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Abstract
We demonstrate the reconstruction of a 3D, time-varying

bolus of radiotracer from first-pass data obtained at the
dynamic SPECT imager, FASTSPECT, built by the
University of Arizona.  The object imaged is a CardioWest
Total Artificial Heart.  The bolus is entirely contained in one
ventricle and its associated inlet and outlet tracts.  The model
for the radiotracer distribution is a time-varying closed surface
parameterized by 162 vertices that are connected to make 960
triangles, with uniform intensity of radiotracer inside. The
total curvature of the surface is minimized through the use of
a weighted prior in the Bayesian framework. MAP estimates
for the vertices, interior intensity and background scatter are
produced for diastolic and systolic frames, the only two
frames analyzed. The strength of the prior is determined by
finding the corner of the L-curve.  The results indicate that
qualitatively pleasing results are possible even with as few as
1780 counts per time frame (total after summing over all 24
detectors).   Quantitative results will require correcting certain
undesirable features of the reconstruction due to inappropriate
assumptions in the model, e.g. inhomogeneities in the
radiotracer distribution and smoothness of the surface at the
tract/ventricle join.

I.  INTRODUCTION

The FASTSPECT imaging system [1], developed at the
University of Arizona, has been used for first-pass
tomographic imaging of the time-varying distribution of a
bolus of Tc-99m radiotracer infused into a CardiacWest Total
Artifical Heart.  A voxel-based reconstruction can be
generated from the data, using e.g. the ML-EM method, and
regions of interest can be manually defined to derive estimates
of the ventricular volumes as a function of time.  These time-
history curves can ultimately be reduced to ejection fraction, a
simple indicator of heart function.  In contrast to the voxel-
based approach, one can  solve the reconstruction problem by
directly estimating from the raw projection data the time-
varying  parameters of a geometric model inside of which
some simple parameterized model for the distribution of
radiotracer is assumed [2-4]. In this article we formulate a
Bayesian estimation problem for first-pass tomographic
imaging using FASTSPECT that directly estimates the time-
varying (x,y,z) components of the vertices of a triangulated
surface within which it is assumed the bolus is uniformly
distributed [5-6]. If the bolus is indeed homogenously mixed
within a ventricular volume of interest, then the estimated
surface provides an estimate of the ventricular volume, and

ultimately ejection fraction, but it also provides a great deal
more information of potential clinical value, since the entire
interior surface of the ventricle is revealed.

In this article, we first describe the FASTSPECT imaging
system and the real data that were analyzed.  Next we
formulate the Bayesian estimation problem and, finally, we
present some results and conclusions.

II.  THE DATA

A.  FASTSPECT
FASTSPECT is a dynamic SPECT imager that has been

used for brain, heart and bone imaging [1].  Two circular
arrays with a total of 24 pinhole apertures surround the
volume of interest.  Each pinhole is mapped to an Anger
detector, and the voltages from the 4 photomultipliers that see
a monolithic scintillating crystal for each detector are
converted to an estimate of the position of each detected
photon that must lie on a 64x64 uniformly-binned image grid.
This detection system may eventually be replaced with a
semiconductor-based system [7].

Pinholes of various diameter can be inserted into the dome
surrounding the object volume; 2.5 mm diameter pinholes
were used to generate the data analyzed in this article.  The
system is characterized by a matrix H that is measured by
passing a small volume element of radiotracer throughout the
volume being imaged, and measuring the response of every
detector pixel element to that source, producing an enormous
amount of information, even when compressed to take
advantage of the sparsity of the matrix (150 MB of disk space
after compression).  The system matrix used in this article was
obtained by passing a [5mm]3 volume element through a
43x57x39 grid.  The system matrix is noisy, since only a finite
number of counts are obtained for each location of the source.
Given enough patience and time, though, this noise could
presumably be made as low as is needed.  If information is
available concerning attenuating material between the
radiotracer distribution and the pinholes, it can easily be
incorporated into the H matrix, and this was done for the
system matrix used to analyze the data discussed in this
article.

