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Abstract
We report on the behavior ofthe linear maximum a posteriori (MAP) tomographic reconstruction technique
as a function of the assumed rms noise in the measurements, which specifies the degree of confidence in
the measurement data. The unconstrained MAP reconstructions are evaluated on the basis of the perfor-
mance of two related tasks; object detection and amplitude estimation. It is found that the detectability
of medium-sized discs remains constant up to relatively large before slowly diminishing. However, the
amplitudes of the discs estimated from the MAP reconstructions increasingly deviate from their actual
values as increases.

Introduction
We have previously presented a method to test image-recovery algorithms on the basis of how well the

resulting reconstructions allow one to perform specific tasks set forth for the imaging system [1,2]. Task
performance is numerically evaluated for a specified imaging situation by a Monte Carlo simulation of the
entire imaging process including random scene generation, data taking, reconstruction, and task perfor-
mance. An essential aspect of this method is that the evaluation is based on many randomly generated
scenes leading to a statistically significant estimate of performance. In our previous work we have concen-
trated on the ART algorithm, not for any strong reason, but because it demonstrates good convergence
properties particularly in the presence of constraints, such as that of nonnegativity.

Here we look at the behavior of the linear maximum a posteriori (MAP) reconstruction method, which
is derived assuming that the a priori probability distribution for the ensemble ofimages under consideration
can be described by a multivariate normal distribution. The essence of the Bayesian approach is the use
of prior information expressed in a probabilistic sense concerning the class of images being reconstructed.
The influence of the prior knowledge on the solution is controlled by the assumed rms noise in the data.
The MAP estimate is known to be unbiased, that is, its mean value equals the true value, when averaged
over the complete ensemble of images [3]. For each individual scene, however, the MAP reconstruction
deviates from the actual image towards J. This systematic deviation grows as increases.

In this paper we address the performance of two visual tasks based on images reconstructed from pro-
jections using the linear MAP reconstruction algorithm: object detection and object amplitude estimation.
These tasks are related because the best amplitude estimate is the appropriate decision variable for the
detection task. We observe different behavior as a function of , the assumed value for the rms noise
in the projection measurements, for the accuracy of the performance of these two tasks based on MAP
reconstructions. The choice of affects the declination in the estimated amplitude from its proper value
and the amount of blurring of the reconstructed image. Such a choice is required in a wide variety of
algorithms to control the ill conditioning of the inversion process, as in the stopping rule required in some
iterative algorithms such as the estimation-maximization (EM) algorithm [4], the algebraic reconstruction
technique (ART) [51, and the simultaneous reconstruction technique (SIRT) [6]. Equivalently, x2 which is
the sum of the squares of each residual divided by the assumed rms noise value for that measurement, can
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be used as a side constraint. Such a constraint is employed in the constrained least-squares algorithm of
Hunt [7] and the maximum entropy (MAXENT) reconstruction algorithm [8]. A prevalent rule-of-thumb
is that x2 should equal the number of measurements [7,4]. This constraint might be unsettling to those
who learned that in parameter estimation, the best estimate is taken to be at the minimum in x2 [9].
As x2 has its foundation in the assumed normal probability distribution for the measurement errors, the
minimum x2 condition is the same as that of maximum likelihood. It is known that if there exists an
unbiased solution with minimum variance, it is the same as the maximum-likelihood solution [10]. Thus
there seems to be some justification for proceeding to the minimum x2 and not stopping at a predetermined
value. How then do we choose the best value of x2 (or cr,) in MAP? The numerical evaluation procedure
employed here provides one method to investigate how this choice affects task performance based on the
MAP reconstructions.

