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ABSTRACT 

A new approach to Bayesian reconstruction is introduced in which the prior probability distribution 
is endowed with an inherent geometrical flexibility. This flexibility is achieved through a warping of the 
coordinate system of the prior distribution into that of the reconstruction. This warping allows various 
degrees of mismatch between the assumed prior distribution and the actual distribution corresponding to 
the available measurements. The extent of the mismatch is readily controlled through constraints placed 
on the warp parameters. 

1. INTRODUCTION 

Often the approximate shape of an object to be reconstructed is known beforehand. Bayesian methods 
of reconstruction can incorporate the structural characteristics of an object that are known a priori. These 
methods have been shown to substantially improve the accuracy of reconstructions obtained from very 
limited data. However, if the object under study differs even only slightly in size, shape, or position from 
the assumed model, use of this kind of prior can lead to very poor reconstructions [l, 21. 

The above difficulties arise because the prior model typically is held fixed relative to the spatial co- 
ordinate system of the reconstruction [3]. A superior approach is proposed in which the prior model for 
the object being reconstructed is allowed to alter its dimensional characteristics to accommodate the data. 
Such an accommodation is facilitated by warping the coordinate system of the prior model onto the co- 
ordinate system of the reconstruction. A linear transformation between the two coordinate systems can 
accommodate changes in size, position, and orientation of the model. Furthermore, changes in shape are 
allowed by nonlinear transformations. Within the Bayesian framework, the parameters needed to specify 
the coordinate transformation are determined as part of the overall estimation/reconstruction problem. 
Through the judicious choice of the priors on the transformation parameters, the degree and type of warp- 
ing is readily controlled. Weak priors on the transformations with many degrees of freedom result in a 
flimsy prior model. Constraints on the parameters can be employed to approximately maintain the initial 
shape or to allow it to become fairly contorted. 

The power of this new approach to prior models is demonstrated with a simple example. For simplicity, 
the coordinate transformations are restricted to low-order polynomials in the present example. 

2. THE BAYESIAN APPROACH 

Fundamental to the Bayesian approach is the posterior probability, which is assumed to summarize the 
full state of knowledge concerning a given situation. Given the data g, the posterior probability of any 
image f is given by Bayes’ law in terms of the proportionality 

Pm) cx PklfMf) , (1) 
where p(glf), the probability of the observed data given f, is called the likelihood and p(f) is the prior 
probability of f. The likelihood is specified by the assumed probability distribution of the fluctuations 
in the measurements about their predicted values (in the absence of noise). The prior probability p(f) 
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encompasses the full prior information about the relative frequency of occurrences of all possible images. 
Any known constraints concerning impossible images ought to be included explicitly or implicitly in p(f). 
It is often desired that a single image be quoted as the ‘result’. We humans have difficulty visualizing 
the full multidimensional probability distribution that is the complete p(f I@;). An appropriate choice for a 
single image is that which maximizes the a posterior? probability, called the MAP estimate. 

The essence of the Bayesian approach involves the use of prior knowledge to help guide the result in 
the desirable direction. Without the prior, the MAP solution would collapse to nothing more than the 
maximum likelihood (ML) result. Unfortunately an infinite number of the ML solutions exist when the 
data are very limited, which is the situation we wish to address. Thus the prior is indispensable. How- 
ever, the problem that arises when using the Bayesian approach is that the model for the prior is usually 
considered to be geometrically fixed. This restriction might seem curious as the approach is based on 
probability theory and so ought to allow for a continuum of possibilities that are ranked on the basis of 
their relative likelihood. Thus the possibility of a change in position or shape of the prior model should 
be an integral part of the Bayesian approach. The proposed extension to the standard MAP technique 
overcomes its rigid definition of the prior and provides the desired latitude in geometry as well as amplitude. 

2.1 Standard MAP formulation 
We assume that the N pixels of an image are represented by a vector f of length N. We are given M discrete 
measurements that are linearly related to the amplitudes of the original image. We assume that these 
measurements are degraded by additive noise with a known covariance matrix Rn, which describes the 
correlations that exist between noise fluctuations. The measurements can then be represented by a vector 
of length M 

g=Hf+n, (2) 
where n is the random noise vector, and H is the measurement matrix. In computed tomography the jth 
row of H describes the weight of the contribution of the image pixels to the jth projection measurement. 

