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ABSTRACT

This paper addresses the issue of reconstructing the unknown �eld of absorption and scattering coe�cients from
time-resolved measurements of di�used light in a computationally e�cient manner. The intended application is
optical tomography, which has generated considerable interest in recent times. The inverse problem is posed in the
Bayesian framework. The maximum a posteriori (MAP) estimate is used to compute the reconstruction. We use an
edge-preserving generalized Gaussian Markov random �eld to model the unknown image. The di�usion model used
for the measurements is solved forward in time using a �nite-di�erence approach known as the alternating-directions
implicit method. This method requires the inversion of a tridiagonal matrix at each time step and is therefore of O(N )
complexity, where N is the dimensionality of the image. Adjoint di�erentiation is used to compute the sensitivity
of the measurements with respect to the unknown image. The novelty of our method lies in the computation of the
sensitivity since we can achieve it in O(N ) time as opposed to O(N2) time required by the perturbation approach.
We present results using simulated data to show that the proposed method yields superior quality reconstructions
with substantial savings in computation.

Keywords: optical tomography, di�usion, Bayesian estimation, MAP, Markov random �eld, adjoint di�erentiation,
�nite-di�erence.

1. INTRODUCTION

Medical optical tomography has generated considerable interest in recent times.1 The advantage of using infrared
light as an imaging modality stems from the fact that it is non-ionizing and hence can be used for continuous
monitoring. More importantly, it is capable of revealing the functioning of the tissues as opposed to other standard
imaging modalities that reect only the static physical structure. A �nal advantage is that optical imaging systems
can be made portable, making them useful in clinical situations such as surgery, trauma, and intensive care.

An accurate model for the propagation of photons through tissue can be obtained from transport theory. There
are two basic approaches using this theory: an essentially discrete model of individual photon interactions, such as
Monte-Carlo,2 or a continuous model based on a di�erential equation approximation, such as the di�usion equation.
While the Monte-Carlo method is more generally applicable, it is computationally expensive to implement. On the
other hand, the di�usion approximation is accurate for highly scattering media (which is the case for tissues) while
being computationally tractable. Therefore we will use the di�usion equation as our data model.

The inverse problem of reconstructing the absorption and scattering coe�cients from di�use measurements of light
is highly nonlinear. To facilitate the computation of the unknown coe�cients, several approaches attempt to locally
linearize the original inverse problem. The linear perturbation model3{5 is one such method that employs a Taylor
series approximation about a reference distribution for the unknown coe�cients to obtain a set of linear equations.
The associated weight matrix is computed using Monte-Carlo simulations.6 However, the utility of this method is
limited if we do not have a reference distribution that is close to the actual distribution of the unknown coe�cients.
Alternatively, the Newton-Raphson (NR) method employs a Taylor series expansion about the current estimate
of the unknown coe�cients to obtain a more re�ned estimate. This procedure is then iterated until convergence.
The NR method has also been used with the Levenberg-Marquardt procedure to control the nonlinearity of the
underlying problem.7 Other numerical optimization methods that have been used include projection onto convex



sets (POCS),3 simultaneous algebraic reconstruction technique (SART),5 SART-type algorithm,8 and conjugate
gradient descent (CGD).6 We will be using a modi�ed version of CGD for our optimization because of its superior
convergence properties. The modi�cation involves replacing simple line searching with bent-line searching to enforce
the positivity constraint on the unknown coe�cients.

The inverse problem is known to be ill-posed and some form of regularization is necessary to make the solution
space well-behaved. Toward this end, we formulate the inverse problem in the Bayesian framework and use the
maximum a posteriori (MAP) estimation criterion to compute the reconstruction. This approach enables us to
incorporate a priori knowledge of the unknown �eld through an image model to regularize the solution. The regular-
ization methods that have previously been employed include truncated singular-value decomposition, Tikhonov and
constraint-based regularization that impose a penalty on the norm of the solution vector.7 However, none of these
methods properly model edges that are normally present in the unknown �eld for real objects, resulting in smooth
reconstructions with blurred edges. An important contribution of the present work is the use of an edge-preserving
generalized Gaussian Markov random �eld (GGMRF) model9 for the unknown �eld.

