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This document summarizes the Preston-Tonks-Wallace (PTW) model, and presents some
examples of typical stress-strain relations.

1. SUMMARY OF THE FORMULAS

The Preston-Tonks-Wallace (PTW) model1 describes the plastic deformation of metals in terms
of the dependence of plastic stress on plastic strain. The following summary of the PTW model
is taken directly from Ref. 1.

In the PTW model, the plastic stress in a material is a function of the amount of strain ψ it
has undergone, the strain rate ψ̇, the material temperature T , and its density ρ. It is assumed
that the plastic stress is independent of the history of the material, and that the plastic flow is
isotropic. Material fracture or failure is not included in PTW.

The PTW model is written in terms of three scaled dimensionless variables. The scaled
stress variable is

τ̂ =
τ

G(ρ, T )
, (1)

where τ is the flow stress, which is one-half the usual van Mises equivalent deviatoric stress σ,
that is, τ = σ/2, and G(ρ, T ) is the shear modulus, which is a function of the material density
ρ and temperature T .

The material temperature is scaled to its melt temperature Tm, which is a function of the
material density ρ

T̂ =
T

Tm(ρ)
. (2)

For plastic flow, clearly T̂ < 1. The equivalent plastic strain is denoted in PTW by ψ, although
it is conventionally represented by ε. The strain rate ψ̇ is scaled to an appropriate rate

ξ̇(ρ, T ) =
1

2

(
4πρ

3M

) 1
3
(

G

ρ

) 1
2

, (3)

where M is the atomic mass of the metal. Thus, M = A/Avo, where A is the atomic weight of
the metal and Avo is Avogadro’s constant, 6.025 × 1023 grams/mole. ξ̇ is the reciprocal of the
time for a transverse sound wave to cross an atom. The strain rate always appears in the PTW
formulas in terms of the ratio ψ̇/ξ̇.
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The shear modulus is taken to be

G(ρ, T ) = G0(ρ) (1 − α T̂ ) , (4)

where G0(ρ) is the shear modulus at T = 0 and α > 0 is a material parameter.

For any fixed values of strain rate and temperature, the scaled stress τ̂ ranges between a
lower and upper limit, the yield stress τ̂y and a saturation value τ̂s. The functional form for τ̂
depends on the strain ψ in the following way

τ̂ = τ̂s+
1

p
(s0−τ̂y) ln

⎧⎪⎪⎨
⎪⎪⎩1 −

[
1 − exp

(
−p

τ̂s − τ̂y

s0 − τ̂y

)]
exp

⎡
⎢⎢⎣− p θ ψ

(s0 − τ̂y)

[
exp

(
p

τ̂s − τ̂y

s0 − τ̂y

)
− 1

]
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ ,

(5)
where p and θ are material-specific parameters. The parameter s0 is explained below.

At low strain rates, the plastic deformation process is controlled by thermal activation. The
values for τ̂y and τ̂s are given by

τ̂L
y = y0 − (y0 − y∞) erf

[
κ T̂ ln

(
γ ξ̇

ψ̇

)]
, (6)

τ̂L
s = s0 − (s0 − s∞) erf

[
κ T̂ ln

(
γ ξ̇

ψ̇

)]
, (7)

where κ and γ are dimensionless material parameters, and the superscript L stands for low
strain rates. The error function is defined as erf(x) = 2√

π

∫ x

0
exp (−t2) dt, which has the limiting

values erf(0) = 0 and erf(∞) = 1. Note that the logarithm is nonnegative because γ ξ̇/ψ̇ ≥
1 in the low-strain-rate regime. Therefore, the argument of the erf function is nonnegative.
The parameters y0 and y∞ are the values that τ̂y takes at zero temperature and very high
temperatures, respectively; s0 and s∞ have analogous meanings for τ̂s.

At very high strain rates, above 10 8 s−1 for example, the plastic deformation process is
appropriately described by Wallace’s theory of overdriven shocks in metals.2 In this regime, the
saturation stess becomes

τ̂H
s = s0

(
ψ̇

γ ξ̇

)β

, (8)

where the superscript H refers to high strain rate. The PTW model accounts for this transition
as follows

τ̂s = max{τ̂L
s , τ̂H

s } . (9)

The yield stress at very high strain rate is the same as the saturation stress, that is, τ̂H
y = τ̂H

s .

