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Abstract – Meta-analysis aims to combine results from multiple experiments. For example, a neutron
reaction rate or cross section is typically measured in multiple experiments, and a single estimate and its
uncertainty are provided for users of the estimated reaction rate. It is often difficult to combine estimates
from multiple laboratories because there can be important differences in experimental protocols among
laboratories and because laboratories do not always provide all the information needed to assess the
estimate’s uncertainty, particularly if total uncertainty (random and systematic) is required. The paper
illustrates that explicit measurement error models are essential for understanding measurement processes
and for guiding how to combine multiple measurements, whether the measurements are consistent or not.
We emphasize that both the consensus estimate and its estimated uncertainty depend on the assumed
measurement error model, and we investigate measurement error model selection options for two examples.

I. INTRODUCTION

This paper considers options to combine estimates
of the same measurand from multiple laboratories to reach
a consensus value. Individual laboratory estimates are
sometimes inconsistent in the sense that their differences
are larger than their individual uncertainty estimates sug-
gest.1 Such inconsistencies can arise from important dif-
ferences in experimental protocols among laboratories,
making it difficult to combine multiple estimates across
experiments.

Laboratories do not always provide all the informa-
tion needed to assess an estimate’s uncertainty, particu-
larly if total uncertainty ~random and systematic! is
required. However, one purpose of a meta-analysis is to
discover inconsistencies that could result in more tightly
controlled assay protocols and therefore more consistent
assay results. We emphasize that both the consensus es-
timate and its estimated uncertainty depend strongly on
the assumed measurement error model, and measure-
ment error model selection options are investigated.

The following sections include a background discus-
sion for multilaboratory experiments, statistical model-

ing, model selection, two examples, and suggestions for
future directions. The examples arise from experiments
to measure nuclear reaction rates and illustrate to what
extent inconsistencies across laboratories can be de-
tected as a function of the number of laboratories and the
size of the inconsistencies relative to inevitable random
assay errors.

II. BACKGROUND

Measurement error models are essential for under-
standing measurement processes and for guiding how to
combine multiple measurements, whether the measure-
ments are consistent or not. This background section in-
troduces three relatively simple measurement error models
used throughout. We use the term “measurement error”
to mean a random variable whose probability distribu-
tion characterizes assay errors. Following convention,
we sometimes qualitatively refer to the standard devia-
tion of the measurement error distribution as its uncer-
tainty. Alternatively, the qualitative term “uncertainty”
is sometimes used to describe the confidence interval
~CI! associated with an estimate.*E-mail: tburr@lanl.gov

NUCLEAR SCIENCE AND ENGINEERING: 173, 15–27 ~2013!

15



II.A. Model 1: Simplest Possible
Measurement Error Model

One of the simplest possible measurement error
models ~model 1! from laboratory i for estimating a
measurand in a multilaboratory experiment from n lab-
oratories is

Mij � T � Rij , ~1!

where

Mij � j ’th measured value from laboratory i

T � true value

Rij � random error of the j ’th replicate from labo-
ratory i , which can often be well modeled as
having a normal ~Gaussian! distribution, de-
noted as Ri ; N~0, sRi

2 !, where N~m, s2 ! is
the Gaussian distribution with mean m and
variance s 2 ~Refs. 1 through 5!.

Although Eq. ~1! is sometimes adequate and sometimes
each laboratory provides a high-quality and accurate
estimate of its random error variance sRi

2 , this paper’s
focus is the situation in which the laboratory values are
not consistent ~“inconsistent” is defined in Sec. V.B!,
and so alternatives to Eq. ~1! are necessary. As an ex-
ample alternative to Eq. ~1!, each laboratory could have
a laboratory-specific systematic error, as described next.

II.B. Model 2: Laboratory-Specific
Systematic Errors

One alternative to Eq. ~1!, which we refer to as model
2, is to allow for laboratory-specific systematic errors,2,5

arising, for example, from laboratory-specific estima-
tion of detector efficiency. If laboratory-specific system-
atic errors can occur, than a more reasonable measurement
error model from laboratory i for estimating a measur-
and in a multilaboratory experiment can be expressed as

Mij � T � Si � Rij , ~2!

with all terms the same as in Eq. ~1!, except Si is added,
where Si is the unknown laboratory-specific systematic
error ~bias! of laboratory i . One typically assumes and
can defend that errors ~even laboratory-specific system-
atic errors! are random at some stage ~such as being
random across hypothetical or real recalculations of de-
tector efficiency!, which we denote as Si ; N~0, sSlab

2 !.
Whether the assumption of a Gaussian distribution is
important depends on the goals and context. The most
common model assumes measurements have nonzero co-
variance if and only if they are made by the same labo-
ratory during the same experiment, so Si is the same for
two measurements of the same measurand by the same
laboratory.

II.C. Model 3: Some Subset of Laboratories
Has Larger-Than-Estimated Random

Error Variance

As another alternative to Eq. ~1!, which we refer to
as model 3, Hanson6 proposed that some subset of the
laboratories is optimistic and that in fact for some of the
laboratories, the true random error standard deviation is
gsRi

, where g � 1 and g is the same value for all the
optimistic laboratories. This results in model 3 given by
a mixture of two Gaussians for the laboratory result m
for a given true value T as

f2~m 6T ! � ~1 � b! f1~m 6T, sR , g � 1!

� bf1~m 6T, sR , g! , ~3!

where the mixing fraction b satisfies 0 � b � 1, the
scaling factor g � 1, and f1 is the Gaussian distribu-
tion with standard deviation gsR . Implied by Eq. ~3! is
the fact that prior to observing data from all n laborato-
ries, there is no ability to infer which laboratories are
optimistic, only that a fraction b of the laboratories is
optimistic.

Cacuci and Ionescu-Bujor1 considered a variation of
Eq. ~3! in which some or all of the n laboratories have
“unrecognized errors,” leading to larger-than-reported
within-laboratory random error variance. Using our no-
tation for consistency with this paper, their model is Mij �
T � RAij

� RBij
, where RA is recognized by the laboratory

and RB is not. Cacuci and Ionescu-Bujor1 assumed it
would be known which laboratories have and which lab-
oratories do not have unrecognized errors and also as-
sumed that the ratio of the variances sRBi1

2 0sRBi2

2 of the
unrecognized errors was known for every nonredundant
pair ~i1, i2 ! of laboratories, introducing a single un-
known scaling factor s that determines the sum of the
variances (i�1

n sRBi

2 of the unrecognized errors RBi
. In

examples 1 and 2 in Sec. V, there is only one measure-
ment per laboratory, although each measurement could
be an average of several replicates. Therefore, the error
model in Ref. 1 is similar to our Eq. ~2! except that
Ref. 1 assumes only random errors, not laboratory-
specific systematic errors Si . And, our Eq. ~2! assumes
that the variance of Si is the same for all laboratories,
denoting that common variance as var~S! � sSlab

2 . Ana-
lytical expressions for least informative priors and cor-
responding Bayesian posterior distributions are then
provided by Ref. 1.