To compute the likelihood of the data, we need to solve the di�usion equation forward in time. The �nite
element method (FEM) has been widely used for this purpose.7,10,11 However, we propose to do this by discretizing
the di�usion equation using a �nite-di�erence approach.12 The discretization can be accomplished in a number of
ways since the spatial derivatives can be evaluated at the present (implicit) or the past (explicit) time instance. In
particular, we use an alternating-directions method13 that computes the spatial derivative implicitly for one spatial
direction and explicitly for the other spatial direction in the �rst half of the time step. In the next half time step,
the implicit and explicit directions are switched. This method is known to be stable even for large time steps. Also,
by virtue of the alternating-directions, the resulting matrix that needs to be inverted in the forward computation
is tridiagonal. The inversion can therefore easily be done in O(N ) time, where N is the number of pixels in the
unknown image.

Since we will use CGD to compute the MAP estimate, we require the gradient of data likelihood with respect to
the unknown �eld. The novelty of our approach lies in the proposed method of this computation. We show that by
working backward in time, and using the discretized equations that are employed to compute the forward solution,
the gradient computation parallels the forward computation in complexity and can be accomplished in O(N ) time.
This is in contrast to the computationally intensive perturbation approach, which is widely used to compute the
gradient, but requires N forward computations and is therefore O(N2). The method we propose is known as adjoint
di�erentiation,14 which has been used to solve oceanographic and other computationally intensive inverse problems.

We present experimental results using simulated data to show that the proposed method results in superior
quality reconstructions with substantial savings in computation.

2. DIFFUSION DATA MODEL

Let U (x; y; t) be the intensity of light and R(x; y; t) be the source strength at position (x; y) and time t. Let
�a(x; y) and �s(x; y) denote the space-varying absorption and scattering coe�cients. Let D(x; y) denote the di�usion
coe�cient, given as

D(x; y) =
c

3[�a(x; y) + (1� g)�s(x; y)]
; (1)

where c is the speed of the light in the medium and g is the scattering anisotropy parameter, equal to the average
cosine of the scattering angle distribution�. Then the di�usion equation is given as
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where the spatial and temporal dependence of the parameters has been suppressed. In this paper, we parametrize
the inverse problem in terms of D and �a. This is equivalent to recovering �a and �s due to Eq. (1).
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= �s(1� g) is known as the e�ective scattering coe�cient



2.1. Notation

Let S denote the set of discrete lattice points and let s 2 S denote the spatial position of a particular lattice point.
In some instances we need to distinguish between the two spatial directions. In this case we use the subscript (i; j)
to denote the spatial position. When the spatial position subscript is present, the resulting quantity is a scalar
with corresponding value at that spatial position (e.g. Us or Ui;j). When the spatial position subscript is dropped,
the resulting quantity is a column vector obtained by either row-ordering or column-ordering the corresponding
two-dimensional �eld (e.g. U ). We will use the superscript n to denote the discretized time index.

2.2. Measurement Model

LetM denote the set of detector positions and T denote the set of time indices when the measurements are recorded.
Let Y denote the measurements of the di�use intensity U for all s 2 M and n 2 T . In the interest of simplicity, we
assume that the measurements are corrupted by uncorrelated Gaussian noise. However, the method we propose is
not restricted to this choice. The log-likelihood of the observations Y given D and �a is

logP (Y jD;�a) = �
X
s2M

1

2�2s

X
n2T

(Y n
s � Un

s )
2 ; (3)

where �2s is the noise variance at spatial position s.

2.3. Computation Of logP (Y jD; �a)

To compute the log-likelihood of the measurements Y given D and �a, we need to solve the di�usion equation (2)
forward in time to obtain the di�use intensity Un

s for all time n 2 T and spatial positions s 2 M. We propose to
do this using a �nite-di�erence approach where the spatial and temporal derivatives in Eq. (2) are replaced by their
�nite-di�erence approximations as follows
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where � = �x = �y is assumed for simplicity. The approximations are obtained by simply di�erencing the second
partial derivatives and centering each term appropriately. In doing so, we require the interpolated value of D halfway
between the grid points. Linear interpolation is used to achieve this, i.e. Di+1=2;j = (Di;j +Di+1;j)=2.

By substituting the �nite-di�erence approximations (4-6) in the di�usion equation (2), we obtain a di�erence
equation that needs to be solved forward in time. When solving the di�erence equation for Un+1, the �nite-di�erence
approximations to the spatial derivatives (4,5) can be evaluated at time index n + 1 or n. The three methods we
discuss in the following sections di�er in this choice of the time index.

