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Abstract

In most previous studies involving the ideal observer, the task considered has been that
of simple detection where it is assumed that there is complete a priori knowledge of the
background and of the possible object's shape, amplitude, and position. It is shown that
redefining the detection task to include the possibility of an unknown, slowly varying back-
ground reduces the importance of the low- frequency components in the image for the ideal
observer. More complicated tasks than object detection are also considered, such as deter-
mination of an object's position and width and the resolution of two objects. These higher -
order tasks further enhance the importance of the high- frequency information content of the
image.

Introduction

There is growing interest in the use of the ideal observer to determine the best task
performance possible in a given imaging situation. The definition of such a standard is
useful to quantitatively evaluate image quality or to determine the absolute efficiency with
which human observers can perform specified imaging tasks. The ideal observer is not a real
entity, but rather an algorithm that is designed to accomplish the task at hand. Normally
the ideal observer itself is not implemented. Instead, only its measure of performance is
calculated to determine how well it would have done if it had been implemented. Since the
ideal observer typically is developed using a maximum likelihood estimation procedure,' -4 it
will provide optimum performance in the absence of prior information.

In recent years the ideal observer approach has been applied to the simple detection task
to obtain a measure of image quality for various imaging modalities.8

-7
In the simple

detection task, it is assumed that there is complete a priori knowledge of the background
and of the possible object's shape, amplitude, and position. The task is to decide whether
the object is present or not. Although the simple detection task represents a drastically
oversimplified situation, tacitly it is hoped that the performance of this simple task is
closely related to the tremendously complex task of diagnosis. For example, the use of the
Landolt C has been proposed as a measure of image quality.8 The task is to identify which
of the four (or eight) possible orientations of the hole in the annulus is correct for a
specific C. It is fairly obvious that this task is closely related to a multiple applica-
tion of the simple detection task.

In an effort to further simplify the expression for the ideal observer's performance of
the simple detection task, Wagner, et al.9,10, introduced the concept of the effective sam-
pling aperture to characterize the size of the object to be detected as well as the spatial
resolution and noise properties of an imaging system. This approach is based on the fact
that the simple formula, which results for detectability under the assumption that the
object shape, the system MTF, and noise power spectrum are all Gaussians, appears to be
applicable to a variety of other functional shapes provided the effective area of each shape
is used. Detectability based upon the simple detection task using either the effective
sampling aperture or the detection of a simple object, such as a disc, has been employed to
calculate the absolute efficiency of x -ray imaging6,11,12 and to optimize various imaging
systems. 13-20 This approach has also been employed to characterize human observer perform-
ance of detection of various sorts.21 -28 The absolute efficiency of the human observer with
respect to the ideal observer for the simple detection of objects in noiseless images29 as
well as in noisy images30 has been measured through carefully conducted experiments. The
references cited above are only a sampling of the many articles written on these topics and
are not meant to represent a complete survey of the available literature.

The reason the simple detection task has recieved so much attention is that it is so
simple. The relaxation of any of the assumptions made about the task would complicate the
theoretical results and add additional degrees of freedom to the already difficult experi-
mental procedures. However,it will eventually be necessary to consider the effect of remov-
ing all of the simplifying assumptions in order to make the connection between the simple
detection task and even the simplest practical diagnostic task. For example, the absolute
calibration of actual imaging systems can rarely be relied upon so a priori knowledge of the
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value of the background level is likely to be of little benefit. Thus, the backgound level
must be determined from each image. This eliminates the usefulness of the zero -frequency
component in the image for the detection task. It will be argued below that this reasoning
may be extended to include more complicated background distributions and that the result is
to diminish the significance of the low- frequency contribution to the detection task.

In the hierarchy of imaging tasks, detection is the least complex, with recognition and
identification each representing increasingly more difficult tasks.31,32 In many imaging
situations the distinction between these various tasks becomes blurred. It may not be pos-
sible to truly say a feature in an image is detected unless there is some ability to recog-
nize the class to which that feature belongs. This becomes even more important when the
feature is superimposed upon a complicated background. For example, the "detection" of
lesions in the lung or breast involves much more the recognition of lesions, as distin-
guished from normal structures, than the mere detection of a region of increased density.
Recognition rests upon the synthesis of information about various parts of an object, the
study of which is the topic of pattern recognition, a field that has not yet reached matura-
tion. While the detailed modeling of a complex diagnostic task is beyond our present capa-
bility and is likely to remain so for some time to come, it is useful to consider some
simple mensuration tasks that appear to be related to certain recognition problems. The
mensuration, or measurement, tasks to be considered here all involve localization, either of
an edge or of an object itself. The recognition problem of distinguishing between a circle
and a square clearly involves the estimation of the position of an object's edge along it's
perimeter. The tasks to be addressed here, measurement of object width and position and the
separation of two objects, are not at all new.2'3 The objective of the present work is to
refocus attention on these higher order tasks, which might be more closely related to real-
istic imaging problems. It will be shown that these higher order tasks place increased
emphasis on the high- frequency components in the image.