A transition is required at intermediate strain rates, so

τ̂M
y = y1

(
ψ̇

γ ξ̇

)y2

, (10)



Table 1. PTW parameters used for copper and tantalum.1 G0 is given in kilobars; all other parameters
are dimensionless.

Material Cu Ta

y0 0.0001 0.01

y∞ 0.0001 0.00125

s0 0.0085 0.012

s∞ 0.00055 0.00325

κ 0.11 0.6

γ 0.00001 0.00004

θ 0.025 0.02

p 2.0 0.0

y1 0.094 0.012

y2 0.575 0.4

β 0.25 0.023

G0 518 722

α 0.20 0.23

where the superscript M refers to medium strain rates. The formula for the yield stress becomes

τ̂y = max{τ̂L
y , min(τ̂M

y , τ̂H
y )} . (11)

2. EXAMPLES

Several examples are given in this section to elucidate the behavior of the PTW equations. The
parameters used in these examples are given in Table 1, which are taken from the PTW paper.

2.1. Copper

Figures 1, 2, and 3 show the stress-strain behavior for copper in the low strain-rate regime
given by Eq. (5). The flow stress has been converted to the von Mises stress using Eq. (1)
and multiplying the result by 2. Parameters not mentioned in Table 1 are Tmelt = 1357◦K,
ρ = 8.933 g/cm2, and atomic weight = 63.54. In addition, one needs to know that the conversion
factor from bars to dynes is 106 (dynes/bars).

At small strains, the plastic stress in these figures rises linearly from the lower limit given
by Eq. (11). As the strain increases, the stress asymptotically approaches the upper limit given
by Eq. (9).

Figure 4 shows how the stress behaves over a wide range in strain rate at constant strain
value. The kinks in σy indicate clearly the endpoints of the three strain-rate regimes. For τ̂y
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Figure 1. The von Mises stress plotted as a function of strain (denoted in the text by ψ, but often by
ε) for copper at T = 300 ◦K and ψ̇ = 10−2 s−1. The lower and upper limits are shown as dashed lines.
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Figure 2. The von Mises stress plotted as a function of strain for copper at T = 300 ◦K and ψ̇ = 10 3 s−1.
The lower and upper limits are shown as dashed lines.
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Figure 3. The von Mises stress plotted as a function of strain for copper at T = 300 ◦K and ψ̇ = 10 6 s−1.
The lower and upper limits for these conditions, given by Eqs. (11) and (9), are shown as dashed lines.

the breakpoints are at strain rates of around 600 and 5×10 4 s−1. For τ̂s the breakpoint is at the
strain rate of around 10 8 s−1.

2.2. Tantalum

Figures 5, 6, and 7 show the stress-strain behavior for tantalum in the low strain-rate regime
given by Eq. (5). The flow stress has been converted to the von Mises stress using Eq. (1) and
multiplying the result by 2. At small strains, the plastic stress in these figures rises linearly from
the lower limit given by Eq. (11). As the strain increases, the stress asymptotically approaches
the upper limit given by Eq. (9). Parameters not mentioned in Table 1 are Tmelt = 3250◦K,
ρ = 16.8 g/cm2, and atomic weight = 180.95.

Figure 8 shows how the stress behaves over a wide range in strain rate at constant strain
value. The kinks in σy indicate clearly the boundary between the low and the high strain-rate
regimes. For both τ̂y and τ̂s, the breakpoints occur at a strain rate of around 10 8 s−1.
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Figure 4. The von Mises stress plotted as a function of strain rate for copper at T = 300 ◦K and
ψ = 0.2. The lower and upper limits are shown as dashed lines.
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Figure 5. The von Mises stress plotted as a function of strain (denoted in the text by ψ, but often
by ε) for tantalum at T = 300 ◦K and ψ̇ = 10−2 s−1. The lower and upper limits for these conditions,
given by Eqs. (11) and (9), are shown as dashed lines.
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Figure 6. The von Mises stress plotted as a function of strain for tantalum at T = 300 ◦K and
ψ̇ = 10 3 s−1. The lower and upper limits are shown as dashed lines.
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Figure 7. The von Mises stress plotted as a function of strain for tantalum at T = 300 ◦K and
ψ̇ = 10 6 s−1. The lower and upper limits are shown as dashed lines.
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Figure 8. The von Mises stress plotted as a function of strain rate for tantalum at T = 300 ◦K and
ψ = 0.2. The lower and upper limits, given by Eqs. (11) and (9), are shown as dashed lines.
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