2.3.1. Explicit method

In this method, the spatial derivatives (4,5) are evaluated at the past time instance n when computing the di�use
intensity Un+1. Substituting Eqs. (4-6) in Eq. (2) and using time index n for the spatial derivatives, we obtain

Un+1
i;j = (1� c�a�t)Un

i;j + �x(U
n
i;j)�t+ �y(U

n
i;j)�t+ (Rn+1

i;j + Rn
i;j)

�t

2
: (7)

Rewriting the above equation in vector-matrix notation, we obtain

Un+1 = B Un + �Rn+1=2 ; (8)

where Un+1 and Un are row-ordered column vectors and B is a sparse matrix with four o�-diagonal elements
(corresponding to the vertical and horizontal neighbors of a pixel). �Rn+1=2 denotes the integrated source strength



between time instances n and n+ 1. Using Eq. (8), we can compute Un for any n by starting at n = 0 and moving
forward in time. Furthermore, since B is a sparse matrix, the forward computation is O(N ), where N is the total
number of discretized spatial positions. However, the disadvantage of this simple method is that it becomes unstable
when13

�t >
�2

4(maxs2S Ds)
:

This method is not very useful because it can dictate very small time steps in the forward simulation.

2.3.2. Implicit method

In this method, the spatial derivatives (4,5) are evaluated at the present time instance (n+ 1) when computing the
di�use intensity Un+1. Substituting Eqs. (4-6) in Eq. (2) and using time index n + 1 for the spatial derivatives, we
obtain

(1 + c�a�t)Un+1
i;j � �x(U

n+1
i;j )�t� �y(U

n+1
i;j )�t = Un

i;j + (Rn+1
i;j + Rn

i;j)
�t

2
: (9)

In vector-matrix notation the above equation is given as

AUn+1 = Un + �Rn+1=2 ; (10)

where A is a sparse matrix having exactly the same structure as the B matrix in Sect. 2.3.1.. The advantage of
this method is that it is unconditionally stable for any value of �t. However, the computation of Un+1 from Un

now requires the inversion of matrix A, which is not trivial anymore in terms of computation. Multigrid relaxation
methods15 can be employed to e�ciently solve Eq. (10) but we prefer to use the method described in the next section.

2.3.3. Alternating-directions implicit method (ADI)

In this method, the computation of Un+1 from Un is broken up in two time steps.13 In the �rst half time step,
only the spatial derivative in one direction is evaluated at the present time instance (implicit) and the other spatial
derivative is evaluated at the previous time instance (explicit). In the next half time step, the implicit and explicit
directions are switched. The di�erence equations for the two half time steps are given as
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The di�erence Eqs. (11,12) for both halves of the time step can be compactly represented in vector-matrix notation
by the single equation

AUn+1=2 = B Un + �Rn+1=4 (13)

if we use row-ordering for U in Eq. (11), column-ordering for U in Eq. (12) and let n take on fractional values. By
switching the ordering, we force the structure of matrices A and B to remain the same while the absolute values
di�er for both halves of the time step. However, for the sake of notational simplicity, we will not distinguish between
the two halves of each time step and use Eq. (13) to represent both of them.

To compute Un+1=2 from Un, we need to invert A. However, in this case A is always tridiagonal due the
spatial derivative being implicit only in one direction. The inversion can therefore be done in O(N ) computation.
Furthermore, the method is also unconditionally stable for any value of �t. In the rest of the paper, we assume that
the ADI method will be used to do the forward computation.

2.4. Sensitivity Computation

Let � = [D �a]T be the column vector of the unknown parameters D and �a. De�ne

�(�)
�
= logP (Y j�) :

To facilitate the solution of the inverse problem, we require the derivative or sensitivity of �(�) with respect to �.
The technique that we propose for this computation is known as adjoint di�erentiation.14 The method requires us
to work backwards in time using the same discretized equations that were used to compute the forward solution in
Sect. 2.3.3.. The sensitivity of � with respect to � is obtained by computing the intermediate sensitivity of � with
respect to the di�use intensity U .



2.4.1. Sensitivity computation with respect to U

The sensitivity of � with respect to Un is obtained recursively by using the sensitivity of � with respect to Un+1=2.
Application of the chain rule yields

d�

dUn
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for all s 2 S; (14)

where @�
@Uns

denotes the change in � when only Un
s is varied keeping all other variables constant while d�

dUns
denotes

the total change in � when Un
s is varied along with all variables that depend on Un
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Rewriting Eq. (14) in vector-matrix notation, we obtain
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where the matrix dUn+1=2

dUn
is given as
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: : :
dUn+1=2

dUn
sN

�
fs1; : : : ; sNg 2 S: (16)

Di�erentiating Eq. (13) with respect to Un
s , we obtain

dUn+1=2

dUn
s

= A�1B Is for all s 2 S ; (17)

where Is is column vector that is zero everywhere except at spatial point s where it is unity. Using Eqs. (17), (16)
and (15), we obtain the sensitivity of � with respect to Un as
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= BT (A�1)T
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dUn+1=2
+

@�

@Un
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Since A is tridiagonal and B is a sparse matrix with only two o�-diagonal elements, the above computation can be
done in O(N ) time.