Linear MAP Reconstruction
The linear maximum a posteriori (MAP) algorithm is derived under the assumption that the a priori

probability distribution for the ensemble of images under consideration is described by a multivariate
normal distribution. The relevant parameters used in that description are the vector f, the mean of all
images in the ensemble, and R1, the ensemble covariance matrix. The Bayesian approach then leads to
the requirement that the solution minimizes [11]

çb(f)=(f—J)TR1(f—f) + (g—Hf)TR1(g—Hf) , (1)

where g is the measurement vector, related to the image vector f by the measurement equation

g=Hf+n , (2)

where n is the additive measurement noise vector and R the noise covariance matrix. In computed
tomography (CT), the H matrix represents the complete set of available projection measurements and
matrix HT the backprojection process. The second term of (1) is derived from the expression for the
likelihood, which is based on the assumption that the measurement noise follows a normal (Gaussian)
probability law. The influence of the prior knowledge on the solution is controlled by the ratio of the
ensemble variance to the noise variance o . As Eq. (1) is a simple quadratic form, it is guaranteed to
have a unique solution, in the absence of nonlinear constraints.

The solution to (1) is found by setting the gradient of çb to zero, leading to the linear MAP equation:

Rj1(J—JMAP) + HTR(g_HJ) = 0 . (3)

It is observed that the MAP solution 'MAP is a balance between J and the solution to the measurement
equation (2), which is also called the maximum-likelihood solution. The MAP estimate is known to be
unbiased, that is, when averaged over the complete ensemble of images, the estimate is the same as the
average true function value [3]. This statement is true because the first term of Eq. (3) effectively pulls the
estimate towards the ensemble mean f. However, this statement is misleading because it only refers to the
average value taken over the ensemble of images. If the average were carried out over all noise realizations
for a single scene, the MAP reconstruction would deviate from the actual image towards f. This deviation
grows as increases. As a fundamental tenet, we maintain that what is really important is how well tasks
can be performed on basis of the resulting reconstructions. The abovementioned effects may or may not
be important in the performance of relevant visual tasks. Hence, it is important to directly evaluate how
well such tasks may be performed.

For stationary blur matrices (H) and covariance matrices, the usual approximation of replacing Toeplitz
matrices by circulants [7] transforms Eq. (3) into the following expression in the Fourier domain:

* - H*
MAP = H*H+i f +

H*HIr, g ' (4)
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where i = o/cT, which reflects the assumption that the covariance matrices lack cross correlations so that
R1 = diag(aI) and R = diag(cr,I). In this expression, H is the Fourier amplitude corresponding to the
blur function and H* is its complex conjugate. All quantities (except ?) are implicit functions of the 2D
spatial frequency. Equation (4) is the Wiener filter with the addition of the leading bias term, proportional
to f, the ensemble average.

The limiting forms of this expression are of interest. For very large o:

MAP (1 — j_lH*H) 1 + 71lH* g , (5)

which approaches plus a term whose contrast is decreasing and is proportional to a blurred version of
difference between the data g and the measurements corresponding to . Ignoring the noise, the last term
is proportional to H*Hf, that is, a doubly blurred version of the original image. Therefore, as o grows, the
reconstruction approaches the ensemble average image with a low-contrast, blurred version of the difference
of the original image from f added to it. The blurring degrades task performance on two accounts. First,
it mixes noise with signal and, second, different objects are blended together, confusing the interpretation
of any individual object. We observe from (3) or (4) that between the two limits the linear MAP solution
responds in a continuous fashion to ij.

As — 0:

'1MAP = (IHI) ? + [H* 711 g . (6)

Note that at the frequencies where HI = 0, the second term is zero and MAP = Thus, where the
measurements provide no information, the estimate takes on the default value . In terms of the space
of reconstructed functions, this region is called the null space [11]. The second term is recognized as the
Fourier transform of H g, where Ht is the Moore-Penrose pseudoinverse of the matrix H [12,7]. This
term is the same as the familiar expansion of the pseudoinverse of the matrix H in terms of singular value
decomposition in which the terms with zero singular value are dropped. When = 0 where HI = 0, Eq.
(6) is the maximum-likelihood estimate, which is also the least-squares or minimum x2 solution. This type
of solution is known to often be ill conditioned, that is, unstable and noisy because the matrix HTH is
singular or nearly so. The various techniques for ameliorating solutions to ill-posed problems are brought
into a general framework by regularization theory [13,14]. In that context the MAP approach overcomes
ill conditioning through the regularization provided by the first term of Eq. (3).

