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Abstract

Bayesian analysis is especially useful to apply to low-
count medical imaging data, such as gated cardiac SPECT,
because it allows one to solve the nonlinear, ill-posed, inverse
problems associated with such data.  One advantage of the
Bayesian approach is that it quantifies the uncertainty in
estimated parameters through the posterior probability.  We
compare various approaches to exploring the uncertainty in
Bayesian reconstructions from SPECT data including: 1) the
standard estimation of the covariance of an estimator using a
frequentist approach, 2) a new technique called the "hard
truth" in which one applies "forces" to the parameters and
observes their displacements, and 3) Markov-chain Monte
Carlo sampling of the posterior probability distribution,
which in principle provides a complete uncertainty
characterization.

I.  INTRODUCTION

In a Bayesian formulation of the data analysis problem,
one obtains the MAP estimate of the parameters by
maximizing the posterior probability of model parameters
given the measured data.  The posterior probability can
include prior information about model parameters, either
physically-based or subjective, which can be critical for
solving ill-posed problems such as limited-view tomography.
The negative logarithm of the posterior probability, which is
minimized, can be highly nonquadratic (due to non-
Gaussianity of the noise, e.g.) or even possess more than one
minimum (due to nonlinearities in the model, e.g.), and so
iterative methods are employed for optimization.

We have implemented the Bayesian approach in a tool
that we call the Bayes Inference Engine (BIE) to analyze
image data acquired from 2D (and soon 3D) objects.  This
versatile and intuitive computer application allows one to
develop complex geometric models for the objects under
study, as well as complex models of the measurement process.
The BIE permits one to compose a data-flow diagram  (see
Fig. 1) that produces a predicted image given a configuration
of the object model, which could include geometric model(s)
combined with models for variable intensities. Various
aspects of the BIE are described elsewhere [1], [2], [3].
Geometric models have received increasing attention in
medical imaging for  tasks such as segmentation,
reconstruction, restoration, and registration.
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Figure 1:  BIE canvas showing simulation of a 2D SPECT system.

In gated cardiac SPECT, a radiotracer is injected into the
patient’s circulatory system and travels to the heart, wherein
disintegrations occur that produce photons which are
individually detected.  At certain instants in time, the
radiotracer will perfuse one or the other of the chambers, and
in this instant one can assume that the distribution of
radiotracer will be relatively constant throughout a region
defined by the walls of that chamber.  Thus, a tomographic
reconstruction of the radiotracer density should provide
quantitative information about the location of the chamber
walls.  Normally, a reconstruction yields a voxellated image
that must be segmented (often manually) to produce an
estimate of the chamber volume.  The ratio of the volumes at
systoli and diastoli, called the ejection fraction, is an indicator
of heart function.

In this article, we use 2D geometric models to reconstruct
an area of constant, but unknown, radiotracer density from
simulations of a low-count, limited-view, gated cardiac
SPECT system.  We estimate the contour of the area directly
from the data using the BIE’s modelling tools and gradient-
based optimizer.  Our near-term goal is to use 3D geometric
models [4] to directly estimate volumes of (near) constant
radiotracer density from real SPECT data.  The small number
of counts and limited number of views make gated cardiac
SPECT ideally-suited for a Bayesian approach using
geometric models.  The computational cost associated with a
Bayesian approach is similar to maximum likelihood
approaches using simple voxellated models since the non-
Gaussianity of the noise prohibits a closed-from solution to
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the problem and iterative methods like maximum-likelihood
expectation maximization (ML-EM) are used.

Ultimately, the quality of any reconstruction approach
should be judged in terms of the bias and variance of the
resultant estimator.  In this paper, we use the BIE to apply
three different approaches for quantifying the variance of
estimators of radiotracer area using voxellated and geometric
models: a frequentist approach, the “hard truth”, and
Markov-Chain Monte Carlo (MCMC).  We show that all
three approaches agree with one another for the pixellated
model, and that MCMC indicates that geometric models can
reduce the variance of the area estimator if sufficient prior
information can be applied to the problem regarding the
smoothness of the 2D contour.  We expect that the
improvement in variance reduction will be even greater for
3D surface models.

