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Bayesian analysis is especially useful to apply to lo| (] sessanes
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because it allows one to solve the nonlinear, ill-posed, inve

problems associated with such data. One advantage of
Bayesian approach is that it quantifies the uncertainty
estimated parameters through the posterior probability.
compare various approaches to exploring the uncertainty
Bayesian reconstructions from SPECT data including: 1) t
standard estimation of the covariance of an estimator usin
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frequentist approach, 2) a new technique called the "h:
truth" in which one applies "forces" to the parameters a
observes their displacements, and 3) Markov-chain Mor
Carlo sampling of the posterior probability distribution
which in principle provides a complete uncertaint
characterization.

[. INTRODUCTION Figure 1: BIE canvas showing simulation of a 2D SPECT system.

In a Bayesian formulation of the data analysis problem, In gated cardiac SPECT, a radiotracer is injected into the
one obtains theMAP edimate of the parameters bypatient's circulatory system and travels to the heart, wherein
maximizing the posterior probability of model parametewisintegrations occur that produce photons which are
given the measured data. The posterior probability camlividually detected. At certain instants in time, the
include prior information about model parameters, eithesdiotracer will perfuse one or the other of the chambers, and
physically-based or subjective, which can be critical fon this instant one can assume that the distribution of
solving ill-posed problems such as limited-view tomographsadiotracer will be relatively constant throughout a region
The negative logarithm of the posterior probability, which igefined by the walls of that chamber. Thus, a tomographic
minimized, can be highly nonquadratic (due to nomeconstruction of the radiotracer density should provide
Gaussianity of the noise, e.g.) or even possess more thanduentitative information about the location of the chamber
minimum (due to nonlinearities in the model, e.g.), and s@lls. Normally, a reconstruction yields a voxellated image
iterative methods are employed for optimization. that must be segmented (often manually) to produce an

We have implemented the Bayesian approach in a tggimgte of t_he ch_amber volum_e. _The ratip of _the vqlumes at
that we call the Bayes Inference Engine (BIE) to analy§¥3t0“ and dlgstoh, called the ejection fraction, is an indicator
image data acquired from 2D (and soon 3D) objects. Tisheart function.
versatile and intuitive computer application allows one to In this article, we use 2D geometric models to reconstruct
develop complex geometric models for the objects undem area of constant, but unknown, radiotracer density from
study, as well as complex models of the measurement procegsulations of a low-count, limited-view, gated cardiac
The BIE permits one to compose a data-flow diagram (SBECT system. We estimate the contour of the area directly
Fig. 1) that produces a predicted image given a configuratipom the data using the BIE’'s modelling tools and gradient-
of the object model, which could include geometric model(shsed optimizer. Our near-term goal is to use 3D geometric
combined with models for variable intensities. Variousodels [4] to directly estimate volumes of (near) constant
aspects of the BIE are described elsewhere [1], [2], [3hdiotracer density from real SPECT data. The small number
Geometric models have received increasigention in of counts and limited number of views make gated cardiac
medical imaging for tasks such as segmentaticBPECT ideally-suited for a Bayesian approach using
reconstruction, restoration, and registration. geometric models. The computational cost associated with a
Bayesian approach is similar to maximum likelihood
approaches using simple voxellated models since the non-

o .
This work was supported by the United States, ssianity of the noise prohibits a closed-from solution to
Department of Energy under contract number W-7405-ENG-

36.




the problem and iterative methods like maximume-likelihooglstimator is straightforward. Let g=Hf+n, where f is the
expectation maximization (ML-EM) are used. object of interest, n is additive, white Gaussian noise, and g

Ultimately, the quality of any reconstruction approacly the data. Further assume that H is full-rank. The
should be judged in terms of the bias and variance of {h@imum likelihood estimator (MLE) for f given g is just

) Tn-1ygT [ H H :
resultant estimator. In this paper, we use the BIE to aDE)W(H H)"H'g. If one is interested in a linear functional of f,
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three different approaches for quantifying the variance Y 8=, then the MLE for ais a=1f'. The covariance of
(HH)". One can construct a confidence interval

estimators of radiotracer area using voxellated and geomef(’ri'é j,USt N X
models: a frequentist approach, the “hard truth”, ad@r @ that is independent of f. That is, for every p one can

Markov-Chain Monte Carlo (MCMC). We show that alfind a ngmber_ d such that the probability that |a’-a] is grga’ger
three approaches agree with one another for the pixellafd@" d is p, |_nde,pendent of f. Note that the probabilistic
model, and that MCMC indicates that geometric models c¥frable here is &', not a.