As shown in Sec. V, our emphasis is different from
that of Ref. 1 in that we assess to what extent the
M1, M2, . . . , Mn values can indicate whether model 1,
model 2, or model 3 is more appropriate, and we use a
numerical implementation of a Bayesian7 approach de-
scribed below ~rather than analytical calculation! that is
available in open source software. For comparison, we
also provide a maximum likelihood ~ML! approach.
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II.D. Variance Propagation Implications for Models 1, 2, and 3

Suppose we want to combine the results of n1 measurements of the same measurand from laboratory 1 and n2
measurements from laboratory 2 to estimate T. Using Eq. ~2!, we obtain the true variance of an unweighted average
~see Sec. V for weighted averages! of n1 measurements of the same measurand from laboratory 1 and n2 measure-
ments from laboratory 2 as

s~ RM1� RM2 !02
2 � ~104!var~$n1T � n1 Slab1 � R1,1 � R1, 2 � {{{ � R1, n1

%0n1 � $n2T � n2 Slab2 � R2,1 � {{{ � R2, n2
%0n2 ! ,

~4!

where var~ ! is the variance of the quantity in ~ !, which
reduces to s~ RM1� RM2 !02

2 � ~sSlab

2 02! � ~sR
202n1! if sRlab1

2 �
sRlab2

2 � sR
2 and n1 � n2. Notice that the random error

variance sR
2 gets reduced by a factor of 10~2n1! while

the systematic error variance sSlab

2 gets reduced only
by a factor of 2 because only two laboratories generated
realizations of Si . Extensions to Eq. ~2! for nonconstant
within-laboratory random error variance and0or un-
equal number of replicates per laboratory are straight-
forward.2,8 Equation ~4! is one basis for assigning a
standard deviation to the consensus estimate of T based
on Eq. ~2! by using a method of moments approach that
sets observed variances equal to expected variances.2,3,5

For example, the sample variance of $ RM1, RM2, . . . , RMn %
across laboratories s2 � (i�1

n ~ RMi � R RM !20~n � 1!, where
R RM is the overall mean ~the mean of the laboratory

measurements, some of which could be average
measurements over multiple experiments! has the ex-
pected value sSlab

2 � (i�1
n sRi

2 0n if we assume one
measurement per laboratory as in examples 1 and 2 of
Sec. V. Therefore, the observed sample variance of
$ RM1, RM2, . . . , RMn % provides a simple option to estimate
sSlab

2 . Specifically, assuming each sRi

2 is known, [sSlab

2 �
max~0, s2 � (i�1

n sRi

2 0n!, and the “hat” notation denotes
a parameter estimate. Alternatively, standard approxima-
tions based on the estimated curvature of the likelihood
in the case of ML estimation or on a numerical option
using Markov Chain Monte Carlo7 ~MCMC! in the case
of Bayesian estimation are available to assign a stan-
dard deviation to the consensus estimate of T. See ex-
amples 1 and 2 in Sec. V. As explained in Sec. V, we
prefer the MCMC-based option but for completeness
also investigate the ML option and a moments-based
option when available.

III. META-ANALYSIS

There is no single definition of meta-analysis, but
generally, a meta-analysis involves combining informa-
tion from multiple experiments using statistical methods
with the goals to aggregate and0or contrast findings from
several related studies or experiments. Viechtbauer9

briefly reviews some freely available software for meta-
analysis and then describes the metaphor package for
meta-analysis in R ~Ref. 10!. Bax et al.11 describe meta-

analysis with interactive explanations that include assess-
ment of publication bias, tests for unequal laboratory
variances, and both fixed and random effects models.
Fixed effects models are concerned only with the spe-
cific errors Si in the study. Random effects models re-
gard Si as random realizations from a process to be
characterized, for example, by estimating sSlab

2 . In the
examples in Sec. V, we regard the errors Si as random
effects. And, unlike Refs. 9 and 10, this paper empha-
sizes the role of the assumed underlying measurement
error model in determining the consensus value and the
estimate of its standard deviation. Although not consid-
ered in this paper, a slight extension of our Bayesian
approach for model 2 would allow us to estimate each of
the errors Si . The resulting estimate ZSi � ai ~ RMi � R RM !,
where the shrinkage factor ai , 1 depends on the rela-
tive sizes of [sSlab

2 and sRi

2 .
One benefit of multilaboratory experiments is the

potential to assess whether there is evidence for
laboratory-specific systematic errors Si such as in Eq. ~2!,
and if so, how the Si are distributed. For example, Burr
and Doss12 and Burr13 develop a nonparametric model-
ing option for Si ~in meta-analysis for clinical trials in
medical experiments! using a mixture of conditional
Dirichlet processes. A somewhat similar approach is
taken by Jara et al.,14 but for more general situations
that are beyond our scope. The approach by Burr and
Doss12 allows the data ~see Sec. V.G! to suggest to
what extent the distribution of the Si agrees with, for
example, the Gaussian distribution.

IV. STATISTICAL MODELING

Equations ~1!, ~2!, and ~3! will be our models 1, 2,
and 3, respectively. The Si terms are a candidate expla-
nation for differences among laboratory results being
larger than their individual uncertainty estimates ~sRi

2 !
suggest. Model 3 ignores the possibility of laboratory-
specific biases but allows for underestimation of sRi

2 by
some of the laboratories.

Equation ~2! is among the simplest defensible mod-
els that allows for nonoverlapping error bars such as
implied by the nonoverlapping Gaussian distributions cen-
tered on each measured value in Fig. 1 and extending to
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6ksRi
, where k is usually approximately 2 to 3. Because

the effects of the Si are not included in sRi
, if Eq. ~2! is

an appropriate measurement error model, then nonover-
lapping error bars are not surprising and indicate the
presence of laboratory-specific biases.

Another defensible model based on a mixture of
Gaussian distributions is described in Eq. ~3!. Statistical
modeling is the art and science of using domain knowl-
edge and0or experimental data to select an appropriate
data model or likelihood. Modern methods to compare
and select models use the likelihood or integrated likeli-
hood.7 The basic concept is that better models explain
the data better, in a way that can be numerically quanti-
fied via the likelihood.

In addition to model selection based on the likeli-
hood, parameter estimation and residual or model diag-
nostics are necessary for a complete analysis. Examples
are given in Sec. V. We note here that it is traditional to
state the uncertainty of a consensus result using a single
standard deviation, which is appropriate if the composite
result can be adequately modeled as having a Gaussian
distribution centered on the true value of the measurand
T. However, as will be made clear in examples 1 and 2, it
is sometimes necessary to use more caution in the ex-
pression of the uncertainty in the consensus value. For
example, the posterior probability distribution for a quan-
tity might not have approximately a Gaussian distribu-
tion ~see Fig. 4!.