II. BACKGROUND

A. The simulation of 2D gated cardiac SPECT

The data for this study were simulated using the real 2D
system response of the University of Arizona’s FastSPECT
machine [5].  The “2D” system response was measured over
a 58x70 planar grid in object space with 2-mm voxel size by
placing a 2-mm cube of radioactive tracer at the centers of
each of the grid elements and measuring the response at each
of the 24 detector grids (64x64 pixels). We selected the 27th
row out of each of the first 13 detectors in an attempt to
create a 2D problem for study.  Thus, the system is modelled
by a matrix H that maps the mean intensities in a 58x70
object image f into the mean intensities g=Hf  for each of 64
pixels in the 13 detectors (each detector pixel row was
selected so that is approximately co-planar with the object
slice).  Systematic errors like scatter and attenuation were
neglected for this study, but can be incorporated into a more
complex model using the BIE.

The object slice was created by hand-tracing the contour
for the right ventricle in an MRI reconstruction [6] and
setting the pixel size so that the maximum width of the
ventricle is about 6 cm.  For this simulation, the radiotracer
is assumed to be completely homogenous in density
throughout the area defined by the contour, and the intensity
per unit area is set so that the mean intensities at the detector
yield an average of about 1/2 count per detector pixel, the
average count level expected in a 20 msec frame for a real
dynamic study.  The total number of counts in the simulation
used below is 488 (summed over a total of 64*13=832
detector pixels).

B.  Methods for quantifying uncertainty

1)  Frequentist vs. Bayesian

For a linear, Gaussian data analysis problem, the
uncertainty in the estimator or any linear functional of the

estimator is straightforward.  Let g=Hf+n, where f is the
object of interest, n is additive, white Gaussian noise, and g
is the data.  Further assume that H is full-rank.  The
maximum likelihood estimator (MLE) for f given g is just
f’=(H TH)-1HTg.  If one is interested in a linear functional of f,
say a=hTf, then the MLE  for a is a’= hT f’.  The covariance of
f’ is just   (HTH)-1.  One can construct a confidence interval
for a’ that is independent of f.  That is, for every p one can
find a number d such that the probability that |a’-a| is greater
than d is p, independent of f.  Note that the probabilistic
variable here is a’, not a.

The Bayesian approach to this problem produces exactly
the same result, but with a completely different
interpretation.  If one treats the likelihood as a posterior (with
a uniform prior), then the posterior is Gaussian with
covariance (HTH)-1. Thus, one could construct a “credible
interval” on a’ and say that the probability that |a’-a| is
greater than d is p, for some value of p.  The difference is
that now a is viewed as the probabilistic variable, not a’.  The
estimator a’ is fixed by the current realization of the data!

For a nonlinear, non-Gaussian problem though,
confidence intervals do not, in general, exist.  That is, the
variance of the estimator does depend on the value of  the
real parameters f, which are unknown.  In this case, a
Bayesian perspective is more satisfying, since one can still
construct credible intervals on the parameters.  One should
take care, however, not to interpret  credible intervals in the
same way as confidence intervals.

2)  The “hard truth”

We have introduced the concept that we call “the hard
truth” and implemented it in the BIE [7].  The hard truth
allows one to explore the uncertainty in complex models.
This technique is understood in terms of an analogy between
the negative log posterior and a physical potential.  Near the
MAP solution f’, the minus log posterior can be
approximated as a quadratic function of perturbations to the
parameter set: φ=φ’+.5(f-f’) TK(f-f’).  Starting from f’, the user
can apply a "force" cF to the parameters by defining a new
posterior φ=φ’+.5(f-f’) TK(f-f’)-cF T(f-f’), re-optimizing to
obtain a new “MAP” solution f’’ and observe the
displacements in f’ as the solution converges to f’’.  The
displacements (f’’-f’) are related to the curvature of the
minus-log-posterior in the limit as the force becomes
infinitesimal (c goes to zero).  That is, the response can be
shown to be equal to the covariance matrix of a Gaussian
approximation to the posterior times the force: (f’’-f’)=cK-1F.
If the value of the posterior at f’’ is φ’’, then we expect φ’’-
φ’=.5c2σ2, where σ2 is the variance of Ftf.  Confidence
intervals on linear measurements of the parameters (FTf) can
be made for the case in which the posterior is Gaussian.
Specifically, σ2 =FT (f’’-f’)/c.  For the non-Gaussian case,
approximate credible intervals can be obtained.