B.  The imaged object and raw data
The object that was imaged is a CardioWest Total

Artificial Heart.  This device consists of a left and right
ventricle, each about 120 ml, and two atria.  A 10-20 mCi
bolus of Tc-99m was infused and the first-pass diastolic and
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systolic frames were analyzed. The diastolic frame (Fig 1a)
contained a total of 2133 counts, of which approximately 40
appear to be scattered photons.  The systolic frame (Fig 1c)
contained a total of 1780 counts, with a similar number  of
scattered photon events.

 a)              b)       c)               d)

Figure 1.  Raw data for a) diastolic frame and c) systolic
frame.  Predicted detector Poisson rates for b) diastolic frame
and d) systolic frame using MAP solution with α=0.2.

III.  THE BAYESIAN ESTIMATION PROBLEM

We have implemented a general tool for Bayesian
estimation in the context of image analysis using geometric
models that we call the Bayes Inference Engine (BIE).  We
conceive of the Bayesian estimation problem as consisting of
three parts: the object model, the measurement model, and the
probability model.  In the BIE, the user constructs a graphical
program that transforms object and measurement system
parameters into predicted data.  The predicted data is
compared with real data to produce a log-probabilistic goal
function, and an optimizer is connected to goal function and
any parameters that are to be estimated by minimizing the
goal function.  See Figure 2 for the graphical program that
was used to analyze the data discussed in this article.

A.  The object model

The object model is the  parametric model of whatever
spatio-temporal physical quantity we are interested in; in this
case, it is the parametric model for the 3D(t) radiotracer
intensity distribution.  In the BIE, we always convert
parametric models to non-parametric ones (uniformly sampled
grids) so that more complex models can easily be built thru

Figure 2.  BIE canvas used to analyze SPECT data.

combination with other models.  The parameteric model we
use here is a triangulated surface that evolves in time, defined
by a set of 162 vertices (x,y,z), and a connectivity network
that creates 960 triangles by connecting vertices together.
Since the (x,y,z) for every vertex at each time must be
estimated, there are 486 parameters for this part of the model
at each time. We assume that the radiotracer is homogenously
distributed throughout the volume enclosed by the
triangulated surface, so that only a single parameter is needed
for the activity level.  More complicated models for the 3D
distribution are easily accomodated in the BIE,  e.g. a
voxellated grid of values with lower and upper bounds or an
unconstrained voxellated grid with an associated prior
penalizing high-frequency variations.  

B.  The measurement model
The measurement model uses as input a nonparametric

version of the object model, call it f, and produces a set of
predicted data elements, g, in this case a Poisson rate for each
detector pixel.  The measurement model might in general
contain many components, e.g. in an x-ray radiographic
system, one would expect to have line integral transformations
(parallel- or divergent-beam), convolutions, exponential point
transforms, etc.

For the FASTSPECT machine, though, the measurement
model is merely H, along with a single additive constant that
models the scatter background (the same background constant
is used for all 24 detectors), so that g=Hf+s. The scatter
background s must be jointly estimated from the data along
with the object model parameters.   Much more complicated
2D spatial field models exist within the BIE, but the very low
number of scattered photon counts probably make more
complex models impossible to estimate well.  One extension
that is worth investigating is a different scatter offset for each
detector that varies in time in a plausible way.
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The nature of our object model allows us to speed up the
calculation Hf dramatically since only a few percent of the
voxels in the object model are nonzero.  Simply skipping over
Hf  for values of f that are zero allows us to calculate Hf  in
about 300 msec on a DEC Alpha 500/500.  The same applies
in the adjoint direction, wherein derivatives are propagated
according to the chain rule in the direction opposite of the
path direction that transforms object parameters into predicted
data [8].

C.  The probability model
The probability model for the object penalizes a discrete

approximation to the local curvature at every edge shared by
two triangles on the surface in order to enforce smoothness of
the estimated surface.  Let ni be the normal to the i th triangle.
We define θθij  to be the angle between ni and nj. Then, if Ai is
the area of the i th triangle, and l ij  is 1/3 the height of the i th

triangle relative to the edge shared by triangles i and j , the
curvature prior is defined as

π (x)  =  ΣiAi(Σj[tan(θij /2)/ lij]
2)         (1)

where i indexes over all triangles on the surface and j  indexes
over all triangles that share an edge with the i th triangle.