Simple detection

The optimum method for deciding which of two a ternative two -dimensional functions is
present in a noisy image was developed by Harris for uncorrelated noise and was later
extended by Wagner`' to include possible noise correlation. It was assumed that the noise in
the image is normally distributed, additive, stationary, and independent of the signal.
Both derivations were based upon the maximum likelihood approach, which is known to yield
optimum results when there is a lack of a priori information about the relative frequency of
occurrence of the alternative functions. Let the two possible functions be f1(x,y) and
f2(x,y). The derivations consisted of constructing a decision function, namely the loga-
rithm of the ratio of the likelihood that the given image is due to fl to that due to f2.
The square of the signal -to -noise ratio for this binary decision, defined as the square of
the difference between the mean decision function values for the f1 and f2 divided by the
variance in the decision -function for either alternative, was found by Wagner to be

f f

IFI -F2I2
SNR2 =

S
dudv (1)

where Fi(u,v) and F2(u,v) are the Fourier transforms of f1 and f2, H(u,v) is the contrast
transfer function, and S(u,v) is the noise power spectrum. The integration is over the
orthogonal spatial- frequency variables, u and v, and is to include all relevant regions in
that domain. The contrast transfer function H is the modulation transfer function scaled to
allow the units of the image to differ from those of the original functions, f1 and f2. The
ideal observer can only achieve this optimized performance if the correlations in the noise,
as characterized by S, are known and taken into account. For example, in the case of simple
detection of Gaussian - shaped objects in CT reconstructions the optimum SNR is 25% larger
than that achieved if the noise were assumed to be uncorrelated.6

The integrand in Eq. 1 may be viewed as the density of SNR2 for the discrimination
between f1 and fa as represented in the frequency domain whose integral over all frequencies
is the total SNR'. The fundamental quantity that affects the contribution of the available
difference signal power, IF1 -F212, to the SNR2 is the density of noise -equivalent quanta

NEQ(u,v) - IH(u,v)12
S(u,v) (2)

The NEQ is obviously a property soley of the imaging system. It summarizes the relationship
between the attenuated power of the signal and the noise power. Roughly speaking, NEQ is
related to the information density transmitted by the imaging system per unit signal power.
The precise relation between the information capacity of an image and NEQ may be found in
Ref. 5.
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In the simple detection task it is assumed that the background is completely known
beforehand. If fl is the background function and f2 is the sum of the background and the
known object function, the difference signal is just the object function f(x,y). The SNR
for the simple (binary) detection problem, alternatively known as the detection sensitivity
index d', therefore is given by

SNR2 = d'2 = JfNEQ IFI2dudv , (3)

where F(u,v) is the Fourier transform of the object f(x,y). It is seen that for the simple
detection problem all of the frequency components of the object, after being weighted by
NEQ, contribute equally to SNR2. The changes in this expression that result from either
unknown background or alteration in the type of task will be explored below.

Detection in unknown background

Some information about the structure of the background in an image must be known a priori
or be derivable from the image itself in order to perform any detection task. This is pain-
fully evident when an attempt is made to incorporate unknown background in a detection algo-
rithm such as the ideal observer. When human observers view familiar images they typically
do not realize the importance of the background because they recognize nearly every feature
present. However, in some normal images, such as group pictures containing a dozen or more
people, the need to identify an individual from the set of similar objects can readily make
apparent the importance of the background (the other faces). In numerous types of diagnos-
tic procedures the distinction between normal and abnormal structure is subtle, requiring
the radiologist to consciously consider the background (normal) structure.