2.4.2. Sensitivity computation with respect to �

The chain rule is applied again to obtain the sensitivity of � with respect to �r as
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Rewriting the above equation in vector-matrix notation, we obtain
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Taking the partial derivative of Eq. (13) with respect to �r , we obtain
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Un+1=2 +A

@Un+1=2
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Xrz }| {�
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d�r
Un � dA

d�r
Un+1=2

�
: (21)

Using Eqs. (20) and (21), we obtain

@Un+1=2

@�
= A�1[X1 X2 : : : X2N ] = A�1X : (22)

Substituting Eq. (22) in Eq. (19), we obtain

d�

d�
=
X
n

XT (A�1)T
d�

dUn+1=2
: (23)

This computation can again be done in O(N ) time since A is tridiagonal and X is sparse. By starting at the last time
instance and using the recursion in Eq. (18), the contribution at each time step can be accumulated using Eq. (23)
to obtain the complete sensitivity with respect to � in O(N ) time.

3. IMAGE MODEL

The problem of reconstructing the unknown parameters D and �a from the measurements Y is an ill-posed inverse
problem and some form of regularization is necessary to make the solution well behaved. This is accomplished by
incorporating an image model in the reconstruction process, which models our a priori knowledge regarding the
unknown �elds D and �a. The following development is for D; however, the development for �a follows the same
pattern.

Markov random �elds (MRF) have been extensively used in image processing applications since they yield a rich
class of models with relatively simple parameterization. With this in view, we model D as a MRF or, equivalently,
a Gibbs distribution with the following form

P (D) =

� 1
z(�D) exp f�u(D=�D)g if D � 0

0 otherwise
; (24)

where �D is the scale parameter of the model and z(�) is the normalizing constant of the distribution known as
the partition function. We impose a nonnegativity constraint on D because negative values of D are physically
meaningless. We restrict the energy function u(�) to be of the form

u(
D

�D
) =

X
fs;rg2N

bs�r�(
Ds �Dr

�D
) ; (25)

where N is the set of all neighboring pixel pairs, and �(�) is the potential function that assigns a cost to di�erences
between neighboring pixel values.

A popular choice for �(�) in the signal-processing literature has been the quadratic function

�(
�

�
) =

1

2

������
����
2

:

This choice is similar to regularization methods that have been used earlier in optical tomography that impose
constraints on the derivatives of the solution to enforce smoothness.7 However, the quadratic cost function tends
to excessively penalize large pixel di�erences resulting in blurred edges. This will be demonstrated in the results
section.



Alternatively, a host of edge-preserving potential functions have been suggested in the literature.16{18,9 In par-
ticular, the generalized Gaussian MRF (GGMRF)9 uses the following potential function

�(�; �) =
1

p

������
����
p

: (26)

Note that when p = 2, the potential function is quadratic and the model reduces to a Gaussian MRF (GMRF).
The advantage of using the GGMRF as the image model is two fold: �rst, it has been shown to provide good edge-
preservation in the reconstructed image19 for p � 1; second, the form of the model facilitates the estimation of the
scale parameter directly from the data.19

Using Eqs. (24), (25), and (26), the log-likelihood of the image D is given as

logP (D) = � 1

p�pD

X
fs;rg2N

bs�r jDs �Dr jp : (27)

The derivative of the log-likelihood with respect to D is given as

d logP (D)

dDs
=

1

�p

X
r2Ns

sign(Dr �Ds)bs�r jDs �Dr jp�1 for all s 2 S; (28)

where Ns is the neighborhood of pixel s. The model for the absorption coe�cient can be obtained by substituting
��a for �D and �a for D in Eqs. (27) and (28).

