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A new strategy for validation of hydrocode predictions through the Bayesian analysis of radio-
graphic data is presented.  The Bayesian approach allows one to incorporate prior knowledge 
about the structure of the objects being analyzed and provides the foundation for assessing the 
reliability of the results.  We propose using the hydrocode prediction at radiographic time as the 
initial or default object model.  The object model is altered from its default in a minimal way to 
match the available radiographs in the Bayesian sense.  A full understanding of the degree of 
validity of the final model relies on the ability to explore and characterize the uncertainty in the 
model, a relatively new feature in Bayesian analysis.  We suggest that a physics-based validation 
of hydrocodes themselves may require some, if not all, of the basic concepts presented here to 
infer aspects of the underlying physics models from hydrodynamic experiments. 
 

Introduction 

Our present approach to benchmarking hydrodyna-
mical simulations is based on a direct comparison be-
tween the 3D object predicted by the hydrocode at 
radiographic time and the best reconstruction that can 
be obtained from the available radiographic data.  This 
approach is fraught with difficulties when the number of 
experiments that can be performed is limited and the 
object does not possess significant symmetry.  With our 
present facilities, we can obtain only one radiograph in 
each dynamic experiment.  When the object under study 
possesses axial symmetry, one radiograph is sufficient 
to reconstruct the object.  We have demonstrated that 
we can analyze radiographs of objects that nearly 
possess axial symmetry very accurately, in terms of 
locating boundaries, estimating densities, and 
tomographic reconstruction. 

On the other hand, a completely unambiguous 
reconstruction of a complex 3D object requires many 
radiographs.  For example, to fully resolve the ambigui-
ties at a one-mm resolution for a 10-cm-wide 3D object 
with an arbitrary density distribution, approximately 
100 radiographs are necessary.  Fortunately, many of 
the dynamic objects with which we deal do not possess 
completely arbitrary density distributions.  Their density 
distributions are often relatively slowly varying in some 
regions and various symmetries may often be assumed.  
As a consequence, we can often obtain a reasonably 
good reconstruction of a dynamic object from a handful 
of radiographs (Mathews, 1994).  

In practice, to reconstruct a dynamic object we 
repeat the experiment a number of times with the device 
placed in different orientations relative to the radio-

graphic axis.  However, the high cost of each experi-
ment limits the number of experiments that can be done 
to a handful.  Furthermore, the reproducibility of the 
details of the dynamic object between experiments must 
be assumed.  Therefore, we are placed in the position of 
trying to compare a radiographic reconstruction, which 
we know is imperfect for lack of sufficient data, to a 
hydrocode prediction.  When we see differences be-
tween such a reconstruction and a hydrocode prediction, 
how can we infer what is valid and what is invalid about 
the hydrocode result? 

To gain as much information as possible about the 
validity of a hydrocode prediction from whatever 
experimental data are available, we propose to make 
more direct use of the hydrocode prediction.  We 
suggest that the 3D object predicted by the hydrocode 
be used as a starting point for the analysis of the 
experimental data.   The shape of the 3D object can be 
deformed and its densities adjusted to make its 
predicted radiographs match the experimental ones.  An 
analysis of the reliability of the final reconstruction 
guides the conclusions that can be drawn from the 
experiments.  The Bayesian methodology provides 
suitable means to do this. 

 

Summary of the Bayesian Approach 

In this short paper, we do not have the space to 
thoroughly develop the Bayesian approach.  The reader 
is urged to refer to (Hanson, 1987, Hanson, 1993a, 
Hanson and Cunningham, 1994) for more detail. 

The Bayesian approach is based on the use of 
parametric models to describe the object of interest.  In 
Bayesian analysis uncertainties in parameter values are 

In Proc. 8th Nuclear Explosives Code Developers Conference,  
E. Caramana and C. McMillan, eds., pp. 457-462,  
LANL Report LA-12963-C (1995) 

LA-UR-01-6671 
LA-CP-94-0288 



 
 

 

 2 

represented by probability distributions on those 
parameters.  A relatively large uncertainty in a parame-
ter is represented by a broad distribution; a precisely 
known parameter by a narrow distribution.  Probability 
theory provides a quantitative and consistent basis for 
the Bayesian analysis, which inherits its name from 
Bayes fundamental law governing the updating of one 
probability distribution, called the prior, in the face of 
new data, called the likelihood, to obtain the resulting 
probability, called the posterior.  