3)  Markov-chain Monte Carlo

An alternative way to explore the uncertainties in a
reconstruction and in quantities derived from it is to generate
a sequence of random realizations drawn from the posterior.
Such a sequence can be generated using the Markov-chain
Monte Carlo (MCMC) technique in which one moves
through a probability distribution by accepting or rejecting a
proposed random step in the parameter space based on a
Metropolis-Hastings algorithm[8].  This powerful approach
allows one to study the full, marginalized probability
distribution for any function of any combination of
parameters.

III. ML-EM  RECONSTRUCTION AND UNCERTAINTY

The traditional approach for analyzing gated cardiac
SPECT data is to perform a voxel-based 3D reconstruction
using maximum likelihood expectation-maximization (ML-
EM) or a faster reconstruction technique like pre-processed
filtered backprojection, and then to perform segmentation on
the 3D volume to determine the 3D surfaces of the ventricles.
The 3D surfaces define a volume which is measured at
systoli and diastoli, and the ratio of the two volumes is
computed to produce an estimate of the ejection fraction.

The ML-EM algorithm was employed for our 2D
simulated data set and the result after 60 iterations is plotted
in  Fig. 2 alongside the original object.  Increasing the
number of iterations to 120 only decreased the log likelihood
by 2.60 and did not noticeably change the appearance.  Note
that the ML-EM reconstruction has a very spiky appearance
due to the fact that a zero detector pixel value strongly favors
an estimate for the object intensity in which the path integral
of the object intensity that produces that detector output is
zero.  Since the object intensity cannot be less than zero, a
path integral of zero means that every pixel along the path
must also be zero.

     
 A)                                                  B)
Figure 2.  A)  ML-EM reconstruction after 60 iterations,  B) original
object, both plotted with a contrast of [0,8e-4].

Ideally, what we’d like to do is incorporate the
segmentation technique as an automatic subroutine so that
we could apply the three techniques for quantifying
uncertainty discussed above to the entire traditional process
for estimating areas in the case of our 2D simulation.
Unfortunately, much of the gated cardiac SPECT data is still
segmented by hand, or is inherently 3D in nature, and so we

were unable to incorporate the segmentation into our results.
The author’s manual segmentation of the ML-EM estimate of
intensity produced an estimate of the area that was in error
by about 25% (too large).

An alternative to incorporating the segmentation into the
uncertainty analysis is to compute the intensity estimated by
ML-EM in the known area used for the simulation.  This is
the approach that we adopted.  This approach will only tell
us how wrong the reconstruction was in the sense of being
too large, since, if all of the intensity in the reconstruction is
placed inside the known area (but potentially in a much
smaller area) then the “error” we calculate will be zero.

A.  Uncertainty analysis using frequentist approach

We generated 200 datasets with the same mean intensity
as the simulation that produced 488 total counts (for 832
detector pixels) but with different realizations of the Poisson
process.  Each dataset was fed to the ML-EM algorithm with
the initial guess for the object set at a constant value of 1.0
(the correct value is 8e-4).  60 iterations of ML-EM were
performed for each dataset, and the total intensity in the
known area was computed.  The mean of the 200 estimated
total intensities was 0.411 (or 89.3% of the correct total
intensity - 0.460) and the variance was 6.1e-4, yielding a
standard of deviation of 0.0247 (or 5.4% of the correct total
intensity).