It is impossible to develop a universal model for background structure and to draw gen-
eral conclusions about the effects of background upon detection because background structure
is so variable. The simplest assumption that can be made if the background is not com-
pletely known beforehand is that it is constant. In most imaging situations this asssump-
tion fails. However, in a large class of images it is very reasonable to assume the
background is slowly varying. For example, it is often assumed that the background has a
linear or quadratic dependence upon the spatial variables x and y. In the implementation of
a detection algorithm, the coefficients in the low -order polynomial expansion of the back-
ground are considered as variables to be determined from the image itself. An equivalent
way to express a slowly varying background would be in terms of a low -order sine -cosine
expansion. A maximum -likelihood approach is used to determine the coefficient of each term
in the expansion together with the amplitude of the known function that represents the
object to be detected. The low- frequency components of the data contain contributions from
the background, the object to be detected, and the noise. If the amplitudes of the back-
ground can have arbitrary values and are not interrelated, they can only be determined from
the data through inference using the known object function whose amplitude is determined
from the high- frequency data components. The low- frequency components of the data clearly
do not help determine the amplitude of the object function in this situation. Therefore,
the detection sensitivity index given in Eq. 4 must be modified to include only those fre-
quencies for which the arbitrary background components do not exist. One way to accomplish
this is to multiply the integrand by a weighting function that is zero below the maximum
background frequency and unity above it.

In some situations there may be a priori knowledge of the general appearance of the back-
ground. This type of knowledge can be thought of in terms of a randomized ensemble of pos-
sible backgrounds. Then the maximum likelihood approach must be replaced by one of maximum
a posteriori (MAP) to obtain optimum performance. It may be possible to model such an
ensemble in terms of a mean value and a covariance matrix for either the spatial or Fourier
domain representations or perhaps for the coefficients in a functional series expansion.
This may simplify the resulting MAP equation.33 While the details of the technique become
important for each specific situation, the same sort of reasoning as presented above is

applicable to a greater or lesser degree. However, in general, when the background must be
determined from the data, the importance of the corresponding frequency components is

reduced for the purpose of detecting the object.

The above discussion has been based upon qualitative arguments and should not be taken to
indicate the exact quantitative effect upon detection of unknown background. For example,
one must consider in more detail the phase relationships between the object and the back-
ground, which are obviously important when the object has limited extent and is in a previ-
ously known location. When the object's position is not known, the phases become important
for determining its location as well as its amplitude (detection). The effect on detecta-
bility of not knowing the possible object's position is not well understood and deserves
more attention."
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Object specification

The detection of an object is simply related to the estimation of the amplitude of the
object with a specified waveform.34 As mentioned in the introduction, there are other
parameters of interest that further specify an object and their estimation may be more
closely related to complex diagnosis than is the detection task. Suppose it is desired to
estimate the position of a object with a known waveform that is superimposed upon a com-
pletely known background. The accuracy with which an individual parameter can be estimated
may be derived from the expression for the SNR2 for the binary decision problem, Eq. 1. To
address the accuracy of position determination let the binary decision be whether the wave-
form fl = f(x,y) or the waveform f2 = f(x +o,y) is present. Then, using Eq. 1, it is easy to
show that the SNR2 for this task is

SNR2 = 4JTNEQ IFI2 sin2(nuA)dudv (4)

Recall that this SNR2 refers to properties of the decision function, which for this problem
must depend solely upon the only variable, the displacement A. For small displacements, the
"signal" in the signal -to -noise ratio must be proportional to 0. Therefore, in the limit of
small A it is possible to unambiguously identify the SNR2 as the ratio of o2 to the variance
of A,

42
= lim SNR2 (5)

ob, 4 +o A

= 472A2 JJ NEQ IFI2u2dudv

Cancelling the A2 factors on both sides of the equation yields the final result

Q-2
0 = 4n 2JJ NEQ IFI2u2dudv

(6)

(7)

The variable u is the spatial frequency associated with the spatial variable x in which
direction the object position is to be measured. The position accuracy in the y- direction
is found by replacing u2 by v2. When NEQ is a constant, the integrand of Eq. 7 is seen to
be the square of the Fourier transform of the partial derivative of f(x,y) with respect to
x. The integral in this case is the same as the integral over x and y of the square of the
same partial derivative. This is a familiar result for uncorrelated noise and no blurring.
See, for example, Ref. 35 in which the noise was assumed to be signal dependent. It says
that information concerning the position of an object exists only where the object function
changes with position, which is obvious.