The essential action of Bayes law is captured in the 
theory of the propagation of experimental errors to 
which most scientists are exposed early in their studies.  
When accurate measurements are combined with less 
accurate ones, coming from prior experiments for 
example, the uncertainty in the combined result will be 
significantly reduced compared to that before the 
acquisition of the new data.  By providing a much more 
thorough description of uncertainty in the form of a 
precise probability distribution, Bayesian analysis 
allows one to address more detailed issues, for example, 
optimal estimators, confidence intervals in the estimates 
(for arbitrary probability distributions), etc.  

In addition to estimation of the uncertainties in 
parameter values, the Bayesian approach also provides 
a methodology for inference from measurements about 
the choice of models appropriate to describe reality.  
Probabilities can ultimately be employed to compare 
and decide amongst different models.  Our preference 
for simpler models over more complex ones can be 
incorporated through a prior on model complexity 
(Gull, 1989).  A simple example of where model 
selection plays a role is in the choice of the number of 
terms to use in a series expansion, which is meant to 
describe the behavior of some data. 

Bayesian analysis also provides the means to 
properly make subsequent decisions through the use of 
cost or utility functions, which specify the costs of 
making correct versus incorrect decisions.   Examples 
of such kinds of decisions include, in the field of 
nondestructive testing, whether to accept or reject a 
precision part on the basis of a radiograph, or, in 
medicine, whether to follow up a possibly positive 
indicator in a screening test with another test or surgery. 

The full state of our knowledge about reality is 
summarized by the posterior probability, or simply the 
posterior.  The standard approach to obtaining a 
representative solution is to find the parameter values 
that maximize the posterior, called the MAP solution.  
Although this single solution is often the goal for many 
investigators, the posterior probability can be more fully 
utilized to determine the degree and character of the 
uncertainty in the solution.  

We are developing a tool for exploring the 
posterior to provide an understanding of the degree of 
uncertainty in Bayesian solutions, which we describe 
below. 

Bayes Inference Engine 

We are developing the Bayes Inference Engine 
(BIE) to implement the Bayesian methodology on a 
computer workstation.  Our goals for the BIE are that it 
should be easy to learn and use, and that it should 
provide a high degree of interactivity with good 
visualization of the process and the models.  
Additionally, we intend to build an application that 
provides the user with a great deal of flexibility in 
configuring object models and measurement models.  
We deem these features essential to the usefulness of 
the BIE.  

In the following discussion we will use the symbol 
φ for minus the logarithm of the posterior probability.  
Computations with this function are typically easier to 
do than with the posterior itself since the products of 
probabilities in Bayes law become sums.  The most 
probable parameter values in a MAP solution then 
occur at a minimum in φ. 

Brief Overview of the BIE 

The BIE is programmed in the object-oriented 
language Smalltalk in the version supplied by ParcPlace 
Systems1, which includes a complete class library for 
user-interface development.  The interface to the BIE is 
the graphical programming tool (Cunningham et al. 
1994a), which operates as follows (refer to Fig. 1).  One 
is presented with a canvas, on which appear buttons that 
allow the user to add items to, or delete items from, the 
canvas.  One can add or delete Transforms and 
Connections.  In this description the capitalized words 
are objects in the object-oriented language.  Transforms 
act on input Data to calculate output Data and are 
represented on the screen by a square icon.  One 
specifies the data-flow by connecting one Transform to 
another using a Connection, which is represented by 
lines drawn between the two Transforms. 

The Transforms are living objects and one can 
interact with them in several ways.  One can see a 
description of a Transform and change the parameters 
that define it.  Through a menu that pops up when one 
clicks on a Transform icon, one can have the Transform 
display its output.  The fact that the Transform objects 
are alive distinguishes this graphical programming tool 
from one that allows a user to construct and visualize a 
script that contains a sequence of actions to be executed 
(off line) in the prescribed order. 

