
uted noise, the W“ curve for the binary
decision problem may be completely spec-
ified by a single parameter, Jenaitivity
index d’. The d’ depends on the ob-
ject’s contrast, size, and shape as well
as on the maanitude and correlations of
the noise. For the optimum receiver d’
may be expressed in terms of the fre-
auency representation of the object R(f)
as follows (Bernard, 1972)

d’
OPTIMUM - J ‘Wfyw ‘ ‘4)

where S 1S the noiee power spectrum (see
earlier discussion of depsndance on re-
construction algoritnm and NitQ). It iS
observed that d’O~lMuM is determined by

the frequency sum or integral of the
ratio of the signal power to the noise
power. It 9hould be noted that the de-
siqn of an optlrnvm r~ceiver depends
critically on the properties of the
noise, Thu6 a receiver that is optimum
for bhlte (uncorrelated) noise will not
be optimum for CT noise.

The plausibility of equation 4 may be
l]~uatrated for *.WOlllfiitl~qcases. For
the first case the tollowinq situation
will be considered: S 1s zero for some
finite frequency interval in which tile
ob]ect power ~R1’ is ,\ot zero. ‘The in-
tcqrand in eauation 4 would then be ln-
tinlte over that frequancy knterval
y:eldlnq an infinite value for

d’oFrTMuM’
This 1s reasonable, since

~he optimum receiver would only have to
check the image power (after the known
background was removed) in the appropri-
ate freauency interval. If there was
.tnypower present, ic could only be due
to the object. The optimum rece~ver
c,>u)d never make a mlstakel Hence ,
d’
OPTIMUM ‘ ‘“ In the aocond case, the

situation i;~ which lRi’ 19 z~ro over
some fint’.m frequency Interval Is con-
~idered. EqLation 4 indicates that
noise p/~wer in that frcquoncy interval

will not influence the op?imim receiver.
Again, this is reasonable, since the
optimum receiver can remove these fre-
quency intervals from consideration by
Fourier transformation of the image
followed by zeroing out the Fourier
amplitudes in the relevant frequency
Interval.

Equation 4 leads one to an interesting
conclusion co.lcerning the trade-off
between noise magnitude and 9patlal
resolution. It is well known that the
rme noise may be reduced by smoothinq
the image. Smoothing also results in a
lo~s of spatial resolution, which is
supposed to niake it mGre difficult to
detect small objects or to locate t-he
positions of sharp edges. tlowever,
image smoothing is equivalent to the
multiplication of the frequency repre-
sentation of the imaqe by a filter,
which generally reduces the high fre-
quency components of the image. Since
both ~R12 and S are affected by the
filter in the same way, equation 4 in-
dicates that d’OMIHUM IS net altered by

the smoothing process, unless the filter
zero for some finite range of fre-

~~encies where IR12 is not zero. Thus,
the performance of the optimum receiver
1s not affected by smoothing (unless
information is lost hy a zero filter).
Indeed , it is noc necessary to trade off
between low noise and high spatial reso-
lution for Lhe optimum receiver.

These statements concernknq the opclmurn
receiver may or may not have bearing on
what miqht be expected of a human ob-
server. For example, the human observer
may suffer critical band masking between
frequency Intervals. Thus, it 1s un-
‘ikely. that the human observer csuld
make use of lnfo(mation in one frequency
interval that through filtering was re-
duced by a factor 100 relative LO neigh-
boring frequency intervals. The “opti-
mum receiver,” beillq a conceptual en-
tity, would have no difficulty recouping
the information Ln the ●ttenuated fre-
quency band.

Although the optimum receiver may not
realistically characterize the perfor-
mance of the human observer, it provides
thz ultimate standard against which the
human observer ❑ay be compared. If it
is found that the performance of the
human observer falls short of this ideal
An the simple detection task ●nvisioned,
then it may prove useful to explore the
reasons for the shortcomings of the hu-
man ObSelveK.



3.3 APPLICATION TO CT

The application of siunal detection
theory to computed tomography leads to
an intcre9ting tesulc concerning the
trangfer of detection information from
the projections to the re~onstruction
(Hanson, 1979a). The projection data
themselves ❑ay be used to detect the
presence of an object within the pro-
jection field. It is found that when
the totality of projection data is
analyzed by the optimum receiver, tie
resulting d’OpTIHUH is equal to or

greater than the d’onlHUM obtain+ from

analysis of the reconstruction. In
uther words, the detection in a CT
reconstruction of .?specific object on a
known background can be no better than
when the detection of the same object is
based on the direct projection measure-
ments. Furthermore, the detection per-
formance based on an efficient recon-
struction can equal that baaed on the
projections. It hag been shown that the
filtered back projection algorithm is
efficient, in this sense, fo: the de-
tecclon of larqe objects (Hanson, 19~9a,
1980). IrI the practical case of recon-
struction in a discrete pixel array from
discretely sampled projections, there
car! be a loss of information leading to
some degradation in detection sensitiv-
lCY (Hanson, 1979b).