Note that model 2 assumes a mature assay protocol
in that all laboratories understand their sources of vari-
ation and have high-quality estimates of sRi

. Further,
the modeling assumption Si ; N~0, sSlab

2 ! implies that
all laboratories have equal understanding of their sys-
tematic sources of variation because there is only one

variance sSlab

2 . Such a model could arise due to each
laboratory having a very similar procedure to estimate
detector efficiency, for example. And, if that procedure
to estimate detector efficiency is not repeated across
replicate experiments by a laboratory, then estima-
tion error in detector efficiency would contribute to
laboratory-specific systematic error. Model 3 is quite
different, assuming that some laboratories understate their
true sRi

, which would imply that there is not yet an
established and reproducible protocol for doing the ex-
periment. In the example problems, some limited abil-
ity to distinguish between models 2 and 3 will be evident,
as seen in Tables I and II through the Bayesian Infor-
mation Criterion ~BIC!.

V. EXAMPLES

Hanson6 describes meta-analyses for measuring re-
action rates but after rejecting model 1 assumed a special
case of Eq. ~3! without considering alternative models.
One of the reaction rates is the neutron-induced fission
cross section for 239Pu at an incident neutron energy of
14.7 MeV. The number of experiments ranges from 5 to
16 depending on the particular measurand considered.
Example 1 has five laboratory results. Example 2 has 16
laboratory results.

V.A. Example 1

As a preliminary to evaluating the real laboratory
results, Hanson6 uses a synthetic data set from five

Fig. 1. Example of discrepant data from Hanson.6 Five
individual laboratory means ~2.385, 2.521, 2.449, 2.420, and
2.670! and standard deviations ~0.027, 0.027, 0.027, 0.027,
0.027!, respectively.

TABLE I

Root-Mean-Squared Error for Using Model 2; Model 3
with b � 0.1, g � 10; and Model 3 with Fitting

b and g, where the True Model is Model 2*

n Model 2

Model 3,
b � 0.1,
g � 10

Model 3,
Fit b and g

BIC2 � BIC3
to Choose Model

2 0.074 0.089 0.078 0.074 1000
3 0.059 0.076 0.072 0.060 903
5 0.048 0.071 0.063 0.049 929

10 0.033 0.058 0.045 0.045 951
20 0.023 0.043 0.032 0.024 958
40 0.016 0.035 0.027 0.017 969
80 0.012 0.028 0.025 0.012 987

100 0.010 0.024 0.026 0.011 982

*The last column uses the model having the smallest BIC
value, and the second entry in the last column is the number of
simulations out of 1000 for which the smallest BIC value cor-
responded to the correct model. Entries are repeatable to ap-
proximately 60.001.
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laboratories with the estimated cross section ~measured
in barns! provided as 2.385, 2.521, 2.449, 2.420, and
2.670 from the five laboratories, with each laboratory
claiming sRi

� 0.027.
First, note that if the simple model @Eq. ~1!# Mi �

T � Ri is adequate and if one measurement per labora-
tory is assumed so the index j is dropped, then it is well-
known15,16 that the likelihood function

f ~m1, m2, . . . , m5 ! �
1

M2psR1

2

1

M2psR2

2
{{{

1

M2psR5

2

� e
�� ~m1�T !2

2sR1

2
�

~m2�T !2

2sR2

2
�{{{�

~m5�T !2

2sR5

2 �

can be maximized as a function of T, resulting in a ML
estimate for T ~which is the same as the weighted least-
squares estimate in this case! of

ZT �
1

(
i�1

5 1

sRi

2

(
i�1

5 mi

sRi

2
,

which reduces to the ordinary unweighted average
ZT � (i�1

5 mi 05 if all the laboratory variances sRi

2 are
equal. Therefore, if one assumes the model Mi � T � Ri

with sRi
� 0.027, and Ri ; N~0, sRi

2 !, then ZT � 2.489
is the consensus estimate, with standard deviation
0.027�M5 � 0.012, a 95% confidence interval ~CI! is
2.489 6 1.96 � 0.012, which is ~2.47, 2.51!.

We will show that examples 1 and 2 exhibit evi-
dence of having inconsistent measurements, so other op-
tions to calculate a consensus value will be presented.
For example, as another option to consider, because
Eq. ~1! is not supported by the data ~see Sec. V.B!, one
might informally opt to use the sample standard deviation

s � � 1

5 � 1 (
i�1

5

~mi � Um!2 � 0.113

and the 0.975 quantile of the t distribution with 4 de-
grees of freedom ~2.78! to obtain an approximate 95%
CI of 2.489 6 2.78 � 0.113�M5, or ~2.35, 2.63!, which is
again centered on the mean RM but is much wider than the
previous CI that arose from believing the laboratory
claims that each sRi

� 0.027 and that Eq. ~1! is adequate.
We say “informally opt” because there is no explicit at-
tempt to choose an appropriate measurement error model
for the m1, m2, . . . , m5 values. However, Ref. 1 shows
that this option arises as a special case of the approach in
Ref. 1. These two options and other options described
below for examples 1 and 2 to calculate a consensus
value are summarized in Table III for examples 1 and 2.

TABLE II

Root-Mean-Squared Error for Using Model 2; Model 3
with b � 0.1, g � 10; and Model 3 with Fitting
b and g, where the True Model Is Model 3.*

n Model 2

Model 3,
b � 0.1,
g � 10

Model 3,
Fit b and g

BIC2 � BIC3
to Choose Model

2 0.137 0.147 0.138 0.137 0
3 0.092 0.061 0.072 0.086 130
5 0.052 0.029 0.016 0.046 237

10 0.040 0.010 0.010 0.030 417
20 0.024 0.007 0.007 0.017 493
40 0.016 0.005 0.005 0.011 479
80 0.010 0.003 0.003 0.008 482

100 0.009 0.003 0.003 0.007 493

*The second entry in the last column is the number of
simulations out of 1000 for which the smallest BIC value cor-
responded to the correct model. Entries are repeatable to ap-
proximately 60.001.

TABLE III

Consensus Values and Estimated Standard Deviation of Consensus Values for T in First Cell Entry,
and 95% CIs for T in Second Cell Entry for Examples 1 and 2 for Models 1, 2, and 3*

Example

Model 1
Assumed

Known sRi

Model 1
Estimated sR

Model 2
Using MCMC

Known sRi

Model 3
Fix b � 0.1, g � 10

Using MCMC Known sRi

Model 3
Estimate b and g

Using MCMC Known sRi

1 2.49, 0.012 2.49, 0.050 2.49, 0.040 2.43, 0.015 2.44, 0.033
~2.47, 2.51! ~2.35, 2.63! ~2.41, 2.57! ~2.40, 2.46! ~2.40, 2.53!