In the generalized Tikhonov approach to regularization [13], the solution vector f is given by the
minimum of

lg — Hf12 + Afl(f) , (7)
where A � 0 and IZ(f) is a positive scalar function of f. The solution strikes a balance between a least-
squares solution (maximum-likelihood estimate) to the measurement equations g =Hf and the minimizer
of the regularization term 1(f), whose strength is controlled by the scalar A. The regularization term is
included to transform the often ill-posed problem of finding the least-squares solution into one that is well
posed. At the same time it allows one to impose desired properties on the solution, which may be (but
often are not) founded on prior knowledge about the class of fs under consideration.

The similarity between (7) and (1) suggests a common behavior of the MAP method and the method of
Tikhonov regularization. Thus the effect of the use of prior information, which is the hallmark of the MAP
approach, is to provide regularization. The stability of the MAP solution may be analyzed with the tools
provided by regularization theory [14,15]. Conversely, Tikhonov regularization may be interpreted in terms
of the Bayesian approach. The regularization term can be chosen or even judged on the basis of what is
reasonable for the kinds of images with which one is dealing in any specific application. A mathematically
sound basis for choosing the regularization term might be found in the ensemble properties of the images
in question. However, the best performance of specified tasks requires a more complete analysis of the
properties of the ensemble than the simple mean bias.
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Iterative Solution Algorithm
An iterative method provides a convenient way of finding the solution to the MAP equation [11]. The

initial estimate is the ensemble mean image
jO=j. (8)

The residual of the linear MAP equation (3) for the kth estimate is

rc=j_fà + R1HTR(g_Hf) (9)

= RjHTRg + I — AIk (10)

where the matrix A is defined as
A = (I+ R1HTRH) . (11)

In the previous iterative scheme [16,11], this residual was used to update f". As r is just the gradient of
the function to be minimized, i. e. ç7Ø, that algorithm is equivalent to the method of steepest descent,
which is known to suffer a slow rate of convergence as the minimum is approached. An alternative scheme
that converges more quickly is the method of conjugate gradients [17], in which an intermediate vector is
formed from rc:

k rk+,8k_lpc_l , (12)

where by definition, 3O 31 0. Scalar ,3k1 chosen as

IA k k—i
ak—i VT P 13F'

where the inner product of vectors a and b is denoted by (a, b), to make each k A-orthogonal to the
previous one, i. e. (Apc, k_i) 0. Then the update to 1k

jk+i fk + akpk , (14)

where the scalar ik kr r
—

(Ap,rk)
is chosen to make orthogonal to rc. Note that in a single updating procedure corresponding to
one complete pass through the data, called one iteration, this algorithm requires six projection (H) or
backprojection (HT) operations. These operations, which take the same amount of time to complete,
dominate the calculation time for the reconstruction. The algebraic reconstruction technique (ART) [5]
requires only two such operations per iteration, and is therefore three times faster per iteration. While
this conjugate-gradient algorithm is found to converge more quickly in unconstrained problems than the
preceding one, both algorithms tend to stagnate when the nonnegativity constraint is invoked. Thus no
results are presented here for constrained MAP reconstruction.

In our reconstruction procedure, each input projection is routinely slightly blurred before being passed
onto the reconstruction algorithm. The blur function is triangular in shape and has a FWHM of 3 projection
samples. The purpose of this preblurring process is to make sure the input projections do not contain
higher spatial frequencies than can be reproduced by the combination of the pixel representation of the
reconstruction and the projection algorithm. Otherwise the reconstruction algorithm tends to induce
ringing (overshoot and undershoot in response to rapid transitions) in the reconstruction in an attempt to
match the input data. This phenomenon is identical to that of Gibb's [18] as both arise from an insufficient
ability of the representation to reproduce the input function. The consequence of the mild preblurring is
that the rms value of the noise in the data presented to the reconstruction algorithm is reduced by a
calculable factor of /i/9 or 0.4843, and the noise becomes slightly correlated. We will quote the rms
values of the noise after preblurring.
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Method to Evaluate Task Performance
The overall method for evaluating a reconstruction algorithm used here has been described before