The form in (1) is slightly different from the form we used
during our first attempts to analyze simulated FASTSPECT
data [5,6].  First, the tangent-squared term in (1) is divided by
a length over which it is assumed that half the angular
difference occurred [9].  As the angle gets small, the total term
looks like an angular velocity w.r.t. arclength, which is the
definition of curvature for a curve.  Note that this term is not
symmetric in the triangles i and j , and that we did not use a
simpler definition for l ij  that calculates the distance from the
midpoint of one triangle to the midpoint of the shared edge.
These subtleties are intentional, and may be important in
keeping the triangulation evenly distributed on the surface
during  the course of the gradient-based optimization so that
no remeshing of the surface is needed.  Second, the total
surface area no longer appears in the denominator in (1).  This
is also intentional since such a term would make the prior
favor larger surfaces (with the new numerator definition).

The definition in (1) is invariant to isotropic scale changes
in the object and also to the number of triangles used in the
discrete representation of the surface, as long as the angles are
small.  This could be an important feature if re-meshing is
needed, since one can easily re-mesh to a new set of triangles
that does not affect the value of the prior, if all of the angles
are small.

The probability model for the likelihood is the Poisson
distribution with mean value equal to the predicted data
(predicted detector pixel Poisson rates, g) and count values
equal to the raw data:

φ (x)      =  -ln Prob[data/predicted data]

 = Σi [-ki ln gi +gi ]              (2)

where we have ignored terms in (2) that depend only on the
data k.  The dependence of the predicted data g on the
underlying parameters x is understood.  Note that because of
the additive background scatter constant in the measurement

model, the predicted detector pixel rates g can never be equal
to or less than zero as long as the activity level and scatter
level are greater than or equal to zero, which makes the form
in (2) well-defined, and makes the derivative of (2) w.r.t. g
(and ultimately x)  well-behaved.

C.  The estimation problem
The Bayesian estimation problem is to find the values for the
object and measurement system model parameters x that
produce the maximum a posteriori (MAP) probability, or the
minimum minus log posterior:

xMAP(α) = arg minx [φ (x)+ απ (x)]          (3)

for some fixed value of the hyperparameter αα.  The higher-
order problem is to determine the value of αα from the data.
The Bayesian solution to the higher-order problem is to
determine the αα that yields the greatest evidence for the data,
where the evidence is the marginal over the joint posterior
distribution of parameters and data (leaving just the
probability of the data, called the evidence) [10].  However,
evaluation of the evidence is computationally nontrivial, so for
now we use an alternative, heuristic approach.

We determine αα using the L-curve [11], the
continuum of 2D points

(φ (xMAP(α)), π (xMAP(α)))              (4)

parameterized by α.  The L-curve approach is traditionally
used for linear least-squares with quadratic regularization, but,
to the degree that the minus log posterior is quadratic, an L-
curve approach might be reasonable.

The value of αα chosen for the final estimate is the one that
yields the point on the L-curve that is closest to the “corner”.
For very large values of αα, the MAP solution is over-
regularized.  As αα decreases, much better fits to the data are
allowed (decreasing minus log likelihood) at very little cost to
the prior.  This is the vertical line part of the L-curve (Figure
3).  For small values of αα, the MAP solution is under-
regularized, and the data is well-fit (small value of minus log
likelihood).  Now, very large increases in the minus log prior
are needed to allow sufficient freedom in the model so that any
decrease in the minus log likelihood can result.  This is the
horizontal line part of the L-curve (Figure 3).  Obviously, we’d
like to choose an αα that is somewhere between these two
extremes, thus the “corner” criterion.  A value of αα=0.2
produces a point on the L-curve that is approximately halfway
between the endpoints of the two extreme regions just
described and yields a qualitatively pleasing result.
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Figure 3.  The L-curve for the diastolic frame.

IV.  RESULTS

The MAP solutions for a range of αα using the data in
Figure 1a (diastolic frame) are shown in Figure 4.  As
discussed above, large values of αα produce over-regularized
MAP solutions, while small values of αα produce under-
regularized, noisy solutions.  The MAP solution using αα = 0.2
is chosen as the best MAP estimate.  This value of αα was used
to find the MAP solution for the data in Figure 1c (systolic
frame).