2 2.44, 0.013 Not available 2.50, 0.038 2.45, 0.023 2.45, 0.027
~2.42, 2.47! ~2.43, 2.58! ~2.41, 2.50! ~2.40, 2.51!

*Model 2 is mildly or strongly preferred over all other models, with model 3 ~with estimation of b and g! as the second-best
model.
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V.B. Evidence for Laboratory Results Being
Inconsistent with Eq. (1)

In Fig. 1, using the assumed value sRi
� 0.027 for

each laboratory to depict a fixed-width Gaussian distri-
bution centered on each mi , it appears that 2.670 is an
outlier and that 2.521 is also possibly an outlier if we
assume all Si � 0. More formally, Hanson6 computed

x2 �
(
i�1

5

$ RMi � R RM %2

sR
2

� 69.9 ,

which corresponds to a very small p value of approxi-
mately 10�14 for 4 degrees of freedom in x2 for testing
the null hypothesis that Eq. ~1! is adequate . Following
convention, the p value is defined as p � Prob~x4df

2 �
69.9! � 10�14 , which is the probability that x2 with 4
degrees of freedom exceeds 69.9. The term RMi is
the laboratory i mean ~in this case, an average of one
measurement, but in general laboratories might report
the average of ni measurements!, and the term R RM is the
average ~unweighted in this case! of the individual lab-
oratory means.

Alternatively, to assess whether the model Mij � T �
Rij @Eq. ~1!# is adequate, the probability that the sample
range of five measurements from a Gaussian distribution
having the same mean T and standard deviation sR is
greater than approximately 10.6 sR ~the observed range
from the five laboratories! is much less than 0.0001 ~es-
timated on the basis of 106 simulations!. So, also by
using this alternate statistical test, we find the p value to
be very small, and we conclude that the model Mij �
T � Rij is almost surely not adequate, so meta-analysis
of inconsistent measurements is required.

By “inconsistent measurements,” we mean measure-
ments that are inconsistent with Eq. ~1!, Mij � T � Rij .
Similarly, Cacuci and Ionescu-Bujor1 considered the lab-
oratory data to be inconsistent if any of the distances
6mi � mj 6 � si � sj . Specifically, if any of 6mi � mj 6 �
si � sj , then Ref. 1 assumed that a known subset of
laboratories underestimated sRi

because of the presence
of unrecognized random errors. This maximum distance
option to decide whether there is evidence for inconsis-
tency among laboratory results does not account for the
number of laboratories n and has a false alarm rate ~the
rate of declaring laboratory results to be inconsistent when
Eq. ~1! is adequate! that depends on the magnitudes of si

and sj ~because the standard deviation of mi � mj is

Msi
2 � sj

2, not si � sj !. If there is sufficient informa-
tion to suggest that the effect of unrecognized errors leads
to the true random error standard deviation in each lab-
oratory being larger than the reported sRi

, then results in
Ref. 1 ~that use a maximum entropy prior in a Bayesian
approach! provide a new meta-analysis option for a spe-
cial case of Eq. ~3! in which all laboratories are assumed
to have unrecognized errors.

As a complement and extension to Ref. 1, our infer-
ence task requires us to assess candidate measurement
error models such as Eqs. ~2! and ~3! and0or to consider
alternatives to the Gaussian distribution. That is, be-
cause the Eq. ~1! model Mij � T � Rij is not adequate for
this small example with five laboratory results, it is ap-
propriate to develop alternative data models. For exam-
ple, suppose instead of Rij ; N~0, sRi

2 !, we let Rij have a
scaled t distribution, Rij ; ~sRi

�M3!tn�3, where tn�3 is
the t distribution with 3 degrees of freedom @the smallest
integral degrees of freedom for which the t distribution
has a variance, and that variance is equal to 3 ~Ref. 17!# .
That is, we still assume the laboratory i random standard
deviation is sRi

but change the distributional assumption
from Gaussian to the broader-tailed t distribution with 3
degrees of freedom. Then, the p value based on the sam-
ple range of five observations from a scaled tn�3 changes
from ,0.0001 to approximately 0.002 ~on the basis of
106 simulations!. Therefore, even with the tn�3 distribu-
tional assumption, the model Mij � T � Rij with Rij hav-
ing a t distribution is probably not adequate because
although arbitrary, it is convention to regard a p value of
0.05 or smaller as being strong evidence against a can-
didate model.

These model checks and associated p values suggest
that the model Mij � T � Rij cannot be made adequate for
the data from the five laboratories by changing the dis-
tributional assumption for Rij from Gaussian to some-
thing more diffuse such as a t distribution.

V.C. Model Parameter Estimation

Although Eq. ~1! is not adequate for these data,
either Eq. ~2! with nonzero Si or Eq. ~3! with underesti-
mated laboratory sRi

values has the potential to ade-
quately describe this data set. This section describes
parameter estimation for Eqs. ~2! and ~3!.

Informally, without using statistical inference, Han-
son6 claims that using Eq. ~3!, b � 0.1 and g �10 seemed
to fit the data from the five laboratories. We will con-
sider the “fix b � 0.1 and g �10” option but also include
the option to estimate b and g. Using the optimizer nlm
in R to implement the ML option to estimate b and g in
model 3, we obtain ZT � 2.425, Zb � 0.56, and [g � 5.85.
With b set to 0.1 and g set to 10 as in Hanson,6 we obtain
ZT � 2.486. For model 2, we obtain ZT � 2.489 and [sSlab

�
0.087. For comparison, the ordinary unweighted average
of the five laboratory means is 2.489. Because in this
example each laboratory’s estimate of sRi

is 0.027, the
model 2 consensus estimate of T is the same as the un-
weighted average, 2.489.

To estimate model parameters and the standard de-
viations of those estimates, for completeness we exper-
imented with both ML estimation and numerical Bayesian
estimation using MCMC as implemented in the metrop
function in the mcmc package for R ~Ref. 10!. We note
here that all the MCMC results in this paper were obtained

20 BURR et al.
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using metrop and the prior probability distribution for
each unknown variance was uniform from 0 to a large
upper limit as determined by the sample variance of the
relevant data. Not surprisingly, ML results can be similar
to results using a numerical Bayesian approach based on
the estimated maximum posterior when the posterior pa-
rameter distribution is symmetric and the prior is diffuse
~has a large uncertainty as defined by its standard devi-
ation!. See example 2 in Sec. V.F where the usual con-
vention of expressing the uncertainty in a quantity ~even
a consensus quantity! using a single standard deviation
can be appropriate. However, because ML estimation
typically is only asymptotically unbiased and because
the quality of ML-based CIs is sometimes difficult to
assess, we generally recommend the MCMC approach.