Because the probability is a function of continuous parameters, namely the N pixel values of the image, 
it is actually a probability density, designated by a small p(). From Bayes law, the negative logarithm of 
the posterior probability density is given by 

- hdP(fldl = 4(f) = w + w , (3) 
where the first term comes from the likelihood and the second term from the prior probability. For the 
additive Gaussian noise assumed, the negative log(likelihood) is just half of chi-squared 

- wP(glf)l = A(f) = :X2 = ;(g - Hf)TR,‘(g - Hf) , (4 
which is quadratic in the residuals. Of course, the choice for the likelihood function should be based on 
the actual statistical characteristics of the measurement noise, which we assume are known a priori. 

The second term II(f) comes from the prior-probability distribution. It should incorporate as much as 
possible the known characteristics of the original image. Here we use a Gaussian distribution for the prior, 
whose negative logarithm may be written as 

log[p(f)] = II(f) = ;(f - ?)TR,l(f - T) , 

where ? is the mean and Rf is the covariance matrix of the prior-probability distribution. The difficulty 
with this standard MAP approach is that f is spatially fixed. In any particular situation, the actual object 
may differ in location, size, or shape. Any of these errors can destroy the usefulness of the prior [4, 21. 

2.2 AP based on flexible prior 

To build flexibility into the prior, we therefore consider f to be a function of several parameters, represented 
by the vector a, that is, ?(a). For convenience we consider the reconstruction to be given in terms of the 
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deviation of f from f: 
d=f-f, (6) 

keeping in mind that the full reconstruction is really the sum f = d + ?. We now consider d and a to be 
the independent variables in the reconstruction problem. The negative log(likelihood) is now expressed as 

- hd.z4gl4 43 = W, a> = $[g - H(d + F)]TR;l[g - H(d + f)] , (7) 

realizing that F is a function of a. In Bayesian tradition, we must supply a prior for all variables. As before, 
we use a Gaussian distribution for the prior, whose negative logarithm may be written as 

II(d, a) = idTRzld + f(a - ir)TR,‘(a - ii) , 03) 

where we have assumed that a and d are statistically independent. The first term is equivalent to Eq. (5), 
so Rd takes the place of Rf. As before, the optimization function 4 is the sum of Eqs. (7) and (8). 
The choice of the relative weight of the likelihood (7) and the prior (8) is critical, as it affects how well 
information is transfered to the observer of the image [5]. 

2.3 Reconstruction Procedure 

In the reconstruction problem, we seek to estimate all pixel values in the original scene from the given 
data g and the prior knowledge. It is necessary to estimate d and f, and therefore a. The self-consistent 
Bayesian solution that maximizes the a posteriori probability must satisfy 

v##‘=O and V&=0, (9) 

provided the region of support for the solution is unlimited, that is, the solution is unconstrained. The 
gradient with respect to the likelihood is 

v&i = Qh = HTR,‘[g - H(d + f)] , WV 

from which we obtain for the gradient of r$ with respect to d, 

v#$ = Rd’d + H’R,‘[g - H(d +f)] . (11) 

In computed tomography (CT), the matrix operation HT is the familiar backprojection process. 

The gradient of 4 with respect to parameter aj is 

Io.d+=~=[~~‘(a-~~l~ + q&$ 

where the sum is over the pixels of the reconstruction. The first term comes from the prior (8) and the 
second from the likelihood (7). The first quantity inside the sum is given by Eq. (10) and the second is 
given by the functional dependence of f on aj. 

The MAP solution characterized by Eq. (9) can be found by the method of steepest descent, using (10) 
and (12) for the gradients. Although this method is computationally inefficient, it suffices for the present 
study. 

3. THE WARP 

One particularly interesting way to introduce flexibility into a fixed prior distribution is to warp the 
coordinate system of the prior into the coordinate system of the reconstruction. This method has the 
advantage that it can be applied to general prior distributions. The prior itself need not be given in a 
parametrized form. 
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Figure 1: Example of warp achieved through a coordinate transformation consisting of the polynomial warp 
Eq. (14) including only the constant terms (upper-left) and the linear terms (others). The lower-right image 
demonstrates the shear effect that occurs when the mapping is not conformal. 

lexible prior 

Suppose that the prior f is specified as a function of the coordinates (21,~). If the coordinate system of 
the reconstruction is (z, y), we can effect a warping of f(u, ZJ) by means of a transformation of points (CC, y) 
into the original (u, V) coordinates: 

u=u(x,y); w=w(x,y). (13) 
This coordinate mapping can be quite general in nature. However, it should be restricted in some way to 
reflect the realistic range of possibilities for the warped shape of the prior. 