B.  Uncertainty analysis using the “hard truth”

The “hard truth” was also applied to this dataset.  There
are two competing numerical issues in trying to apply the
hard truth to a minus-log-posterior in the vicinity of the MAP
solution: a) the constant c has to be chosen large enough to
produce perturbations (f’’-f’) that yield substantial changes in
the posterior, and b) we don’t want to make c so large that
we start exploring the non-Gaussian behavior of the
posterior, at least for this example.

Since we are using a 60-iteration ML-EM as the MAP
solution, and a 120-iteration ML-EM yields a change in
minus log posterior φ’’- φ’ of about 2 units, we’d like to make
the constant c large enough to produce φ’’- φ’ >> 2 units. The
relationship φ’’- φ’=.5c2σ2, where σ2 is the variance of  the
intensity in the known area, can then give us an idea of what
range to look at for c.  In this case σ2 was estimated using the
frequentist approach as 6e-4.  This would indicate a value of
c=182.5 in order to get a change in minus log posterior of
about 10 units.  Figure 3A shows the quantity (φ’’- φ’)/ c2,
plotted for c in the range 100-400.  Notice that the values at
c=100 and 150 do not lie on the same flat line that the higher
values do, most likely due to the numerical issue a) above.  At
a value c=1000, the optimizer essentially blew up.  Notice
also that the non-negativity constraint was still in place
during these re-optimizations (which were done using 20-30
global steps of conjugate gradient), and that the value for σ2

determined from Fig. 3A is about 7.0e-4, within 15% of the
value determined using the frequentist approach.  However,



another measure of σ2  can be determined from the
relationship σ2 =FT (f’’-f’)/c.  This quantity is plotted as a
function of c in Fig. 3B.  These values for σ2 also vary by
about 15% (6.1e-4 to 7.9e-4).

              
A) B)

Figure 3.  A) An indication of the quadratic behavior of the
minus-log-posterior for the pixellated model: (φ’’- φ’)/ c2,
where c is the strength of the force and φ’’- φ’ is the actual
change in minus log posterior, and B) the variance of the
estimator as defined by σ2 =FT (f’’-f’)/c.

C.  Uncertainty analysis using MCMC

Our first attempt at using MCMC on this problem failed
miserably due to the non-negativity constraint.  One cannot
simply use a random walk to propose the next step and then
project that on the constraint space (if the constraint space is
nonlinear) before performing the accept/reject step.

One quick fix for this problem is to re-parameterize the
pixel values as the exponential of a set of unconstrained pixel
values.  Since the pixel values we are interested in are now
just a simple function of  another set of pixels values on
which we can easily perform MCMC, our problem is solved.

We ran an MCMC chain of 25,000 trials on the re-
parameterized model, of which 12,167 were accepted.  The
“burn-in” period was approximately the first 4000 accepted
samples, as seen in Figs 4A and 4B.  The sample mean of the
intensity in the known area is 0.352 (23.4% error) and the
sample variance is 4.4e-4 (so that the standard of deviation is
4.6% of the true area).  The diagnostic program gibbsit [9]
indicates that this run is adequate for obtaining the 2.5%
quantile to reasonable accuracy.

The fact that the mean of the posterior is lower than the
MAP estimate makes sense, since the MAP estimate will pin
many pixel values to 0.0 intensity, leaving them with
nowhere to go but up when the posterior is sampled.  If
intensity is put into these background pixels, it must be taken
away from the area where the intensity is known to be (since
the total number of counts in all of the detector pixels
presumably determines the total intensity in the image to 3%
or so).  The lower sample standard of deviation may be due
to an inadequate number of samples in MCMC, as the gibbsit
diagnostic for the 80% quantile showed that only every 463rd
accepted sample was independently drawn from the
posterior!

A)                                                    B)

Figure 4.  A) Minus log posterior and B) intensity in known
area for accepted samples drawn using MCMC for the
exponentially reparameterized pixellated model.

IV.  GEOMETRIC MODELLING AND UNCERTAINTY

The BIE was used to construct a 50-vertex simple
polygon model of the contour describing the area with
constant intensity.  A curvature prior [10] with user-
manipulable strength was used to penalize non-smooth
realizations of the contour.  