In Fig. 1, the estimated posterior distribution for the
consensus of each of three meta-analysis options is indi-
cated as a dashed curve. Model 1 assumes zero labora-
tory biases @Mij � T � Rij , Eq. ~1!# , model 2 assumes
nonzero laboratory biases @Eq. ~2!# , and model 3 as-
sumes a two-component Gaussian mixture @Eq. ~3!# . No-
tice that model 1 ignores the apparent contradictions
among some of the laboratory results, resulting in an
overly optimistic estimate ~the estimated posterior is too
narrow! of the uncertainty in the consensus estimate.
Model 2 results in the same consensus value, 2.489 as
model 1, but with a much wider posterior distribution.
Model 3 assigns positive probability that the two largest
observations should be downweighted so that the con-
sensus value is smaller, 2.425. Notice the skewed shape
for the posterior probability in model 3, which arises
because there is recognized uncertainty regarding which
subset of laboratories has underestimated sRi

. Model 2
via MCMC results in an estimated standard deviation of
ZT of 0.040 while model 3 results in a more optimistic

value of 0.033 if b and g are estimated and of 0.015 if b
is fixed at 0.1 and g is fixed at 10. For comparison, the
method of moments approach, which is available for
model 2 ~but not for model 3!, leads to ZT � 2.489 with an
estimated standard deviation of ZT of 0.050. For all re-
ported MCMC results, the posterior estimates of T and
of the standard deviation of the estimate of T are based
on 106 MCMC samples, which we repeated twice to
ensure negligible uncertainty due to using a finite ~but
large! number of MCMC observations.

V.D. Model Selection

Model 2 assumes that each laboratory knows its
random error standard deviation sRi

~or can estimate
sRi

adequately! but that systematic errors are nonnegli-
gible and are distributed as Si ; N~0, sSlab

2 !. Both mod-
els 2 and 3 assume the random errors from each
laboratory have a Gaussian distribution, but model 3
assumes that one or more laboratories understate sRi

and ignores the possibility of laboratory-specific sys-
tematic errors.

Model 2 is most appropriate when the assay proto-
col is relatively well established and consistent across
laboratories. Even with an established assay protocol,
systematic uncertainties can arise, for example, in esti-
mation of the 239Pu induced fission neutron output and
energy spectrum, from uncertainties in determining the
efficiency of the neutron detectors, the flight path dis-
tance, and the possible time offset in the time-of-flight
measurement ~Haight et al.18 !.

Alternatively, such uncertainties can be included in
the random error variance sRi

, but model 3 allows for
the possibility that some such random error sources are
neglected by some laboratories, suggesting that assay
protocol is less established than in model 2. Model 3 is
referred to as the scale-contaminated normal distribu-
tion and has been studied, for example, by Gleason19

and by Cacuci and Ionescu-Bujor,1 who study a version
of model 3 in which some or all laboratories have un-
recognized errors that we denoted previously as RB to
distinguish them from the recognized errors denoted
as RA .

To investigate whether observed data can indicate
which model is preferred, we use a simulation study. In
the simulation study, we first let the true model be model 2
and then let the true model be model 3. We also compare
inference options appropriate for models 2 and 3 for both
situations. The parameters for the simulated data were the
same or nearly the same as the corresponding estimated
parameters ~T � 2.489; sSlab

� 0.1; sRi
� 0.027; and set

b � 0.1 and g �10!.
The ML for each model can be used to compare

models, using the well-known BIC. The BIC is not the
only option for comparing models but is among those
that have stood the test of time.4 The BIC is defined as
BIC � �2 log~ML! � k ln~n!, where ML is the maxi-
mum value of the likelihood ~the likelihood evaluated at
the parameter values that maximize the likelihood!; k is
the number of model parameters; and, in our examples, n
is the number of laboratories. Models with a smaller-
valued BIC are the most plausible models. As a rule of
thumb, it is suggested that if the BIC value for model 2,
BIC2, is 10 or more less than BIC3, then model 2 is quite
strongly preferred over model 3. A few quantitative stud-
ies have been published to support this type of BIC cal-
ibration. See Aitken7 and the references therein.

Figure 2 plots BIC2 � BIC3 for n � 3, 5, 10, 20, 40,
80, and 100 laboratories ~one observation per labora-
tory! in the case that model 2 is correct, with sS � 0.1
and sR � 0.027 ~0.1 and 0.027 are values suggested from
analysis of variance applied to model 1! ~see Refs. 2, 4,
and 8!.

Realistically, n will be from approximately 3 to 20,
but the larger values of n are included here for complete-
ness. The horizontal line at BIC2 � BIC3 � �10 is given
for reference. The upper and lower tick marks are the
0.025 and 0.975 quantiles estimated from 1000 simula-
tions of each case. The “M” plotting symbols mark the
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mean difference. Notice that the distribution of BIC2 �
BIC3 values is not generally symmetric around the mean.

Figure 3 is the same as Fig. 2, but model 3 is the
correct model with b � 0.1 and g � 10 as used by Han-
son.6 In this case, the horizontal line at BIC2 � BIC3 �
10 is given for reference.

One key finding is that Figs. 2 and 3 suggest that at
least for small n ~perhaps n � 10 laboratories!, it is dif-
ficult to distinguish between models 2 and 3 no matter
which model is the true model. And, the estimated con-
sensus value based on ML does change as the assumed
model changes from model 2 to model 3. Therefore, in

another simulation experiment, we will use the BIC to
choose a model and evaluate to what extent this type of
model selection and inference can outperform simply
using either model 2 or model 3 in all cases. The BIC
values for model 2, model 3 ~forcing b � 0.1, and g �
10!, and model 3 ~using the MLs estimates for b and g!
are �5.5, �1.1, and �3.9, respectively. Recall that small
BIC values are preferred, so model 2 is preferred over
model 3, and with model 3 it is better to use estimates of
b and g from three-dimensional optimization rather than
the plug-in values b � 0.1 and g �10. Alternatively, one
could argue that if time and budget permit, it is better to
“get under the hood” of each laboratory’s experimental
approach to see if expert judgment can play a role in
improving understanding of total laboratory measure-
ment error.