Comparison between the MAP reconstructions of the bolus
boundary for the diastolic and systolic frames (see Figures 5
and 6) shows the type of behavior that we expect in most
regions. The inlet tract shows very little change in distribution
between diastolic and systolic frames presumably because the
valve

      
a)     b)         c)

Figure 4.  MAP reconstructions of the bolus boundary surface
using a) α=3.2, b)  α=0.2,  and c) α=0.1.

that regulates flow between the tract and the ventricle is closed
during that time (Figure 5a-b and 6a-d, top tube).  The
diaphragm at the bottom of the ventricle moves toward the
inlet and outlet tracts, as expected, causing the ventricular
volume to decrease in that region (Figure 5a and 6d-e, right
side).  The bolus boundary expands along the direction of
blood flow through the outlet tract (Figure 5b and 6b-f, bottom
tube).

        
a)                                             b)

Figure 5.  Comparison between diastolic and systolic frame
reconstructions: a) diastolic frame is wireframe and systolic
frame is solid surface, b) diastolic frame is solid surface and
systolic frame is wireframe.

There are several features of the reconstructions that are
bothersome, however.  The bolus boundary appears to expand
rather than contract within the ventricular volume on the side
closest to the outlet tube during the transition from diastoli to
systoli (Figure 5b and 6f, bottom right).  This feature tends to
make the apparent ventricular volume increase from diastoli to
systoli, rather than decrease, in that region.  This problem
could be due to inhomogeneity in the mixing of the
radiotracer.  If the inhomogenity is not severe, then simple
low-frequency models for spatial distribution of the radiotracer
within the surface might be able to eliminate this feature and
result in a surface estimate at systoli  that is nearer to the
ventricular wall.  Another puzzling feature of the
reconstructions is the ring connecting the two tracts that lies on
top of one side of the ventricle (Figure 4b, back surface of
ventricle between the two tubes).  This feature may be an
artifact of the curvature prior since there is a high-curvature
region that connects the tubes to the ventricles whose true
configuration may be disallowed by the prior.  This feature
might be eliminated if the curvature prior were de-weighted at
the join between tube and ventricle, allowing a “kink” to
develop at the join [9].  Until these features are eliminated, an
estimate of the time-varying volume and ejection fraction
using the model proposed in this article would be imprecise,
and so it is not attempted.

a)                 b)                         c)

d)                e)                           f)
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Figure 6.  Cut planes through the reconstructions in Figure 5.
Thick lines are for diastolic frame and thin lines are for
systolic frame. Z-slices are a) -8 mm, b) -4 mm, c) 0 mm, d) 4
mm, e) 8 mm,  and f) 12 mm.

V.  CONCLUSIONS

We have formulated the analysis of very low-count, first-
pass cardiac SPECT data in a Bayesian framework using
deformable geometric models.  In particular, the model used
assumes that the radiotracer distribution within the tracts and
ventricle is uniformly distributed inside a volume defined by a
closed, triangulated surface with 162 vertices and 960
triangles.  We jointly estimate the intensity of the distribution
as well as the positions of the vertices of the surface from the
raw data.  We use the system matrix for FASTSPECT and an
unknown constant additive background to model the predicted
rates at the detector as a function of volumetric distributions
of radiotracer parameterized by the surface.  The system
matrix and raw data were provided to us by the University of
Arizona.  The raw data consists of 24 pinhole views of the
distribution at diastoli and systoli, with a total count level
(integrated over all 24 detectors) of 2133 and 1780 at diastoli
and systoli,  respectively.

The results indicate the enormous potential for
deformable geometric models in the context of first-pass
cardiac SPECT data, but several features of the
reconstructions must be understood and corrected before
quantitative estimates of volume can be obtained.  In the near
future we anticipate correcting the undesirable features of the
reconstructions by expanding the capability of the model to
include surface “kinks” and 3D low-frequency spatial
variation of the radiotracer distribution within the surface.  We
also plan to create truly time-evolving models for the
radiotracer distribution that use priors on the spatio-temporal
nature of the surface velocity field.
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