The t:eauency representation R(f) of
an object with large area is concen-
trated at low frequencies. Then equa-
tion 4 indicates that the detection sen-
slciv~ty of large-area objects *ill
principally be determined by the low-
freauency content of the noise powet.
Since statical CT noisie I,as a ramplike
no19e power 9pectrum at low frequencies,
the single parameter that characterizes
the slope of the ramp !iEQ is a suffi-
cient measure of the detection sensitiv-
ity for l.rqe objects. It 1s found
(Hanson, 1979a) that the optimum sensi-
tivity index is

“OPTIMUM ~ AuA’/’ NE(J , (5)

where AU is the average contrast of the
object .ith an effective area A. Equa-
tion 5 is a good approximation for mogt
objects or large ares (9quarc, circle,
etc.). This re9”Jlt establishes the in-
timate connection between NE@ and the
detect bility of large-area objects.

1?The A ‘ dependence of d’O~lMuH should

be noted. [k arises from the ramplike
nature of the CT noise power spectrum,
For white noise (

~P
● constant), d’ is

Proportional to A ~.

3.4 HUMAN OBSERVER

The relationship between the detection
capabilities of the ideal detector and
thoce of the human observer has noc been
fully explored for imaqes :on”alninq CT
noi9e. Judy et al. (1981) have found
that human observer’s performance dces
follow that of an ideal observer when
the size and contrast of the object to
be detected ls varied. It is possible
that hllman observers may have short-
comminqs . particularly in their ablllty
to integrate the noise over the ob]ect
area. The unusual correlations present
in CT reconstr~cticn may prove d~fflcult
Eor the eye-brain to take into account,
Several psychophysical studies (Hanson,
1577: ;~seph, 1917, 1978; Chew et al.,
1978; Orphanoudakis, 1981) have shown
that under certain clrcumsta[,ces ob-
server detectability of large objects LS
improved by smoothing CT imaqes. The
rea60n for thig improvement remains :0
be explained. Furthermore, the A~~ de-
pendence in the threshold contrast for a
cunstart d’ predicted in equatlcn 5 has
not been verified for human observers
(Cohen, 1979; Cohen and DiBianca, 1979).
The effects of altered vlewinq
conditions and traininq have yet to be
investigated.

3.5 THREE-DIMENSIONAL ASPECTS

The discussion of preceding sections
dealt with the detection of a two-
dimensional object in a single CT scan.
In reality, however, the radlologlc
detection problems are threo dimensional
in nature. The difficulties in detec-
ting three-d irrensional objects in CT
scans are often referred to as “partial
volume- effects. To illustrate the
problem, consider the detection of a
sphere of dlamete:: d immersed Ln a
uniEorm background of slightly lower
density. If the sphere happened to lle
completely within a single CT slice, Lts
effective reconstruction density would
be less than its actual density because
of the partial volume effect. But, lf
adjacent 911ces happened to split the
sphere in half, Lts reconstructed den-
Slty would be halved relative to the
case just described. In the latter
situation, the detection of the sphe:e
is made more difficult by the larqe :e-
dL.crion in its reconstruction density,
particularly if each slice is viewed
Independently. An improvement Ln de-
tection could be attained by simply
averaging the two slices, since the rms
nola@ would be reduced by a factor uf

. I



2 -in. This problem illustrates the de-
sirabili~y of a display system that al-
lows full use of the three-dimensional
information available in CT (Hanson,
1979a).

4. CONCLUSION

The detection limitations inherent in
statistically limited computed tomo-
graphic (CT) images have been described
throuqt.the application of signal detec-
tion theory. The detectability of larqe-
area, low-contrast objects has been
shown to 5e chiefly dependent on the
low-freauercy content of the noise power
spectral density. For projection data
cuntaininq uncorreJated noise, the re-
sultinq rampllke, low-frequency behavior
of the noise power spectrum of the CT
reconstruction may be conveniently char-
acterized by the density of noise-
eaulvalent quanta (NEK))detected in the
projection measurements. The NEQ for a
qiven imaqe can be determined from a
measurement of thg noise power spectrum.
The detection >f latqe objects is as
qood in an efficient reconstruction
(e.g.. filtered back projection) as that
based on the projection data.