The MAP solution for the curve using a strong prior is
plotted in Fig. 5A, and the MAP solution for a weak prior
(the strength is only 3% of that used for the strong prior) is
plotted in Fig. 5B.  Obviously, the smooth parts of the
contour are reconstructed very well using the strong prior,
while the high-curvature deviations from smoothness are
missed completely.  On the other hand, the reconstruction
using the weak prior does marginally better at capturing the
high-curvature parts of the true contour while doing
substantially worse on the smooth parts.

A)                                                    B)

Figure 5.  The MAP estimate for the geometric model with
prior strength equal to A) 1.0 and B) 0.03.

The MAP estimate for the area using the strong prior was
in error by about 1% of the true area, which is better than one
might guess is possible by simply looking at the signal-to-
noise ratio in the total number of counts (the square root of
488 counts is 22.1, meaning there is a standard of deviation
of roughly 5% in the total number of counts!).  The MAP
estimate for area using the weak prior was in error by about
10% of the true area (comparable to the pixellated model
using ML-EM).

A)  Uncertainty analysis

The frequentist approach to measuring the uncertainty in
this case is difficult because the BIE’s optimizer requires



some user interaction when optimizing highly non-quadratic
functions like the one obtained when using a geometric
model [11].  Thus, as with segmentation, we can’t just put
the optimizer in a black box and run multiple realizations of
the data through it in order to obtain sample statistics.

The hard truth was not attempted for this example, either,
as we were not interested in exploring the higher-order
correlations in the geometry that can be discovered using the
“hard truth” [7], but rather in connecting the “hard truth”
result to other methods of quantifying uncertainty, which we
have already done for the pixellated model.

We did run MCMC on the geometric model using the
very strong prior in order to determine how much better than
a pixellated model it was for determining area.  We ran
20,800 trials, of which approximately 6000 were accepted.
The error in the sample mean of the area was 2.74% of the
true area, and the sample standard of deviation was 3.26% of
the true area.  The gibbsit diagnostic indicated good
convergence of the 2.5% quantile statistic with very little
burn-in needed.  Once again, though, the higher quantiles
indicated a need to go to much larger samples to get the
desired precision.  For example, the 75% quantile indicated
that only every 268th sample was drawn independently.

V. CONCLUSIONS

Geometric modelling has been shown to have excellent
potential for improving the quality of ejection fraction
estimates  from low-count, gated cardiac SPECT data when
strong prior information about the curvature of the chamber
walls can be employed.  The MCMC runs show a reduction
in variance of about a factor of 2 over traditional pixellated
models, while the MAP solutions showed a reduction in error
of a factor of 10!

 On the other hand, the weak prior geometric model
performed quite poorly, and the MAP solution here still had a
curvature value that was only about 50% of what the true
contour had.  If aspects of the heart wall that have high
curvature are expected to be estimated well, then more
counts or a better model of the wall that incorporates prior
information about where the high curvature is spatially
located, and where it is not, may be needed.  We plan to use
3D surface models in the near future to estimate ejection
fractions from real data using the FastSPECT system at the
University of Arizona.  The 3Dness of the surface models
may help substantially in reducing the variance of the
volume estimates over what might be expected by
extrapolating this 2D study.

Three alternative methods for exploring the uncertainty in
reconstructions from simulated 2D SPECT data have been
demonstrated: frequentist, “hard truth”, and MCMC.  All
three are in fair agreement for the pixellated model, although
the MCMC showed a reduction in variance of about 30%
relative to the other two.  The agreement between the
frequentist approach and the “hard truth” indicates a high

degree of Gaussianity for the problem of estimating the area
of constant intensity from limited-view, low-count
tomographic data.  This is most likely due to the fact that the
area is quite large, and so the Poisson counting statistics
accumulate to an approximately Gaussian distribution.  If
one is interested in small areas, or specific contour location,
it may be that the Gaussianity disappears.
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