4. RECONSTRUCTION CRITERION

We use the maximum a posteriori (MAP) estimation criterion to compute the reconstructions of D and �a. The
MAP estimate is de�ned as

[D̂; �̂a] = arg max
[D;�a ]�0

logP (D;�ajY ) :

Using Bayes rule in the above equation, we have

[D̂; �̂a] = arg max
[D;�a]�0

flogP (Y jD;�a) + logP (D) + logP (�a)g :

Since we can compute the derivative of each of the terms in the cost function (as shown in Sects. 2.4. and 3.), we can
use gradient-based methods to do the above optimization. In particular, we use the conjugate gradient algorithm
because of its superior convergence properties. However, conventional CGD cannot be used directly since it requires
line searching that can violate the positivity constraint. We modify the search procedure so that the estimate is
projected back on the convex set [D �a] � 0 when searching for a minimum in a particular direction. This procedure
is referred to as bent-line searching.

5. RESULTS

In this section, we study the performance of the proposed algorithm using simulated data. Although the method
developed in this paper can be used to estimate D and �a simultaneously, we will restrict ourselves to the simple
case of just estimating D and assume �a is known.

We will use a GGMRF with p = 1:1 as the image model since it results in good edge-preservation. We will also
show the reconstruction corresponding to p = 2:0 (GMRF) to compare the quality of our reconstruction to previously
used constraint-based regularization methods that use a quadratic penalty.7 We use an 8 point neighborhood for
the MRF with bs�r = (2

p
2 + 4)�1 for nearest neighbors and bs�r = (4

p
2 + 4)�1 for diagonal neighbors. Ideally,

the scale parameter �D needs to be estimated directly from the measurements Y before computing the unknown
�eld D. This unsupervised estimation of �D is a challenging problem in itself and is not within the scope of this
research. Therefore, for the purpose of this research, we will �x the value of �D to the ML estimate19 obtained from
the original D, which is known in our simulation examples.



(a)

0

5

10
0 2 4 6 8 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Diffusion coefficients

cm
2

[
-1

ns
]

(b)

(c)

0

5

10
0 2 4 6 8 10

0.1

0.12

0.14

0.16

0.18

0.2

Absorption coefficients

cm
-1

[
]

0

5

10
0 2 4 6 8 10

5

6

7

8

9

10

Scattering coefficients

cm
-1

[
]

(d)

Figure 1. (a) Shows the set-up for a 10x10 grid with 0:1 cm separation between grid points. The arrows pointing
inward show the location of the sources and the arrows pointing outward show the detector positions. (b), (c), and
(d) show the di�usion, absorption, and scattering coe�cients respectively.

The values of the absorption and scattering coe�cients used in our examples have been chosen to reect those
of real tissues. The physical dimensions have also been chosen to reect a real medical imaging set-up. Figure 1
shows the set-up for the �rst example, which is a 10x10 grid with 0:1 cm spatial separation between grid points. The
placement of the sources and detectors are shown in Fig. 1(a). The data are collected by turning on one source at a
time and making measurements at all the detector locations for all n 2 T . The data collected for each active source

constitutes a single view of the object. Let the data collected in view v be denoted as Y (v). Let �(v)
�
= logP (Y (v)j�).

Then the total log-likelihood of the data for multiple views is given as �
�
=
P

v �
(v), where each �(v) is computed using

the procedure described in Sect. 2.3.3.. Similarly, the total sensitivity of � with respect to � is given as d�
d� =

P
v
d�(v)

d� ,

where each d�(v)

d� is computed using the procedure in Sect. 2.4..

Figures 1(c) and 1(d) show the numerical values for the absorption and scattering coe�cients respectively chosen
for the �rst example. Figure 1(b) shows the di�usion coe�cients computed from the absorption and scattering
coe�cients using Eq. (1) and c = 22 cm/ns. Figure 2 shows the source distribution, which is a single pulse, and
all the detector responses for a single view for the 10x10 grid. Gaussian noise is added to the simulated signals
with an rms noise value that is 3% of the rms signal value over the 0:3 ns observation time. This corresponds to a
signal-to-noise ratio (SNR) of 30 dB. The simulation is done using �t = 0:01 ns for a total time of 0:3 ns and the
detector resolution is set to 0:01 ns.

Figure 3 shows the reconstructions of the di�usion coe�cients for the 10x10 grid. The conjugate gradient algorithm
initialized with a constant di�usion coe�cient �eld of value 3:0 cm2ns�1 was run to convergence to obtain the MAP
estimate. Figures 3(b) and 3(c) show the reconstructions corresponding to a GGMRF (p = 1:1) and a GMRF
(p = 2:0) respectively. Notice that the GGMRF reconstruction has sharp edges and is a very good reproduction of
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Figure 2. (a) Source distribution used for the 10x10 grid. (b) Normalized measurements obtained at all the detector
positions with 30 dB SNR when one of the sources was active. The normalizations was done by the standard deviation
of the noise present in each measurement.