{ 1,2]. In this method one numerically evaluates a task performance index for a specified imaging situation.
This technique consists of a Monte Carlo simulation of the entire imaging process including random scene
generation, data taking, reconstruction, and performance of the specified task. The accuracy of the task
performance is determined by comparison of the results with the known original scene using an appropriate
figure of merit. Repetition of this process for many randomly generated scenes provides a statistically
significant estimate of the performance index. When the ability to perform a task is marginal, task
performance is inherently stochastic in nature. This is obvious when the data are significantly degraded by
random noise. However, it is also often true in measurement geometries in which the data are limited and
noiseless. The artifacts produced by the ambiguities arising from the lack of data depend on the scene. As
the scenes vary in an uiicontrollable manner, so do the artifacts. Interpretation of the image can thus vary
from one scene to the next in an apparently random fashion [2].

As the details of the evaluation techiüque are given elsewhere, they will not be discussed here. The
amplitude estimate for each disc is taken to be the average reconstruction value over the area of the disc.
This choice does not yield accurate estimates of the amplitude because it does not take into account the
blurring effects of the discs, which may be sizable. For the decision variable 'çb, which is used to determine
whether or not a disc is present, it is assumed that the same average value is appropriate. The detectability
index ' is based on the two frequency distributions of the decision variable 'çb calculated where the object
is known to be present and where none is present [1,2].

Results
In this study we wish to elucidate the behavior of the linear MAP solution as the assumed rms noise

value u is varied. The effect of changing is to alter the relative weights of the two terms in the linear
MAP equation (3), thus changing the strength of the prior. In each example, the actual rms noise value
remains fixed, leaving the input data unchanged.

We will use for these examples the same specifications for the scenes to be imaged as we used before
{1,19]. The first scene in the sequence of ten test images is displayed in Fig. 1. The test images include
ten high-contrast discs with amplitude 1.0 and ten low-contrast discs with amplitude 0.1. The discs, which
have a diameter of 8 pixels, are randomly placed without overlap in a circle of diameter 128 pixels. The
experimental data in this tomographic problem consist of parallel projections, each view containing 128
samples. Each projection is accurately calculated as a strip integral of the analytic expressions for the
discs. As such, the projections include high spatial frequency components, necessitating the preblurring
operation described above. Gaussian-distributed pseudorandom noise is added to the projections before
preblurring to simulate measurement noise.

In the first measurement scenario, 100 views evenly spaced over 1800 are assumed and the rms noise
in the preblurred projection data is 1.9. This level compares to the peak.projection value for a single low-
contrast disc of 0.8. In this measurement situation, the data are sufficient in number to provide an artifact-
free reconstruction. The reconstructions obtained with 50 iterations of the conjugate-gradient algorithm
are shown in Fig. 2. This number ofiterations proved sufficient to solve the linear MAP equation (3) to very
good accuracy in all cases but = 0.1, which did not fully converge. The covariance matrices are assumed
to be proportional to the identity matrix. The ensemble characteristics are accurately reproduced by setting
f to 0.0423 and the diagonal elements of R1 to o, where oj = 0.19. A reconstruction obtained using 100
iterations of the algebraic reconstruction technique (ART) [5] is also shown. The relaxation parameters
)to = 0.75, rj = 0.960, defined in [1], are purposely chosen to produce a result that closely resembles the
MAP reconstruction with o 0.1. Great latitude in the character of the ART reconstruction exists
through the variation of these relaxation parameters. They can, for example, be chosen to optimize the
reconstruction for the performance of specified tasks [20,19,21]. As an aside, their values, as well as the
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Figure 1: The first in the sequence of ten test images used to evaluate task performance. Two related
tasks are to be performed on the low-contrast discs; estimation of their amplitudes and detection of their
presence.

number ofiterations chosen, relates to the amount ofregularization employed in the solution [14], something
we will discuss in the last section. Thus, neither of these reconstructions represents the true pseudoinverse
solution, but they are approximations to it.