5. REFERENCES

Barnes, G. T., Yesttr, M. V., and Tinq,
9. P., Optlmlzinq <omputed Tomography
(CT) Scanner Geometrv, Proc. SPIE ADD1.

opt . Instr. in Medicine VII ~, ‘bP.
225-237, 1979.

Barrett, H. R., Gordon, S. R., and
Hershel, R. S., Statistical Limitations
In Transaxial Tomography, Comput, Biol .
Med. ~, pp. )07-323, 1976.

Brooks, R. A., and Ci Chir~, G.,
Statistical Limitations in X-ray
Reconstructive Tomography, Med. Phys. ~,
Dp. 2]7-140, 1976.

Chester, D. A. Riederer, S. J., and
?elc, J. J., Noise due to Photon
Countlnq Statistics in Computed S-ray
Tomography, J. Comput. Assist. Tomogr.
l-,Pp. 64-74, 1977.

Chew, E., Weiss, G. R., Brooks, R. A.,
and Di Chiro, G., Fffect of CT Noise on
Detectability of Temt Objects, Am. J.
RGentaenol. 131, pp. 681-685, 1978.—
Cho, Z. H., Chan J. K,, Hall, E. L.,
Kruger, R. P., and f4cCauqhey, D. G., A
Comparative Study of 3-D Image
Reconstruction Algorithms with Reference
to Number of Projection and Noise
Filterina, IEEE Tra~fi.Nucl. 9ci. NS-22,
PP. :44-350, 1?75.

Cohen, G., Contrast-detail-dose Analysis
of Six Different Computed Tomographic

Scanner?, J. Comput. Assist. Tomoqr. ~,
FP. 197-203, 1979.

Cohen, G., and DiBlanca, F. A. , The Use
of Contrast-detail-dose Evaluation of
Imaqe Quality in a Computed Tomograpillc
Sca;ner, J. ‘Comput. Assist. Tomogr~ ~,
PP. 189-195, 1979.

Dainty, J. C., and Shaw, R,, Image
Science; Principles, Analysls and
Evaluation of Photographic-type Imaging
Processes, London, 1974, Academic Press,
Inc. Ltd.

Goodenouqh, D. J., Objective Measures
Related to ROC Curves, Proc. SPIE Appl.
opt . Instr. in Medicine III Q, ‘PP.
134-141, 1975.

Goodenough, D. J. and Hetz, C. E.,
Zffects of Listening Interval on
Auditory Detection Performance, J.
Acouat. Sot. Am. ~, pp. 111-116, 1974.

Green, D. M., and Swetsv J. A., Signal
Detection Theory and Psychophysics, New
York, 1966, John Wilty c Sons, Inc.

Hanson, K. M., Detectabllit’, in the
Presence of Computed Tomographic
Reconstruction Noise. Proc. SPIE ADD1.
opt. Instr. in 14ed~cine VI 127—’ .bP.
304-312, 1?77.

Hanson, K. M. and Boyd, D. P., The
Characteristics of Computed Tomographic
Reconstruction Noisz and their Effect on
Detectability. , IEEE Trans. NIIC1. Sci.,
NS-25, pp. 160-173, 1978.

Hanson, K. M., Detectability in Computed
Tomographic Images, Med. Phys. ~,” pP.
44:-451, 1979a.

Hanson, R. M., The Detective Quantum
Efficiency of CT Reconstruction: The
Detect Ion of Small Objects. , Proc. SPIE
Appl. Opt. Inatr. in Medicine VII 173,
pp. 291-298, 1979b.

—

Hanson, R. M., On the Optimality of the
Filtered Backprojection Algorlthm, J.
Comput. Assist. Tomogr. ~, pp. 361-]63,
:980.

Hanson, K. M, Noise and Contrast
Discrimination in Computed Tomography,
in Radiology of the Skull and Brain, ed.
Newton, T. H, and Potts, D. G., Vol. 5,
pp. 3941-3955, 1981,

Herman, G. T., On the Noise in Images
Produced by Computed Tomography, Tech.
Report No. 14XPC33,Suny Buffslo, 1979.

Huesman, R. R., Analysis of Statlstlcal
Errors for Transverse Section
Reconstruction, Lawrsn:e Berkeley
Laboratory Report 14278, 1975,
University of California, Berkeley, CA.