Referring to the data-flow diagram in Fig. 1, the 
Parameters of the object model (the leftmost icon) 
provide input to the measurement model.  The 
radiographic measurement model shown consists of the 
next three icons, which sequentially take the projection 
of the object, exponentiate the result, and perform a 
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blurring to mimic radiographic blur.  The output of the 
measurement model is predicted data, which are fed 
into a LogLikelihood function, designated by φ, along 
with the actual data, the uppermost icon.  A LogPrior, 
which operates on the model parameters, can also be 
specified.  The LogPrior + LogLikelihood feed the 
LogPosterior, which can be optimized with respect to 
object-model parameters using conjugate gradient (for 
unconstrained problems) and a modified gradient 
descent (for constrained problems) strategies.  One 
specifies that the Parameters of the object model are to 
be optimized by connecting the Parameter icon to the 
Optimizer, the lower right-hand icon.  After 
optimization, in which the minimum of the LogPosterior 
is found, the object model and its Parameter values 
represent the MAP solution. 
 

 
 

Figure 1. The canvas of the Bayes Inference Engine 
permits one to specify a data-flow diagram by 
connecting together Transforms. 

 
The BIE incorporates many innovative features 

including:  1) geometrical representations of physical 
objects, 2) adjoint differentiation to calculate the 
gradient of φ with respect to all object parameters, 3) 
new approaches to solving the optimization problem, 
which is required to find the MAP solution, 4) a new 
method to explore the reliability of the solution, and 5) 
a graphical-programming interface based on object-
oriented programming technology, which greatly 
enhances the flexibility of modeling objects and 
measurement processes.  The details concerning these 
new developments are to be found in the references.  
However, several of these innovations are worth 
mentioning in the context of this conference 
proceedings. 

Geometric Representation of Objects 

We are pioneering the concept of describing 
physical objects in terms of their geometry to improve 
tomographic reconstruction.  This tack is quite different 
from the normal one of representing a 3D object in 
terms of its density, typically described by cubical 
voxels on an ordered grid.  The use of a geometrical 
description recognizes the very important role that 
boundaries play in characterizing objects.  The 
reconstruction process amounts to deforming an initial 
object geometry in a minimal way to match the data.  In 
the Bayesian approach, one controls the geometric 
deformation by placing a prior on it.  The net effect is to 
add an energy of deformation to φ so that greater 
deformations are penalized in the reconstruction 
procedure (Hanson, 1993b).  This approach has proven 
to be a valuable means to achieve good reconstructions 
in situations where all other methods fail, for example 
when only a few radiographs are available.  However, it 
must be emphasized that this approach can only be 
successful when the objects being reconstructed have a 
fairly simple morphology that is approximately known 
beforehand.  We intend to use hydrocode predictions to 
provide this kind of shape information to the 
reconstruction procedure. 

Adjoint Differentiation 

We have uncovered a little-known technique called 
adjoint differentiation (Thacker, 1991).  In our 
application we need to minimize the scalar function φ 
by varying the many (103 to 106 or more) variables that 
comprise the parameters of the object model.  This 
optimization problem would be insoluble without 
knowing the gradient of φ, or sensitivities, with respect 
to the many parameters on which it depends.  The 
adjoint differentiation technique facilitates this cal-
culation in a computational time that is comparable to 
the forward calculation through the data-flow diagram.  
Our use of objects to represent transforms greatly aids 
the implementation of this adjoint calculation 
(Cunningham et al., 1994b). 

The adjoint differentiation technique we are 
advocating is closely related to the differential 
sensitivity approach being pursued in T and X Divisions 
by Maudlin et al. (1993).  Their approach is based on 
the dynamic equations for the adjoints to the 
sensitivities of the real physical quantities.  They solve 
these equations by standard integration techniques 
(presently based on MESA), working backwards in 
time.  When solving nonlinear differential equations, 
this approach must make reference to the complete 
forward solution to the governing physics equations.   
Our approach differs in that it provides the adjoint 
sensitivity calculation that exactly matches each specific 
forward updating step. 
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Reliability Exploration 

Another innovation that we wish to mention here, 
because of its close connection to physics and the 
central role it can play in understanding the implications 
of a Bayesian analysis, is that of reliability exploration.  
There exist at least two ways to visualize the reliability 
of inferred plausible models.  The first, proposed by 
Skilling et al. (1991), provides a stochastic look at the 
range of possible solutions.  It involves the display of a 
sequence of solutions that are randomly chosen from the 
posterior probability distribution.  This sequence, 
typically calculated off line, is presented as a video 
loop.  By showing a representative range of alternative 
solutions, the degree of variability of this presentation 
provides the viewer with a graphic impression of the 
degree of uncertainty in the inferred model. 