Figure la shows a one -dimensional example of the use of the binary decision approach to
determine the accuracy with which the ideal observer can estimate the position of an object.
The Gaussian waveform is shown in two alternative positions. Decision theory dictates that
the useful signal for deciding between these two positions is the difference signal shown as
the dotted line. The SNR2 for the decision is given by Eq. 1, so the relevant contribution
from the object is the square of the Fourier transform of the difference signal, that is the
power spectrum of the difference signal. This is shown in Fig. lb as the dotted line. It
can be seen that the amplitudes of the object that are important for position estimation
occur at higher frequencies than the power spectrum of the object itself, shown as the solid
line. Equation 7 gives the precise mathematical statement of this. Figures lc -f show the
same conclusion is reached for the tasks of object width and binary- object separation esti-
mation In the latter task the objective is to determine the separation between two similar
objects, as for example in the measurement of the separation between binary stars.

Table 1 summarizes the accuracies attainable in the various object specifications dis-
cussed above. The square of the performance indices presented is equal to the integral over
all spatial frequencies of the respective integrands. It is observed that for the higher
order tasks, higher frequencies are more important than for the lowest order task of ampli-
tude estimation, which is equivalent to object detection. For width determination, the u2
weighting is reinforced by the partial derivative of F with respect to u, which is typically
small at low frequencies. For the estimation of the separation of binary objects, the high -
frequency contributions are enhanced by the factor of u4.

The relevance of the above results may be demonstrated by consideration of a typical
screen /film combination, Hi- Plus /XRP. Figure 2a displays the MTF2,36 noise power spec -
trum,37 and resulting NEQ spectrum for this screen /film system at a net diffuse optical
density of unity. Assume the object and the NEQ spectrum to be circularly symmetric. Then
with a change of the integration variables in Eq. 7 to polar coordinates, the integration
over the polar angle may trivially be done resulting in a one -dimensional integral
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x. The integral in this case is the same as the integral over x and y of the square of the 
same partial derivative. This is a familiar result for uncorrelated noise and no blurring. 
See, for example, Ref. 35 in which the noise was assumed to be signal dependent. It says 
that information concerning the position of an object exists only where the object function 
changes with position, which is obvious.

Figure la shows a one-dimensional example of the use of the binary decision approach to 
determine the accuracy with which the ideal observer can estimate the position of an object. 
The Gaussian waveform is shown in two alternative positions. Decision theory dictates that 
the useful signal for deciding between these two positions is the difference signal shown as 
the dotted line. The SNR 2 for the decision is given by Eq. 1, so the relevant contribution 
from the object is the square of the Fourier transform of the difference signal, that is the 
power spectrum of the difference signal. This is shown in Fig. Ib as the dotted line. It 
can be seen that the amplitudes of the object that are important for position estimation 
occur at higher frequencies than the power spectrum of the object itself, shown as the solid 
line. Equation 7 gives the precise mathematical statement of this. Figures Ic-f show the 
same conclusion is reached for the tasks of object width and binary-object separation esti 
mation In the latter task the objective is to determine the separation between two similar 
objects, as for example in the measurement of the separation between binary stars.

Table 1 summarizes the accuracies attainable in the various object specifications dis 
cussed above. The square of the performance indices presented is equal to the integral over 
all spatial frequencies of the respective integrands. It is observed that for the higher 
order tasks, higher frequencies are more important than for the lowest order task of ampli 
tude estimation, which is equivalent to object detection. For width determination, the u 2 
weighting is reinforced by the partial derivative of F with respect to u, which is typically 
small at low frequencies. For the estimation of the separation of binary objects, the high- 
frequency contributions are enhanced by the factor of u 4 .

The relevance of the above results may be demonstrated by consideration of a typical 
screen/film combination, Hi-Plus/XRP. Figure 2a displays tne MTF 2 , 36 noise power spec 
trum, 37 and resulting NEQ spectrum for this screen/film system at a net diffuse optical 
density of unity. Assume the object and the NEQ spectrum to be circularly symmetric. Then 
with a change of the integration variables in Eq. 7 to polar coordinates, the integration 
over the polar angle may trivially be done resulting in a one-dimensional integral
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Fig. 1. One-dimensional examples of binary- decision tasks related to the measurement of
object position, object width, and the separation between two similar objects. In

a, c, and e the solid and dashed lines show the two alternative waveforms and, the
dotted lines show the difference of these signals. In b, d, and f the correspond-

ing power spectra of these curves are displayed. These power spectra, which
determine the relative contributions to the SNR2, demonstrate the increased signi-

ficance of the high- frequency components in the signals for these measurement
tasks.
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ing power spectra of these curves are displayed. These power spectra, which 
determine the relative contributions to the SNR 2 , demonstrate the increased signi 
ficance of the high-frequency components in the signals for these measurement 
tasks.
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Fig. 2. (a) The MTF2, noise power spectrum, and NEQ spectrum, for Hi- Plus /XRP.
(b) Various weightings of the NEQ spectrum that contribute to the SNR2 for object
detection (f NEQ) and object position measurement (f3 NEQ) for point -like objects.
These show that much higher frequencies are important for localization than for
detection.