Huesman, R. H., The Effects of a Finite
Number of Projection Anqles and Finite
Lateral Sampling of Projectlone on the

—



Propagation of Statistical Errors in
Transverse Section Reconstruction, Phys.
Med . Biol. 22, pp. 511-521, 1977.—
Johns, il.E., and Cunningham, J. R., The
Physics of Radioloqy, Ed . 3,
Springfield, 1969, Charles C. Thomas.

Joseph, P. P!.,Image Noise and Smoothitlg
in Comput4 Tomography (CT) Scanners,
Proc. SPIE Appl. Opt. Instr. in Medicine
VI, 127, pp. 396-399, 1978.

Joseph, P. M., Artifacts in Computed
Tomography, in Radiology of th~ Skull
dnd Brain, ed. Newton, T. il.and potts,
D. G., Vol. 5, pp. 3956-3992, 1991.

Judy, P. F., Swensson, R. G., and Szulc,
H ., LegIon Detection and Signal-to-noisz
Patio in CT images, Med. Phys. ~, pp.
13-23, 1981.

New, P. F. J., Scott, W. R. Schnur, J.
A. Davis, ~. R., and Taveras, J. M.,
Computerized Axial Tomography with the
EHI Scanner, Radioloqy 110, pp. 109-123,
1973.

Orphanoudakis, S. C., Hirsch, J., Jaffe,
c. c., and Rauschkolb, E., ‘Receiver
Operatinq Characteristic Analysis of
Observer Performance in Computed
Tomography, ■ submitted to Radioloqy,
!981.

Riederer, S. J,, Pelt, N. J., and
Chesler, D. A., The Noise Power Spectrum
in Computed X-ray Tomography, Phyn. Pled.
Blol. ~, pp. 446-454, 1978.

Shepp,. L. A., and Logan, B. F., The
Fourier Reconstruction of a Head
Section, IELE Trans. Nucl. Sci. NS-21,
pv. 21-43, 1974.

Tanaka, E., a;ld Iinuma, T. A.,
Corrective Functions for Optimlzinq the
l+eccnstructed Imaqe in Transverse
Section Scan, Phys. ‘Med. Biol. ~, pp.
709-798, 1975.

Tanaka, E., and Iinuma, T. A., Cor-
rective Fur,ctionsand Statistical SoiSes
in Transverse Section Picture
Reconstruction, Comput, Biol. Med. ~,
PP. 295-306, 1976.

Van Trees, H. L., Detection, Estimation
and Modulation Theory, New York, 1968,
John Wiley b Sons, Inc.

Waqner, R. F., Fast Fourier Digital
Ouantum Hottle Analysis with Application
to Rare Earth Intensifying Screen
Systems, Med. Phya. ~, pp. 157-162,
1976.

Wagner, R. F., Toward a Unified View of
Radiological Imaging Systems. II. No i9y
Images, Med. Phys. ~, pp. 279-296, 1977.

Wagner, R. F., Decision Theory and the
betail Slqnal-to-noise Ratio of Otto

Schade, Photogr. Sci. Enq. ~, pp.
41-46, 1978

Wagner, R. P., Brown, D. G., and Pastel,
M. s., The Application of Information
Theory to the Assessment of Computed
Tomography, Med. Phys. ~, pp. 83-94,
1979.

Whalen, A. 9., Detection of Signals in
Molse, New York, 1971 Academic Press,
Inc.

Fig, 1 Three scans of a contrasc sensi-
civ’,ty:]hancomtaken orIa GE CT/T
7900 scanner at two exposures:
1152 YAS (cop) ar.d 307 MAS (bottom).
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(Courtesy of F A, DLBianca,
General Electric).
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Fig. 3 ?Joise power speccw of che two
images in Fig. z.

Fig. 2 Comparison of “white” noise (top)
and CT noise (bottom) each with
C“he same rms deviation. The lack
of Low-frequency structure in cne
CT noise 1s evident especially
when viewed at a dlscance.
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Fig. 4 EMI CT-5005 gcan of che MI water
?hancam used in calculation of
noise ?ower speccm. The Light
spot near che top of the recon-
struction is a roiler mark pro-
duced by the film processing unit.
(Courtesy D. P. Boyd, Univeristy
of California, San Francisco. )

rl..g, 5 Noise power spectrum for normal
20-sec scans on an Z..i CT-5005
of a 24-ca-dimeter ‘water phantom
The siope of ~he s~eccrum ac Low
frequencies decemlnes YEQ.