For simplicity, we will assume that the coordinate transformation is given as a polynomial expansion 

u= Ix amnxmyln ; Iv= b mnxmYn 3 04) 
mn mn 

where the umn and b,, coefficients are represented as elements in the parameter vector a used in Sec. 2.2. 
It is recognized that the constant terms in (14), aoo and boo, amount to a simple shift in the position of 
the prior. The linear terms alo, sol, blo, and bol, correspond to a change of scale, rotation, and skewing of 
the coordinates, called shear. The effects of these term are shown in Fig. 1. The quadratic terms give rise 
to bending of the coordinates, as shown in Fig. 2. While the quadratic terms can skew the coordinates 
severely, certain combinations of coefficients can result in conformal mapping, which locally preserves the 
right angles between the original coordinates. 

         186



Figure 2: Example of warp achieved through a coordinate transformation consisting of the polynomial 
warp Eq. (14) including only the quadratic terms. The lower-left image shows a conformal mapping in 
which the right angles between grid lines are locally preserved. 

With (14), th e second term inside the sum in Eq. (12) is 

a& 8i au -=--= m naTi aTi ari au 8, -z------z 
damn &A damn ’ ’ du ’ ab,, dv ab,, 

xmyn- . 
dv (15) 

Although the warp given by the polynomial expansion is convenient, it suffers from a few fundamental 
drawbacks. First, it does not provide much local flexibility without including higher orders. This might 
not be a significant problem for applications in which only a small distortion is desirable. The second 
difficulty, which occurs when second- or higher-order terms are admitted, is that the mapping will fold 
back on itself at some value of x and y. This results in severe distortions, although they may occur only 
outside the support of the reconstruction, and, hence, be unnoticeable. 

3.2 Physical analog 

It is appealing to interpret the warp in terms of an analogous physical system, a sheet of material that 
undergoes distortion. Then the priors placed on the warp roughly correspond to properties of the material 
being distorted, such as its stiffness. However, it must be recognized that it is not the substance of the 
object that is actually being warped. In material mechanics the strain corresponds to the first derivative of 
the mapping. For example, 2 corresponds to normal strain; either expansion (> 0) or contraction (< 0). 
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The induced stress is proportional to the strain. So the strain energy density is given by the product of 
the induced stress times the strain and contains terms like: 

%ormal = Cl (g)2+c2 (;)2, 

and 
W&ear = c3 (g+g)2. 07) 

The coefficients cl and c2 are proportional to the effective elastic modulus and c3 is proportional to the 
shear modulus of the fictitious material. In an actual physical system, they are a property of the material, 
For the flexible prior, they are set to achieve the properties desired for the warping of the prior. 

It should be emphasized that this conceptual physical model may have no connection with the material 
from which the object being reconstructed is composed. Indeed, the choices for the ci in the above equations 
are not restricted by the usual constraints that regulate physical systems [6]. Instead, the choices should 
reflect the range of reasonable configurations for the object being imaged. The Poisson ratio, which specifies 
the amount of contraction perpendicular to the tension, may perfectly well be zero even though such a 
value might be ‘unphysical’. Also note that, because material is not actually being distorted in the warping 
process, it is not necessary to scale the amplitude of the prior by the Jacobian of the transformation to 
conserve mass. 

In this physical analog, the MAP equations (7) and (8) correspond to a problem in static equilibrium. 
The equations represent potential energies and their gradients represent forces. The force that moves the 
solution away from the default solution, d = 0 and a = 5, is provided by the data in the form of VA. 

3.3 Priors on the warp 
We can take a cue from the above physical model as to how to specify constraints on the warp. Clearly the 
degree of local distortion is related to the first derivatives of the mapping. Since the strain energy density 
is proportional to the square of the first derivatives, a reasonable way to control the amount of distortion 
is through the strain energy. For example, we may wish to minimize the total strain energy, given by 

W normal = 
I 

wnormal dx dy = J [C&Y) (3” + C2(Xc,Y) ($)‘I dXdY> 08) 

and similarly for the total shear energy. The region of integration is chosen in a manner consistent with 
the problem. If the integral is over the full rectangular reconstruction and the ci are constant, (18) is easy 
to perform. The resultant expression for the total energy has the same form as the scond term of Eq. (8). 
Then the matrix R,l would be related to the c; in Eqs. (16 and 17). The degree to which distortion 
occurs is governed by the balance between R;l and Rdl in Eq. (8). However, it might make more sense to 
integrate only over the extent of the object being warped, which could complicate the evaluation of (18). 