Parameter

TABLE I

Performance
Index I ntegrand

Amplitude, A A aA1 NEQIFI2

Width, W W awl NEQ

Position, A a1 4r2NEQIFI2u2

Binary Tr4d2NEQIFI2u4
Separation, d

Summary of the integrands appropriate for determining
the ultimate accuracy with which the specified tasks
can be performed. The higher order tasks place
increased emphasis on higher frequencies through
powers of u, the spatial frequency corresponding to
the direction in which the measurements are to be
performed.
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These show that much higher frequencies are important for localization than for 
detection.

TABLE I

Performance 
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Binary 
Separation, d
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Summary of the integrands appropriate for determining 
the ultimate accuracy with which the specified tasks 
can be performed. The higher order tasks place 
increased emphasis on higher frequencies through 
powers of u, the spatial frequency corresponding to 
the direction in which the measurements are to be 
performed.
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-2 = 43 fNEQ F2 w3dw (8)

where w= (u2 +v2)1/2 is the radial frequency. Figure 2b shows this integrand for Hi- Plus /XRP
after factoring out the object power spectrum, together with the corresponding integrand for
object detection (Eq. 3) under the assumption of circular symmetry. The square of the per-
formance indices for position estimation and detection are the respective areas under these
two curves after multiplication by the power spectrum of the object under consideration. If
the object is point -like (less than 50 pm wide) its power spectrum will be flat over the
displayed range of frequencies. Then the important frequencies for detection are between
0.5 and 2.5 mm -1. However, for position measurement the important frequencies are from 2 to
beyond 6 mm -1. The increased importance of the high- frequency components of the image for
position determination are clearly evident. If the NEQ spectrum of the imaging system had
dropped precipitously after a frequency of 3 mm -1, it would have very little effect upon the
ability to detect small objects. On the other hand the accuracy with which such objects
could be located would be severly impaired. It should be pointed out that the MTF of this
system is about 0.1 at 3 mm -1. Ordinarily, this might be considered to be the cutoff fre-
quency of this system. However, in this example, the ideal observer derives significant
information for MTF values down to 0.02 for the purpose of position determination.

This observation has profound consequences for a large range of procedures in imaging
science from the optimization of imaging systems to the choice of sampling rates to digitize
images. It can be seen from the above exercise that a system optimized for object detection
may not be optimized for object localization. Furthermore, from the observation that
neither the MTF2 nor the NEQ sprectrum in Fig. 2a can be approximated by a Gaussian (appear-
ing as an inverted parabola on this graph), it can be concluded that the simple effective -
aperture approach applicable to the detection task9'19 will not adequately approximate the
integrals indicated in Table 1 for the higher order tasks.

Discussion

The extension of the simple detection problem to more complicated tasks has been consid-
ered. In any imaging task, some assumption must be made about the possible background. The
effect on the ideal observer of the inclusion of an unknown background in the detection task
is to reduce the significance of image amplitudes in the frequency intervals assumed to be
spanned by the unknown background. The measurement of object width, object position, and
separation between two similar objects have also been addressed. These higher order tasks,
which all revolve about localization of object edges, place more significance on the high -
frequency components present in the image than does simple detection. Thus, system studies
that are based upon the simple detection task may be misleading when the the system is to be
used to perform more complicated tasks. The highly complex task of radiographic diagnosis
is likely to be more closely related to the higher order tasks considered here than to the
detection task. This may partially help explain the preference of radiologists for images
with superior high- frequency response, even when the size of the objects involved in the
diagnostic task would not seem to require it. The results presented here indicate that the
seemingly subtle high- frequency response of imaging systems must be carefully considered
when designing or intercomparing such systems. The back -of- the -envelope type of calcula-
tions that are afforded for simple detection through the use of effective- aperture approxi-
mations may not adequately predict system performance of higher order tasks.
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