Aitken7 provides a good discussion of model selec-
tion options, including the BIC and the Bayes factor. The
Bayes factor for comparing model 2 to model 3 is the
ratio defined as the marginal likelihood of the data for
model 2 divided by the marginal likelihood for model 3,
where marginal likelihood is the average likelihood with
respect to the prior distribution for the parameter values
in the model, denoted LM � *LM ~u!p~u! du, where p~u!
is the prior probability density for u, and LM ~u! is the
likelihood, such as in Eq. ~3!, viewed as a function of
the parameter u � T. Alternatively, model selection can
be based on the average likelihood with respect to the
posterior distribution of u, which is the basis for the
deviance information criterion ~DIC!, defined as DIC �
pD � PD, where the effective number of model parameters
is pD � PD � D~ Nu! and where the deviance is defined as
D~u! � �2 ln~LM ~u!! � C with C a constant that does
not need to be evaluated because only the difference in
deviance matters in comparing two models. Preferred
models have smaller DIC values. The notation PD de-
notes the average of D~u! with respect to the posterior
for u, and D~ Nu! denotes the deviance D~u! evaluated at
the posterior mean of u. The DIC is suited for Bayesian
model selection problems for which the posterior distri-
bution of u is obtained by MCMC as we have done here.7

For model 2, model 3 ~forcing b � 0.1, and g �10!,
and model 3 ~estimating b and g!, the marginal likeli-
hoods with respect to the prior of u are 0.31, 0.08, and
0.46 ~higher values are preferred!, respectively, and the
DIC values are �8.5, �4.7, and �8.6, respectively
~smaller values are preferred!. So, the marginal likeli-
hood with respect to the prior for u is highest for model 3
with b and g estimated, but the DIC is approximately
the same for model 2 ~�8.5! and model 3 ~�8.6!, again
with estimating b and g being better than forcing b �
0.1, and g � 10. Recall that the BIC indicated a prefer-
ence for model 2, or if model 3 is used, then again it is
better to estimate b and g than to fix them at 10 and 0.1,
respectively. The BIC, marginal likelihood, and the DIC
values were evaluated using 106 observations from ei-
ther the estimated posterior or the assumed prior. By

Fig. 2. BIC2 - BIC3 for n � 3, 5, 10, 20, 40, 80, and 100
laboratories in the case that model 2 is correct, with sS � 0.1
and sR � 0.027. The plotting symbol “M” denotes the mean of
the BIC2 - BIC3 distribution at each value of n.

Fig. 3. BIC2 - BIC3 for n � 3, 5, 10, 20, 40, 80, and 100
laboratories in the case that model 3 is correct, with b � 0.1
and g � 10. The plotting symbol “M” denotes the mean of the
BIC2 - BIC3 distribution at each value of n.
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repeating the set of 106 observations, we found that 106

is sufficiently many observations to have very high con-
fidence in the rankings of the marginal likelihoods, with
the estimated marginal likelihoods repeatable across sets
of 106 observations to within approximately 61% rela-
tive to the given values. In all cases, we used either
uniform priors from 0 to a large upper value for the
appropriate subset of model parameters T, sSlab

, b, and g
or used diffuse gamma priors; results are indistinguish-
able between these two diffuse priors.

V.E. Estimation Performance Assessment
Using Another Simulation Study

In another simulation study, we estimate the true
value T and report results for ML estimation. Results in
this simulation study for MCMC are essentially the same
as for ML, provided the posterior maximum is used rather
than the posterior mean. We have found that the poste-
rior distribution is almost but not exactly symmetric, so
this explains why the maximum posterior estimate is not
exactly the same as the mean posterior estimate.

Table I gives the root-mean-squared error ~RMSE!
across 1000 simulations for estimating the true value T
using ML applied to model 2, and ML to model 3 with
b � 0.1 and g �10 or with a three-dimensional maximi-
zation allowing the data to fit the values of b and g. In
Table I, the true model is model 2. Table II is the same as
Table I, but in Table II, the true model is model 3 with
b � 0.1 and g � 10. In both Tables I and II, the BIC is
applied to choose which ML estimate to use. Because it
is more defensible to allow the data to fit the values of b
and g, the BIC for model 2, BIC2, was compared to that
for model 3, BIC3 ~with fitted values of b and g!, and if
BIC2 , BIC3, then the model 2–based ML estimate was
used.

In addition to the RMSE of a method to estimate T,
it is important to have a good-quality estimate of the
standard deviation of ZT. Either ML or MCMC can esti-
mate the standard deviation of ZT. For example, for the
simulation results in column 2 ~which assumes model 2
is correct! of Table I ~for which model 2 is correct!, the
observed standard deviation across the 1000 simulations
of ZT for n � 5 was 0.046. The corresponding estimated
standard deviation was different for each simulation, with
an average of 0.045 across simulations, which indicates
that the standard ML approximation for the standard de-
viation of a parameter estimate is adequate in this exam-
ple when the correct model is used to fit the data. To
estimate the standard deviation of the ML estimator, we
used the Hessian matrix available from nlm in R. The
Hessian matrix is the standard tool used in ML estima-
tion to quantify the curvature of the likelihood function
~which determines the estimated standard deviation of
the ML estimator!. As another check of the adequacy of
the standard ML approach, we compared the nominal CI
coverage probability to the observed CI coverage prob-

ability. Specifically, the interval ZT 6 2 [s ZT ~which varied
across simulations! included the true T value ~which was
assumed to be 2.489 for each simulation! in 941 of 1000
simulations, which is a 94% observed coverage com-
pared to a nominal coverage of 95% assuming that ZT is
approximately Gaussian in distribution ~so that the inter-
val ZT 6 2 [s ZT should have approximately a 0.95 probabil-
ity of including T !. This second check of the ML approach
also indicates good ML performance. On the other hand,
when the wrong model was used to fit the data such as
using model 2 when model 3 was correct again for n � 5,
there was a noticeable difference ~repeatable across sets
of 1000 simulations! between the observed standard de-
viation of ZT across the 1000 simulations ~0.038! versus
the average estimated standard deviation of 0.027. And,
using ML with model 3 consistently leads to overestima-
tion of the standard deviation of Zb and [g even when the
correct model is assumed.

In general, it is not unusual for an approximation to
the standard deviation of a ML parameter to be some-
what inaccurate for small n. For example, again with
n � 5, but with model 3 being the correct model with
b � 0.1 and g �10, the estimated standard deviations of
the estimates Zb and [g ~the ML estimates! are both ap-
proximately 0.014, but the observed standard deviations
across 1000 simulations are both approximately 0.005.
However, the observed RMSEs of Zb and [g for estimating
b and g across the 1000 simulations are 0.017 and 0.022,
respectively, so there is noticeable bias included in these
RMSEs, and this bias is not included in the estimated
standard deviations of Zb and [g. These findings regarding
the RMSE for estimating T and regarding estimating the
standard deviation of ZT suggest a need for simulation
studies such as this to be a part of these types of
meta-analyses.

From Table I we note that as expected, when the true
model is model 2, inference using model 2 is preferred.
And, the sample size n ~the number of laboratory esti-
mates! does not need to be large to choose the correct
model using the BIC. This fortunate situation is not a
general result. It arises because models 2 and 3 provide a
roughly comparable fit to the data as measured by the
residual sums of squares, but model 2 has only two pa-
rameters while model 3 has three parameters. Table II
indicates that the BIC does not lead to as reliable selec-
tion of the correct model 3 even for as large as n � 100
laboratory results. Nevertheless, using the BIC to choose
the model still manages to perform better ~have smaller
RMSE, see the last column of RMSE values in Table I!
than blindly using the wrong model 2, although not as
well as the omniscient approach that correctly uses
model 3 for all realizations. And, using model 2 is a
valid starting point for the analysis even if the BIC sug-
gests a preference for another model such as model 3 in
this example.