reduce the variance of the area estimator if sufficient prior The Bayesian approach to this problem produces exactly
information can be applied to the problem regarding tifee same result, but with a completely different
smoothness of the 2D contour. We expect that theerpretation. If one treats the likelihood as a posterior (with
improvement in variance reduction will be even greater far uniform prior), then the posterior is Gaussian with
3D surface models. covariance (FH)®. Thus, one could construct a “credible
interval” on a’ and say that the probability that |a’-a| is
greater than d is p, for some value of p. The difference is
that now a is viewed as the probabilistic variable, not a’. The
estimator a’ is fixed by the current realization of the data!

Il. BACKGROUND

A. The simulation of 2D gated cardiac SPECT _ _
For a nonlinear, non-Gaussian problem though,

The data for this study were simulated using the real ZB3nigence intervals do not, in general, exist. That is, the
system response of the University of Arizona’s FastSPEGiance of the estimator does depend on the value of the
machine [5]. The “2D" system response was measured OVgl| parameters f, which are unknown. In this case, a
a 58x70 planar grid in object space with 2-mm voxel size Byyesian perspective is more satisfying, since one can still
placing a 2-mm cube of radioactive tracer at the centers@fisiryct credible intervals on the parameters. One should
each of the grid elements and measuring the response at care, however, not to interpret credible intervals in the
of the 24 detector grids (64x64 pixels). We selected the 2¢th,o way as confidence intervals.
row out of each of the first 13 detectors in an attempt to

create a 2D problem for study. Thus, the system is modelf§dThe “hard truth”

by a matrixH that maps the mean intensities in a 58x70 We have introduced the concept that we call “the hard

O.bJeCt |_mage‘ into the mean intensitieg=Hf for e_ach of 64 truth” and implemented it in the BIE [7]. The hard truth
pixels in the 13 detectors (each detector pixel row wa

. . X . allows on xplore the uncertainty in complex models.
selected so that is approximately co-planar with the obj aﬁo S one to explore y P

i Svst tic errors lik tter and attenuation w reis technique is understood in terms of an analogy between
slice). Systematic errors like scatter and atte Hhe negative log posterior and a physical potential. Near the

neglected for this study, but can be incorporated into a MAXP  solution f, the minus log posterior can be

complex model using the BIE. approximated as a quadratic function of perturbations to the
The object slice was created by hand-tracing the cont@irameter setp=@+.5(f-f) "K(-f). Starting from f, the user

for the right ventricle in an MRI reconstruction [6] anggn apply a "force" cF to the parameters by defining a new

setting the pixel size so that the maximum width of thessterior @=g+.5(f-f) "K(f-F)-cF "(-F), re-optimizing to

ventricle is about 6 cm. For this simulation, the radiotracgktain a new MAP” solution f' and observe the

is assumed to be completely homogenous in densifigplacements in f as the solution converges to f’. The

throughout the area defined by the contour, and the intengjfyplacements (f’-f) are related to the curvature of the

per unit area is set so that the mean intensities at the detegfigius-log-posterior in the limit as the force becomes

yield an average of about 1/2 count per detector pixel, fp@nitesimal (c goes to zero). That is, the response can be

average count level expected in a 20 msec frame for a Ig@dwn to be equal to the covariance matrix of a Gaussian

dynamic study. The total number of counts in the simulatigiyproximation to the posterior times the force: (f'-f)=tK

used below is 488 (summed over a total of 64*13=83fihe value of the posterior at f’ ig’, then we expecty’-

detector pixels). ¢=.5c%c%, where 0® is the variance of 't Confidence
o . intervals on linear measurements of the parametéfis d@&n
B. Methods for quantifying uncertainty be made for the case in which the posterior is Gaussian.

Specifically, 0* =F" (f’-f)/c. For the non-Gaussian case,
approximate credible intervals can be obtained.

For a linear, Gaussian data analysis problem, the
uncertainty in the estimator or any linear functional of the

1) Frequentist vs. Bayesian



3) Markov-chain Monte Carlo were unable to incorporate the segmentation into our results.
An alternative way to explore the uncertainties in The author’'s manual segmentation of the ML-EM estimate of

reconstruction and in quantities derived from it is to generd@€nsity produced an estimate of the area that was in error

a sequence of random realizations drawn from the posterfdf.about 25% (too large).