Our new approach (Hanson and Cunningham, 
1994) draws on an analogy between φ and a physical 
potential.  Then the gradient of φ is analogous to a 
force.  An unconstrained MAP solution can be 
interpreted as the situation in which the forces on all the 
variables in the problem balance so that the net force on 
each variable is zero.  Furthermore, when a variable is 
perturbed from the MAP solution, the derivative of φ 
with respect to that variable is the force that drives it 
back towards the MAP solution.  The phrase force of 
the data takes on real meaning in this context. 

We propose to exploit this physical analogy to 
facilitate the exploration of the reliability of a particular 
feature of a MAP solution, which the user specifies by 
directly interacting with the solution presented by the 
BIE.  The uncertainty in the solution is explored by 
applying a constant force to the selected combination of 
parameters that characterize the feature of interest.  All 
parameters are readjusted to minimize φ.  The un-
certainty in the combination of parameters is indicated 
by the rate at which they move away from their MAP 
value as the external force is applied to them.  The 
correlations between parameters experiencing the exter-
nal force and the others are demonstrated by how much 
and in what direction the parameters change.  Ideally, 
these correlations could be seen through direct 
interaction with a rapidly-responding dynamical 
Bayesian system.  Alternatively, they may be demon-
strated by means of a video loop. 

Another interesting aspect of this technique is the 
possibility of decomposing the forces into components.  
For example, the force derived from all data (through 
the likelihood), or even a selected set of data, may be 
compared to the force derived from the prior.  

We anticipate that it may be possible in the future 
to use the tools of virtual reality, coupled to 
turbocomputation, to explore the reliability of a 
Bayesian solution through direct manipulation of the 
computer model.  Force feedback would permit one to 

actually feel the stiffness of a model.  Higher 
dimensional correlations might be felt through one's 
various senses. 

 

Validation of Hydrocode Predictions 

Consider the following scenario: a single 
radiograph of a complex dynamic object is available.  
Clearly tomographic reconstruction in the normal sense 
is impossible.  How is one to proceed with the task of 
validating a hydro prediction?  From the hydrocode 
prediction one can calculate what the radiograph should 
look like.  So it is possible to compare the predicted 
radiograph with the actual one.  Suppose that, to within 
the known experimental uncertainty in the measured 
radiograph, these two radiographs match each other 
down to the last detail.  Then clearly the hydrocode 
prediction has been validated, at least in regard to those 
aspects of the predicted object that can be determined 
by that unique radiograph.  Of course, the densities at 
many points in the predicted object contribute to each 
pixel in the observed radiograph.  Thus, when a single 
or even several radiographs are properly predicted by a 
hydrocode prediction, what has been learned is that a 
certain combination of densities of the predicted object 
is correct, to within the accuracy of the measurements.  
In other words, not all aspects of the hydrocode are 
validated from just a few radiographs. 

To make the most of meager data, we propose to 
use the hydrocode prediction at radiographic time as a 
starting point for the analysis of a set of hydrodynamic 
radiographs.  The radiographic data provide the basis 
for the inference process.  If they are not matched by the 
data predicted by the object model, then the object 
model should be changed, by deforming the geometry 
of the object or adjusting the density distribution within 
the object.  If the data can be matched by slightly 
molding the hydrocode prediction, then we judge how 
much the hydrocode prediction has missed the mark by 
how much it had to be altered.  Of course, it must be 
understood that all inferences about the object have 
associated with them some degree of uncertainty, which 
we discuss next.  If the hydrocode prediction turns out 
not to be a credible model of the actual object, an 
alternative choice for the starting object model may 
required.  If essential features of the hydrocode 
prediction are not observed in the radiographic data, the 
inference is that the hydrocode prediction does not 
properly predict reality and needs refinement. 

The aim of any inference process is to determine 
those aspects of a model that are determined well by an 
experiment or experiments and those that are not.  The 
science (or art?) of experimental design is to select 
experiments that reveal the most about those aspects of 
the models that need to be known.  A good experiment 
gives detailed and accurate information about those 
critical features of the physical model that are crucial to 
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know without interference from other unknown features.  
Since we may not be able to guarantee that a dynamic 
object will be the same in repeated experiments, and 
because of limited money and time to do the 
experiments, we must learn to cope with a limited 
number of radiographs and make the most of them.   