We note here that the performance of the BIC to
distinguish between models 2 and 3 will depend on the
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relative parameter sizes, and in a separate simulation study
of 104 simulations, when sSlab

increases relative to the av-
erage value of sRi

, it is simpler to recognize model 2 as
the correct model. For example, with sRi

� 0.027 for all
laboratories as in Fig. 1, when sSlab

� 0.1 ~approximately
the example 1 value!, 0.5, and 1, there is strong evidence
for the correct model 2 over model 3 ~BIC2 , BIC3 �10!,
in 10 of 1000 simulations, 480 of 1000 simulations, and
970 of 1000 simulations, respectively.

V.F. Example 2

The 16 measurements of the 239Pu cross section for
an incident neutron energy of 14.7 MeV in Hanson6 were
collected from 1954 to 2001. The 16 means in barns are
2.750, 2.580, 2.820, 2.580, 2.520, 2.560, 2.650, 2.390,
2.290, 2.532, 2.440, 2.670, 2.420, 2.449, 2.521, and 2.385.
The corresponding reported 16 standard deviations sRi

are 0.14, 0.09, 0.141, 0.11, 0.088, 0.15, 0.30, 0.076, 0.052,
0.05, 0.092, 0.08, 0.028, 0.027, 0.081, and 0.026. Again,
we assume the sample size ni � 1 for each experiment,
so the number of observations is n � 16.

First, x2 � (i�1
16 $ RMi � R RM %20sRi

2 � 44.65, which cor-
responds to a p value of 0.00005 for model 1, so these
data appear inconsistent, and again, we consider models
2 and 3 rather than model 1. Model 2 results in the ML
estimate [sSlab

� 0.09, which is close in value to the av-
erage of the standard deviations sRi

~0.096! and ZT �

2.49, which is the same as the ordinary unweighted av-
erage of the 16 results. The estimated standard deviation
for ZT using MCMC, ML, or Eq. ~4! for a moments-based
approach to parameter estimation for Eq. ~2! is approx-
imately 0.038, 0.033, and 0.035, respectively.

Using model 3, we obtain the ML estimates for T, b,
and g as 2.44, 0.99, and 1.51, respectively. Or, using
metrop in R to implement MCMC, we obtain the maxi-
mum posterior estimates for T, b, and g as 2.40, 0.58,
and 1.93, respectively. Alternatively, the mean posterior
estimates for T, b, and g are 2.45, 0.54, and 2.73, respec-
tively. Notice from Fig. 4 that the posterior probability
density for T, for b, and for g is skewed; therefore, the
mean of the posterior is somewhat different from the
maximum posterior estimate.

Notice that the estimated standard deviation of ZT is
larger for model 2 ~0.038! than for model 3 ~0.027! if
MCMC is used and is also larger ~0.033 versus 0.024! if
ML is used. It is not unusual for ML-based estimates of
standard deviation to be different from the standard de-
viation of the posterior based on MCMC, and provided
the data likelihood is appropriate, the MCMC-based es-
timate is preferred because ML-based estimates of the
standard deviation of parameter estimates are typically
only correct in the limit as the sample size n approaches
infinity. Method of moments approaches based on set-
ting sample variances equal to theoretical variances as
we did using Eq. ~4! can also give considerably different

Fig. 4. Estimated posterior probability density for T, b, and g in example 2.
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~and generally slightly inferior8 ! estimates of the true
parameter estimate standard deviation.

Next, to assess whether model 2 or model 3 is pre-
ferred, the BIC values for model 2, model 3 ~forcing
b � 0.1, and g � 10!, and model 3 ~using the ML
estimate for b and g, which are approximately 0.99 and
1.51, respectively! are �13.5, �2.4, and �11.2, res-
pectively. Recall that small BIC values are preferred,
so as in example 1, using the BIC, we prefer model 2
over model 3, and with model 3, it is better to use
estimates of b and g from three-dimensional optimiza-
tion rather than the plug-in values b � 0.1 and g � 10.
Notice the very large ML estimate for b of 0.99, which
goes against the intent of model 3 to allow for a modest
number of optimistic laboratories that underestimate
sRi

. However, the mean posterior estimate for b based
on MCMC is 0.54, which is more in line with the intent
of model 3.

For example 2, according to either the BIC, the Bayes
factor, or the DIC, model 2 appears to be preferred over
model 3, and if model 3 is used, it is better to estimate b
and g rather than use some qualitative fitting criteria to
choose b and g. For example 1, the marginal likelihood
with respect to the prior for u is highest for model 3 with
b and g estimated, but the DIC is approximately the
same for model 2 ~�8.5! and model 3 ~�8.6!, again with
estimating b and g being better than forcing b � 0.1, and
g �10. Notice also that because the BIC penalizes some-
what for increasing from two to three parameters in go-
ing from model 2 to model 3 with b and g estimated, the
BIC will favor model 2 if the maximum likelihod for
models 2 and 3 are comparable. Recall that the BIC fa-
vored model 2 for both examples 1 and 2.

Also, once a model in addition to model 1 is evalu-
ated, it is meaningful to compare the BIC for model 1 to
the BIC for models 2 and 3. Model 1 is strongly rejected
by the BIC in examples 1 and 2 @for model 1, BIC � 44.6
in example 1 and BIC � 324 in example 2, which are
both much larger ~worse! than the BIC values for models
2 and 3 given above# .

V.G. Extracting the Distribution of Si

To this point, we have done the same types of analy-
ses for examples 1 and 2. Because the sample size n �16
is larger for example 2, and because model 2 is preferred
over model 3 on the basis of the BIC, the Bayes factor, or
the DIC, we further consider recent research that pro-
vides a comprehensive assessment of the underlying prob-
ability distribution for Si in Eq. ~2!.

For example, the package bspmma ~Ref. 13! in R,
uses a Dirichlet prior ~a prior that makes very few as-
sumptions about the form of the unknown distribution!
to suggest how close the distribution of Si is to Gaussian
using the Bayes factor, and either the Bayes factor or the
BIC can be used for model selection. In this example,
the result of applying MCMC via the dirichlet.c

function, which implements a conditional Dirichlet dis-
tribution ~see below!, results in ZT � 2.50, 2.50, and 2.50,
and [sSlab

� 0.23, 0.20, or 0.18 for the parameter M � 5,
20, or 100, respectively, where M determines the close-
ness of the distribution of Si to Gaussian ~with larger M
implying closer to Gaussian!. This estimate of [sSlab

is
approximately twice the estimate ~0.09! presented above
using Eq. ~2! assuming a Gaussian distribution. The es-
timated Bayes factors can be used to choose between the
conditional Dirichlet prior distribution and a mixture of
Dirichlet process priors as in Fig. 3 of Ref. 13. For this
example, the Bayes factor suggests that the conditional
Dirichlet is preferred over the mixture of Dirichlet pro-
cess priors. The conditional Dirichlet distribution as used
in Ref. 13 is one in which partial information, such as
the approximate value of the median, is known about the
otherwise unknown distribution. And, alternate ap-
proaches to meta-analyses include emphasis on the sam-
ple median as a way to reduce the impact of suspicious
individual values.