(a) (b) (c)

Figure 3. (a) Original di�usion coe�cients. Reconstructed di�usion coe�cients for the 10x10 grid using the
GGMRF image model with (b) p = 1:1, and (c) p = 2:0 (Quadratic regularization). Note that white in the images
corresponds to 1:54 cm2ns�1 and black corresponds to 0:58 cm2ns�1.

the original image. On the other hand, the GMRF reconstruction has blurred edges and excessive residual noise.

The purpose of the �rst example was to show how accurately we can reconstruct the original image when there
are a large number of views and relatively few unknown coe�cients to estimate. The second example we consider
uses a much larger grid and only a limited number of views. Figure 4 shows the set-up for the second example,
which is a 64x64 grid with 0:1 cm spatial separation between grid points. The placement of the 4 sources and 52
detectors are shown in Fig. 4(a). This case is under-determined because only four views of the object are taken.
Figures 4(c) and 4(d) show the numerical values for the absorption and scattering coe�cients respectively chosen for
this example. Figure 4(b) shows the di�usion coe�cients computed from the absorption and scattering coe�cients.
Figure 5 shows the source distribution, which is a single pulse, and all the detector responses for a single view for
the 64x64 grid. The SNR of the detectors is set at 30 dB. The simulation is done using �t = 0:005 ns for a total
time of 1 ns while the detector resolution is kept at 0:02 ns.
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Figure 4. (a) Shows the set-up for a 64x64 grid with 0:1 cm separation between grid points. The black dots indicate
measurements positions and the white dots indicate source positions. (b), (c), and (d) show the original di�usion,
absorption, and scattering coe�cients respectively.

Figure 6 shows the MAP reconstructions of the di�usion coe�cients for the 64x64 grid using the conjugate
gradient algorithm. The algorithm was initialized with a constant di�usion coe�cient �eld with value 1:0 cm2ns�1.
Figures 6(b) and 6(c) show the reconstructions corresponding to a GGMRF (p = 1:1) and a GMRF (p = 2:0)
respectively. Notice that although the GGMRF estimate is much better compared to the GMRF estimate, both
reconstructions are not very good reproductions of the original image. This can be attributed to the extremely small
number of views that were used and the much higher resolution of the reconstruction. An improved estimate can
be obtained if we use a lower resolution for the reconstruction as seen from the results of the �rst example. This
observation suggests the use of a multiresolution strategy where the reconstructions are performed at progressively
higher resolutions using the coarser resolution reconstruction as the initial condition. Such a strategy is left for future
research.

6. CONCLUSION

The contribution of this research has been threefold. First, the use of a new alternating-directions implicit method
to solve the forward di�usion problem in O(N) time. Second, the use of adjoint di�erentiation to compute the
sensitivity of the measurements with respect to the unknown parameters. By working backwards in time, and using
the discretized equations that are employed to compute the forward solution, we have shown that this can be done
in O(N ) time as opposed to O(N2) time required by the perturbation approach. Third, an edge-preserving GGMRF
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Figure 5. (a) Source distribution used for the 64x64 grid. (b) Normalized measurements obtained at all the detector
positions with 30 dB SNR when one of the sources was active. The normalizations was done by the standard deviation
of the noise present in each measurement.

(a) (b) (c)

Figure 6. (a) Original di�usion coe�cients. Reconstructed di�usion coe�cients for the 64x64 grid using the
GGMRF image model with (b) p = 1:1, and (c) p = 2:0 (Quadratic regularization). Note that white in the images
corresponds to 1:52 cm2ns�1 and black corresponds to 0:55 cm2ns�1.

model has been employed and shown to be superior to the standard quadratic regularization method, which results
in blurred edges and excess residual noise.

Moreover, the proposed method of solving the inverse problem is very general and can be applied to complex
problems such as geophysical structure estimation from seismic data and ocean surface reconstruction using sonar.
The only requirement for the applicability of the proposed method is that the measurements for the process in
question be adequately described by a predictive forward computational model. It can also be used to optimize
engineering designs in complex situations such as streamlining of airplane foils and automobile bodies to reduce
drag.

Future research should focus on multiresolution strategies for computing the MAP estimate, employing multiscale
image models20 as opposed to �xed-resolution image models to describe the unknown image, and unsupervised
methods for optimal estimation of image and data model parameters.
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