Priors on these coefficients should correspond to knowledge of the relative degrees of variability en- 
countered for the objects under study. If it were deemed desirable in the warping to maintain right angles 
between grid lines, that is, that the mapping be conformal, then no shear would be allowed, even locally. 
This constraint could be enforced by requiring the shear energy density (17) to be zero, which would place 
restrictions on the parameters of the warp. 

Because constraints of this type may be expressed in general terms, one need not be limited to the 
simple polynomial transformations given in Eq. (14). Quite general forms are possible as the constraint 
of minimizing the total strain energy of the warp will sufficiently control the warp parameters. One could 
perhaps employ splines in which the coefficients at a moderate number of control points comprise the 
variables. ultimately, if extreme local distortion were desired, one could use a finite-element representation 
to describe the mapping [7]. 
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Figure 3: Some results for tomographic reconstruction of an original scene (upper-left) based on four 
parallel views, equally spaced over 180”. The minimum-norm solution is provided by the ART algorithm 
(lower-left); the MAP reconstruction (lower-right) is obtained from an inflexible prior (upper-right). 

4. A SIMPLE EXAMPLE 

To demonstrate the proposed approach, we use a simple example of the reconstruction from a limited 
number of views. Figure 3 shows the original scene consisting of a tilted rectangle. All the images in 
this example are 64 x 64 pixels in size. Four noiseless parallel projections of this object, taken at 45” 
angular increments, are assumed to be available. The result of the Algebraic Reconstruction Technique 
(ART) [B], h’ h * k w ic is nown [9] to converge to a minimum-norm solution of the measurement equations (2), 
is predictably very poor. If it were known beforehand that the object being imaged looked something like 
a square, the square shown (UR) might be hypothesized as a prior. The resulting MAP solution (LR) is 
even worse than the ART reconstruction, basically because the square does not approximate very well the 
actual rectangle. It differs from the actual rectangle in position, size, and orientation. The imprint of this 
wrong guess on the MAP reconstruction is obvious. 

Figure 4 shows the MAP reconstruction obtained from the same data and same prior as used in Fig. 4, 
but with the flexibility provided by the linear warp included. Adding flexibility to the square prior allows 
the algorithm to shift, rotate, lengthen one dimension, and shorten the other to match the data. We note 
that even though the warping did not preclude shear, the force of the data was sufficient to rule it out. 
The final result agrees very closely with the original scene. 
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Figure 4: Results for tomographic reconstruction as described in Fig. 3. However, the prior (upper-right) 
used for the MAP reconstruction (lower-right) is rendered flexible by the proposed warp process that 
includes the constant and linear terms in Eq. (14). Th e six warp parameters are determined as part of the 
reconstruction process. 

5. DISCUSSION 
For the simple example used here, we have not employed any constraining limits on the reconstruction. 

The use of constraints, such as nonnegativity, have been shown to provide bona fide benefit for reconstruc- 
tion from limited data [lo, 11, 12, 131. U se of such constraints in combination with the flexible prior could 
prove to be extremely powerful. The constraints could vary with position relative to the prior model. For 
example, the reconstruction might be required to be nonnegative outside an object, and between 0 and an 
upper limit inside. 

The polynomial mapping used here was chosen for its simplicity. A much more general approach could 
be gained through the use of a finite-element method to describe the warp. Then, every aspect of the warp 
could be made a function of position in the prior model. For example, a1 in Eq. (8) or, equivalently, the 
ci in Eqs. (16 and 17) that describe the rigidity of the warp, could be a function of u and ‘u and, therefore, 
a function of zc and y. With this type of model, some regions of the object could be allowed to distort 
considerably while others remain stiff. With the latitude available in such an approach, the algorithm 
developer gains exquisite control over the reconstruction process. 

This new approach to image reconstruction has ramifications in all fields of imaging. Flexible models 
are quickly finding use in many aspects of computer vision [14]. They are being used to match MRI images 
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to generic shapes from a brain atlas [15]. Indeed, the flexibility provided by warping will likely become 
an essential tool in every area of image analysis and image recognition. Without this flexibility, computer 
models can not capture the essential features of the real objects they are supposed to represent. 
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