Four key parameters in the conditional Dirichlet d1,
d2, d3, and d4 characterize the prior for T, with d1, d2,
and d4 controlling how diffuse the prior is for T and d3
determining the prior mean for T. If, for example, d1, d2,
d3, and d4 are changed from the default values of 0.1,
0.1, 0, and 1000, respectively, to 0.00001, 0.00001, 0,
and 10 000, then the estimate of [sSlab

changes from ap-
proximately 0.20 to 0.083, which is close to the model 2
estimate. The first set of d1, d2, d3, and d4 values leads to
a diffuse prior for T, but the second set of of d1, d2, d3,
and d4 leads to a considerably more diffuse prior for T.

V.H. Summary of Examples 1 and 2

We have evaluated models 1, 2, and 3 for examples
1 and 2, so to summarize, Table III lists the consensus
estimate, the estimated standard deviation of the consen-
sus estimate, and an approximate 95% CI for models 1,
2, and 3. Although ML was evaluated as described in
Sec. V.C, we recommend using MCMC to obtain sam-
ples from the posterior distribution. Therefore, all Table III
entries for models 1, 2, and 3 are based on MCMC rather
than ML. Table III entries for model 1 are with the sRi

assumed to be known without error ~column 2!, or as-
suming that sRi

must be estimated ~column 3!, as an
extension to model 1 in which the sRi

are assumed to be
unknown but equal in example 1. Such an extension is
not available in example 2 because the sRi

are assumed
to be unequal, so there would be too many unknown
parameters; therefore, the cell entry is “Not available.”

The most trusted model 3 results are for the case
where b and g are estimated because the BIC suggested
it is necessary to estimate b and g. Because the BIC
indicated only a relatively mild preference for model 2
over model 3 ~with b and g estimated!, one could argue
for reporting both the model 2 and the model 3 consen-
sus values and confidence limits, saying that they depend
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on whether model 2 or model 3 is used, with model 3
leading to more optimistic ~narrower! confidence limits.

VI. DISCUSSION AND SUMMARY

In the context of meta-analysis for inconsistent mea-
surements, we regard measurements to be inconsistent if
a simple model such as Mij � T � Rij ~model 1! for
measurement j from laboratory i of a measurand having
true value T is inadequate, as in both examples 1 and 2.

Combining individual laboratory estimates requires
choosing an underlying model for the data. After reject-
ing model 1, we considered models 2 and 3, where
model 2 assumes a mature assay protocol so that all
laboratories understand their sources of variation and
have high-quality estimates of sRi

. Further, the model-
ing assumption Si ; N~0, sSlab

2 ! implies that all labora-
tories have equal understanding of their systematic
sources of variation. Model 3 is quite different, assum-
ing that some laboratories understate their true sRi

. In
the example problems, some ability to distinguish be-
tween models 2 and 3 was evident, as seen in Tables I
and II through the BIC.

We noted that the performance of the BIC to distin-
guish between models 2 and 3 will depend on the relative
parameter sizes. In Sec. V.E, we briefly discussed that in a
separate simulation study when sSlab

increases relative
to the average value of sRi

, it is simpler to recognize
model 2 as the correct model. The safest strategy is to use
models 2 and0or 3 to obtain model parameter estimates,
do simulation experiments such as ours, and calibrate the
ability of the BIC to choose the correct model, as in our
Tables I and II. And, goodness-of-fit checks such as re-
sidual diagnostics should of course always be applied to
the chosen model.Additionally, data evaluators must first
decide which candidate models to assess ~we assessed
models 1, 2, and 3!, preferably on the basis of some un-
derstanding of laboratory measurement protocols and
whether total error is estimated by some or all laboratories.

Potential next steps in future research should in-
clude the following. First, allow a vector of true values
such as cross sections across a binned energy range, al-
lowing for covariances between pairs of cross-section
measurement bins. Second, include physical model fit-
ting to estimate T ~as a scalar or vector!, allowing for
simultaneous model calibration and bias adjustment as
in Higdon et al.20 If possible, allow for a laboratory-wide
bias effect B, for example, in Eq. ~1! due to effects such
as laboratories sharing the same neutron generating
sources ~usually 252Cf ! used to estimate detector effi-
ciency. ~However, unless auxiliary information or data
are available, T � B is identifiable, but B is not sepa-
rately identifiable from T.! Fourth, compare model se-
lection options such as the BIC, the Bayes factor, and the
DIC for various simulated data sets such as those in
Tables I and II.

Regarding the fourth step, model selection criteria,
we note that Aitken’s7 suggestion to use the average like-
lihood with respect to the posterior for u as a model
selection criterion is controversial,21 partly because the
data are used twice, once to estimate the posterior for u,
and again to evaluate the likelihood with respect to the
estimated posterior for u. For that reason, we did not
report results for Aitken’s posterior likelihood criterion
in Sec. V. However, so-called empirical Bayesian meth-
ods also use the data twice, and the pros and cons of any
such double use can be evaluated empirically using sim-
ulation. Conventional wisdom suggests that using the
data twice tends to lead to some type of overfitting that
would need to be somehow addressed and mitigated. For
completeness, we computed Aitken’s suggested poste-
rior likelihood criterion ~using MCMC observations! for
both models 2 and 3. According to Aitken’s posterior-
likelihood-based model selection criterion, model 2 is
strongly favored in example 2, and model 2 is weakly
favored in example 1. The same criticism of using the
data twice is levied against the DIC, so Tomohiro22 pro-
posed a Bayesian predictive information criterion as an
alternative to the DIC. We believe that most reasonable
model selection criteria will have niches for which they
work quite well on select examples. A comparison of
model selection criteria in the context of meta-analysis
for nuclear assay results from multiple laboratories would
be valuable.

Both the consensus estimate and its estimated un-
certainty depend strongly on the assumed measurement
error model, so measurement error model selection op-
tions were investigated. Model selection options have a
role and can perform well for some sample sizes and
parameter ranges. And, we suggest using auxiliary sim-
ulations as done here to gauge whether, for example,
the BIC model selection option is likely to work well
for a given meta-analysis. However, in all cases, there
is no substitute for complete reporting of all key infor-
mation about each experiment in multiexperiment eval-
uation meta-analysis.
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