Such a sequence can be generated using the Markov-chai\n alternative to incorporating the segmentation into the

Monte Carlo (MCMC) technique in which one movesncertainty analysis is to compute the intensity estimated by
through a probability distribution byceepting or rejecting a ML-EM in the known area used for the simulation. This is

proposed random step in the parameter space based dheaapproach that we adopted. This approach will only tell
Metropolis-Hastings algorithm[8]. This powerful approachis how wrong the reconstruction was in the sense of being
allows one to study the full, marginalized probabilityoo large, since, if all of the intensity in the reconstruction is

distribution for any function of any combination ofplaced inside the known area (but potentially in a much
parameters. smaller area) then the “error” we calculate will be zero.

. ML-EM RECONSTRUCTION AND UNCERTAINTY A. Uncertainty analysis using frequentist approach

The traditional approach for analyzing gated cardiac We generated 200 datasets with the same mean intensity

SPECT data is to perform a voxel-based 3D reconstructidh the simulation that produced 488 total counts (for 832
using maximum likelihood expectation-maximization (ML_detector pixels) but with different realizations of the Poisson
EM) or a faster reconstruction technique like pre-procesd¥@cess. Each dataset was fed to the ML-EM algorithm with
filtered backprojection, and then to perform segmentation BIf nitial guess for the object set at a constant value of 1.0
the 3D volume to determine the 3D surfaces of the ventricléfl® correct value is 8e-4). 60 iterations of ML-EM were
The 3D surfaces define a volume which is measured p(%rformed for each dataset, and the total intensity in the
systoli and diastoli, and the ratio of the two volumes [10Wn area was computed. The mean of the 200 estimated

computed to produce an estimate of the ejection fraction, t0tal intensities was 0.411 (or 89.3% of the correct total
intensity - 0.460) and the variance was 6.1le-4, yielding a

~ The ML-EM algorithm was employed for our 2Dgiangard of deviation of 0.0247 (or 5.4% of the correct total
simulated data set and the result after 60 iterations is ploqﬁ@nsity).

in Fig. 2 alongside the original object. Increasing the
number of iterations to 120 only decreased the log likeliho ; ; ; « "
by 2.60 and did not noticeably change the appearance. te Uncertainty analysis using the “hard truth

that the ML-EM reconstruction has a very spiky appearance The “hard truth” was also applied to this dataset. There
due to the fact that a zero detector pixel value strongly favéf€ two competing numerical issues in trying to apply the
an estimate for the object intensity in which the path integf2rd truth to a minus-log-posterior in the vicinity of the MAP

of the object intensity that produces that detector outputSglution: a) the constant ¢ has to be chosen large enough to
zero. Since the object intensity cannot be less than zer®reduce perturbations (f'-f') that yield substantial changes in

path integral of zero means that every pixel along the pdf¢ posterior, and b) we don’t want to make c so large that
must also be zero. we start exploring the non-Gaussian behavior of the

posterior, at least for this example.
— I rr o4 J

Since we are using a 60-iteration ML-EM as the MAP
| solution, and a 120-iteration ML-EM yields a change in
minus log posterio@’- @ of about 2 units, we’d like to make
the constant c large enough to prodgéeg >> 2 units. The
relationship@’- ¢g=.5¢°c%, whereao? is the variance of the
intensity in the known area, can then give us an idea of what
range to look at for c. In this caséwas estimated using the

A B) frequentist approach as 6e-4. This would indicate a value of

A . : . . ¢=182.5 in order to get a change in minus log posterior of
Figure 2. A) ML-EM reconstruction after 60 iterations, B) origina

4 . about 10 units. Figure 3A shows the quantipy- (3)/ c?,
, trast of [0,8e-4]. . .
object, both plotted with a contrast of [0,8e-4] plotted for c in the range 100-400. Notice that the values at

Ideally, what we'd like to do is incorporate thec=100 and 150 do not lie on the same flat line that the higher

segmentation technique as an automatic subroutine so Yes do, most likely due to the numerical issue a) above. At
we could apply the three techniques for quantifying value ¢=1000, the optimizer essentially blew up. Notice

uncertainty discussed above to the entire traditional proc8s? that the non-negativity constraint was still in place

for estimating areas in the case of our 2D simulatiofluring these re-optimizations (which were done using 20-30

Unfortunately, much of the gated cardiac SPECT data is s8iPPal steps of conjugate gradient), and that the valugfor

segmented by hand, or is inherently 3D in nature, and so $&iermined from Fig. 3A is about 7.0e-4, within 15% of the
value determined using the frequentist approach. However,




uuuuuuu

another measure ob”> can be determined from the Sy AT AN
relationshipo® =F" (f’-f)/c. This quantity is plotted as a T

function of ¢ in Fig. 3B. These values fof also vary by v, i
about 15% (6.1e-4 to 7.9e-4). i i
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= Figure 4. A) Minus log posterior and B) intensity in known
area for accepted samples drawn using MCMC for the
12 0 i1 exponentially reparameterized pixellated model.