We observe in the reconstructions displayed in Fig. 2 the tendencies discussed earlier. When the
assumed rms noise is very small, the MAP algorithm yields a reconstruction very similar to the ART
reconstruction after 100 iterations. The latter is an approximation to the pseudoinverse solution and so,
in the limit of small , the MAP approaches the maximum-likelihood estimate. When is somewhat
larger than the actual rms noise, the MAP solution becomes a blurry, low-contrast version of the actual
scene. A Fourier spectral analysis of the reconstruction with the largest assumed rms noise value indicates
that, at intermediate spatial frequencies, the amount of blurring is consistent with the expected blur filter

w_1, where is the radial spatial frequency.

Figure 3 shows the average amplitude of the 100 low-contrast discs and the approximate 300 disc
regions taken from the background, calculated as the average within an appropriately placed 8-pixel-
diameter circle. These amplitudes approach an approximation to their actual values as decreases to
zero. The values for the ART reconstructions are displayed in the graph at = 0. The most accurate
value for the amplitude of the discs is about 12% lower than its actual value because of the small blurring
effects in the reconstruction that are not properly accounted for in using the average within a sharp-edged
circle. As increases from zero, amplitude estimates of the discs and of the background move away from
their actual values toward J= 0.0423, which is approached asymptotically as gets large.

In Fig. 4 we see that the rms residual, proportional to the square root of x2, increases as o', increases,
slowly at first, and then more rapidly. The minimum value is 1.70, only slightly lower than the rms noise
value (known to be 1.94) indicative of a sufficient number of measurements to perform the reconstruction.
This figure also displays the detectability index d' obtained at various c values. The detectability index
for the low-contrast discs remains essentially constant until the assumed rms noise exceeds its actual value,
but eventually decreases for large c. This decrease probably arises because of the expected and observed
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Figure 2: Linear MAP reconstructions from the same data for different assumed rms noise values a, of 0.1
(upper right), 2.5 (lower left), and 10 (lower left). The projection data consist of 100 views with added
noise with an actual (fixed) rms value of 1.9. For comparison, the unconstrained ART reconstruction (100
iterations) obtained from the same data (upper left). All images are displayed with the same window of
-0.2 to 0.4.
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Figure 3: The average amplitude measured for the discs and background region in MAP reconstructions
obtained with various assumed rms noise values for 100 views actually contaminated with an rms noise value
of 1.9. For this and subsequent graphs, the leftmost point of each curve is for the ART reconstructions.
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Figure 4: The detectability index and the rms residual obtained in MAP reconstructions from 100 views
with an rms noise value of 1.9.
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Figure 5: The root mean square (L2) and Li error in the reconstructions based on the difference between
the reconstruction and the original scene, for MAP reconstructions from iOO views with an rms noise value
of i.9.

characteristic blurring of the linear MAP algorithm for large . For the performance of the detection task,
it does not matter what value is assumed for the rms noise, so long as it is less than or equal its actual value.
We note that the detectability index based on the area under the receiver operating characteristic (ROC)
curve dA {i] is always consistent with ' for the examples shown here. This is not surprising because we
expect the underlying histograms in the decision variable to be Gaussian shaped for these unconstrained
reconstructions.

Figure 5 shows both the L2 and Li norm errors in the MAP reconstructions as a function of the
assumed rms noise value. A fairly well-defined minimum exists in the rms (L2 norm) error at an assumed
noise value that is slightly below its actual value. As approaches zero, both errors increase dramatically
because of the presence of high-frequency noise in the corresponding reconstructions. What is interesting
is that the performance of the specified detection task is not adversely affected by this high-frequency
noise. One of these two measures of reconstruction error is often used to pick the appropriate that
'optimizes' the reconstruction algorithm. We observe that, at least as far as detection of medium-sized
objects is concerned, there is no corresponding deterioration in task performance for small o. It remains
to be seen whether other tasks dependent on the information content at higher spatial frequencies, such
as the Rayleigh-inspired task of binary/singlet discriminatiOn {2i], are adversely affected by such noise.