The purpose of this paper is to indicate that we are 
making headway in understanding how to ascertain the 
range of validity of hydrocode predictions in this 
scenario.  However, this process will not be as simple as 
the old methodology of comparing a single 3D 
reconstruction from a series of radiographs to a 
hydrocode prediction and concluding that the prediction 
is either invalid or precisely valid. 

 

Reliability of Derived Quantities 

The reconstruction of an object is often used to 
calculate a derived quantity, for example, the reactivity 
implied by a reconstructed configuration of simulated 
nuclear material (Mathews, 1994).  Since the Bayesian 
approach assigns a probability to every feasible 
configuration of the object, one can in principle 
generate the probability distribution of the derived 
quantity by calculating the derived quantity for every 
configuration.  An approximation to such a probability 
distribution may be had by randomly drawing samples 
from the posterior probability distribution of the 
inferred object model, using the technique proposed by 
Skilling et al. (1991), or one similar to it, and 
calculating the derived quantity for each sample.  The 
resulting frequency histogram represents the degree of 
the certainty one has in the derived quantity, which can 
be summarized by its estimated standard deviation from 
the mean, for example.  

This approach may be useful in estimating the 
degree of certainty that we have in the values of 
reactivity calculated from radiographic data.  In the 
spirit of the previous section, we may one day be able to 
estimate the uncertainty in the time dependence of the 
reactivity derived from a hydrocode calculation, after 
the code has been thoroughly validated through 
dynamic experimentation. 

 

Implications for Validation of Hydrocodes 

Although the first use of the concepts presented 
here will be employed in the BIE to validate the 
predictions of hydrocodes, we feel that many of the 
innovations described above could be beneficially 
employed in the validation of the hydrocodes 
themselves.  Indeed, the aims of a physics-based 
approach to device assurance must be based on fully 
exploring, understanding, and quantifying our certainty 
of the various physical foundations on which our 
hydrocodes are based.  This type of program would 

possess many of the same characteristics that are 
encompassed in the BIE.  Therefore, the BIE might 
serve as a prototype for the approach that could be 
adopted in validating the hydrocodes themselves.  Even 
if not every aspect of the BIE philosophy is followed, 
some of the ideas expressed here may be useful in 
hydrocode development.  

We believe that if our adjoint differentiation 
technique were coupled to a similar one implemented 
within hydrocodes (Maudlin et al., 1993), it could be of 
great benefit, perhaps even essential, for accomplishing 
various tasks for which hydrocodes are used.  One 
application of this technique could be in solving design 
problems with hydrocodes.  If the design goals can be 
encapsulated in terms of a scalar objective function, 
which is to be minimized to meet the design criteria, the 
design problem then becomes an optimization problem.  
As in the BIE, the gradient of the objective function 
with respect to the variables in the problem, for 
example, the initial geometrical shape of key 
components, could be found.  Then a general-purpose 
optimization algorithm, such as the one we are 
developing for the BIE, can be used to arrive at a good 
design. 

Another area that could be greatly impacted is in 
addressing the validity of the models embedded in a 
hydrocode.  The same methodology used in the BIE to 
draw inferences about models and model parameters 
can be applied to hydrocodes to help infer which 
aspects of its inherent physics models are well 
determined by experimental data, and which are not.  
The technique that we propose for exploring the 
reliability of a Bayesian interpretation of a particular 
model for reality could be used to directly explore the 
reliability of the physics modules contained in a 
hydrocode.  

One of the strengths of the Bayesian approach is 
that it can easily synthesize the information from many 
data sets that bear on a particular physical model.  Thus 
it should be possible to make inferences concerning a 
component of a hydrocode, for example, the equation-
of-state of a particular material, on the basis of several 
different kinds of experiments that directly quantify the 
behavior of that material.  This methodology could be 
extremely valuable to the designer by providing an 
understanding of the weaknesses in the physics models 
and where they affect hydrocode predictions.  By 
extension, this approach can be used to design new 
experiments that would help fill in identified gaps in our 
knowledge. 
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