A) B)

Figure 3. A) An indication of the quadratic behavior of the |V. GEOMETRIC MODELLING AND UNCERTAINTY

minus-log-posterior for the pixellated modely’{¢)/ c?, The BIE was used to construct a 50-vertex simple
where c is the strength of the force apid @ is the actual polygon model of the contour describing the area with
change in minus log posterior, and B) the variance of thgnstant intensity. A curvature prior [10] with user-

estimator as defined ly? =F" (f’-f)/c. manipulable strength was used to penalize non-smooth
realizations of the contour.
C. Uncertainty analysis using MCMC The MAP solution for the curve using a strong prior is

Our first attempt at using MCMC on this problem faileghlotted in Fig. 5A, and thtMAP solution for a weak prior
miserably due to the non-negativity constraint. One cannthe strength is only 3% of that used for the strong prior) is
simply use a random walk to propose the next step and tiwpited in Fig. 5B. Obviously, the smooth parts of the
project that on the constraint space (if the constraint spacedstour are reconstructed very well using the strong prior,
nonlinear) before performing the accept/reject step. while the high-curvature deviations from smoothness are

One quick fix for this problem is to re-parameterize thrgi_ssed completely. On the other hand, the reconstruction

pixel values as the exponential of a set of unconstrained pi gnd the weak prior does marginally better at ca_pturlng_ the
values. Since the pixel values we are interested in are gg‘u-cur\_/ature parts of the true contour while doing
just a simple function of another set of pixels values o stantially worse on the smooth parts.

which we can easily perform MCMC, our problem is solved = ========—-

We ran an MCMC chain of 25,000 trials on the re
parameterized model, of which 12,167 were accepted. 1
“burn-in” period was approximately the first 4000 accepte
samples, as seen in Figs 4A and 4B. The sample mean of
intensity in the known area is 0.352 (23.4% error) and t
sample variance is 4.4e-4 (so that the standard of deviatio _ _
4.6% of the true area). The diagnostic proggibbsit [9] | == == =) — —TT
indicates that this run is adequate for obtaining the 2.58% B)
guantile to reasonable accuracy.
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Figure 5. The MAP ésnate for the geometric model with
The fact that the mean of the posterior is lower than tpéior strength equal to A) 1.0 and B) 0.03.

MAP edimate makes sense, since AP edimate will pin

many pixel values to 0.0 intensity, 'e_a""_‘g them wit error by about 1% of the true area, which is better than one

nowhgre_to go but up when the post_erlor 1S sampled. Eght guess is possible by simply looking at the signal-to-

intensity is put into these background_ p|>_<els, it must be ta_lﬁ‘?gise ratio in the total number of counts (the square root of

away from the area where the intensity is known to be (sin counts is 22.1, meaning there is a standard of deviation

the total number of counts in all of the detector pixe roughly 5% in the total number of counts!). The MAP

presumably determines the total intensity ir_1 the image to %Qtimate for area using the weak prior was in error by about

or so)_. The lower sample standard qf deviation may l_)e Y% of the true area (comparable to the pixellated model

to an inadequate number of samples in MCMC, agithtesit using ML-EM).

diagnostic for the 80% quantile showed that only every 463r§

accepted sample was independently drawn from th§ yncertainty analysis

posterior!

The MAP etimate for the area using the strong prior was

The frequentist approach to measuring the uncertainty in
this case is difficult because the BIE’s optimizer requires



some user interaction when optimizing highly non-quadratiegree of Gaussianity for the problem of estimating the area
functions like the one obtained when using a geometo€ constant intensity from limited-view, low-count
model [11]. Thus, as with segmentation, we can'’t just ptemographic data. This is most likely due to the fact that the
the optimizer in a black box and run multiple realizations affea is quite large, and so the Poisson counting statistics
the data through it in order to obtain sample statistics. accumulate to an approximately Gaussian distribution. If

The hard truth was not attempted for this example, eith8M€ is interested in small areas, or specific contour location,
as we were not interested in exploring the higher-ordtfnay be that the Gaussianity disappears.

correlations in the geometry that can be discovered using the VI. ACKNOWLEDGMENTS
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