Figures 6 and 7 show that results of similar character are obtained for a limited angle situation, i6
views covering i80° with only a small amount of noise added (rms value =0.5). The MAP reconstructions
are obtained with iOO iterations, which provided good convergence for all but the smallest value (of
0.1). The ART reconstruction, whose results are presented on the graphs at = 0, is obtained with
i50 iterations and the relaxation parameters Ao = i.5,r = 0.980. The ART reconstruction is virtually
identical in appearance to the latter MAP reconstruction. A significant change from the overdetermined
reconstructions is the approximate 25% drop in the estimated amplitude of the discs and a decrease in
the background amplitude in the small c, limit. This effect is caused bj the lack of determinancy of the
solution arising from the insufficient number of available views, which the algorithm counteracts by pushing
the solution in the direction of the ensemble mean f = 0.0423. The convergence toward this constant for
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Figure 6: The average amplitude measured for the discs and for the background region in MAP recon-
structions obtained with various assumed rms noise values for 16 viewscontaminated with an actual rms
noise value of 0.5. The leftmost point of each curve is for the ART reconstructions.
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Figure 7: The detectability index for the low-contrast discs and the rms residual obtained in MAP recon-
structions from 16 views with an rms noise value of 0.5.
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large is similar to that observed above for 100 views.

.
Another departure from the earlier results for 100 views is that the minimum rms residual is 0.20,

sigmficantly smaller than the known rms noise value of 0.5. This dramatic reduction is again caused by the
hxmted number of views. In this underdetermined problem, it should be possible to drive the residuals to
zero. The fact that this lower limit is not reached indicates the existence of a small amount of regularization
in the solution. Without such regularization, the solutions could be very noisy indeed. The detectability
index behaves as before.

Discussion
We have investigated the performance of two related tasks: object detection and object amplitude

estimation. These tasks are related because the best amplitude estimate is the appropriate decision variable
for the detection task. However, we observe different results for these two tasks as a function of o. It
is found that in MAP reconstructions of scenes containing a mixture of high- and low-contrast discs, the
contrast of the low-contrast discs relative to the background decreases steadily as o increases. As o —+oo,
the solutions approach the constant used for the ensemble average J. The estimates for the amplitude of
these discs can deviate substantially from their actual values. On the other hand, the detectability index
does not change as quickly. The reason is that detectability is based on the difference between the estimated
amplitude of the object and the estimated background value compared to their rms deviations. The choice
of , whichis akin to stopping an iterative algorithm at a predetermined value of x2 , affects the declination
in the estimated amplitudes from their true values.

The similarity between the equations on which Tikhonov regularization (7) and linear MAP (1) are
based, suggests that the same type of behavior noted above for MAP will be exhibited by variations of the
Tikhonov approach. Some such variants include the standard Tikhonov form in which the regularization
term is simply 1112 (i. e., minimum norm), and the maximum entropy (MAXENT) algorithm [8] in which
the regularization term is f2 ln(f/ef), where f is the image that MAXENT will produce in the limit

as the rms noise in the datagoes to oo, aptly called the default image. Early work on the evaluation of the
MAXENT algorithm indicates that it behaves similarly to the linear MAP method in some respects [22].

Consideration ofhow the linear MAP algorithm functions, as seen from Eq. (3), leads to the observation
that, on a pixel-by-pixel basis, unless f =f, for nonzero the linear MAP estimate will be biased away
from the actual value of the original image ft towards f. This tendency increases as increases. It is
generally observed in the field of regularization that there is a tradeoff between spatial resolution, which
controls the fluctuations in the reconstruction and the conditional bias. This behavior seems to [14,15]
be unavoidable and we suggest it is an inevitable property of solutions to ill-posed problems. The bias
effect should be kept in mind by those who wish to derive quantitative results from image reconstructions.
The desire to eliminate bias tends to support the choice of a relatively small value of o. An interesting
aspect of the present work is that neither the average amplitude nor the detectability is affected very
much by choosing very small values for . Conventionally the choice of is made to minimize the rms
reconstruction error, which would advocate be close to co, the actual mis noise. Minimum Li error would
speak for even higher . As seen in Fig. 3, a significant decrease (about 20%) in the contrastbetween
the disc amplitudes and the background accompanies these conventional choices. This potentialdeviation
from reality should be borne in mind by those who make use of algorithms that employ a constraint on
x2. The same arguments apply to the other mechanisms used to regularize solutions to ill-posed problems
mentioned in the introduction.
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