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Abstract

The loss of detection sensitivity incurred by any stage of image processing may nor-
mally be characterized by the frequency dependence of the detective quantum efficiency (DQE)
of that stage of processing, provided the image is represented in continuous coordinates.
However, limitations to the DQE concept arise when discretely sampled projection data are
used to obtain discretely sampled computed tomographie (CT) reconstructions. The source of
these limitations is the aliasing produced by the discrete sampling which mixes contribu-
tions from various frequencies. An associated problem is that the SNR for the detection of
an object can depend upon the position of the object relative to the discrete reconstruction
pixels. The effective SNR for discrete images must take into account this variation.
While there may be no loss in the detection SNR for reconstructions in continuous coordi-
nates (DQE = 100 %!), a reduction in the SNR will result from aliasing for discrete recon-
structions. A simple one -dimensional model elucidates the characteristics of discrete CT
reconstruction.

Introduction

The problem of the detection of objects in statisticallyll4mited computed tomographic
(CT) reconstructions has been approached by several authors. These authors have mainly
dealt with effect of the unusual correlations in CT noises -Ion the detection of reconstruc-
ted objects. Their derivations, based on continuous coordinates, have thus far avoided the
question of the effect of discrete reconstructions on detection. This paper will concen-
trate on these effects which will become especially important for the detection of small
objects (i.e., smaller than a few pixels width). A one -dimensional model of the CT recon-
struction process will be used to demonstrate the types of effects that can be expected to
occur in the standard 2 -D (or 3 -D) CT reconstruction. The results for the 1 -D model are
directly applicable to situations in which discrete 1 -D signals are combined to improve the
signal -to -noise ratio.

One- Dimensional Case

1 -D Model

A one -dimensional model will be used to illustrate the effects of discrete sampling.
Figure 1 presents the hypothetical x -ray radiographical situation. A source of x rays il-
luminates a section of uniform background material in which is embedded the object to be
detected. The integral of the combined attenuation coefficient through the material,

called the projection, is
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Fig. 1 One- dimensional model for the
detection of an object.

No(x)
p(x) + po = in

N(x)
(1)

where N (x) is the initial x -ray density and
N(x) is °the unscattered x -ray density. p(x)
is the contribution from the object and p is
the constant contribution from the hackgróund
material. The noise power spectrum' of the
measured projections arising from the statis-
tical fluctuations in the number of detected
x rays is

S(f) = Ñ (2)

where N is the average density of unscattered

Work supported by the U. S. Department of Energy

SPIE Vol. 173 Application of Optical Instrumentation in Medicine VII (1979) / 291

THE DETECTIVE QUANTUM EFFICIENCY OF COMPUTED TOMOGRAPHIC (CT) RECONSTRUCTION:
THE DETECTION OF SMALL OBJECTS*

K. M. Hanson
University of California, Los Alamos Scientific Laboratory 

Los Alamos, NM 87545

The loss of detection sensitivity incurred by any stage of image processing may nor 
mally be characterized by the frequency dependence of the detective quantum efficiency (DQE) 
of that stage of processing, provided the image is represented in continuous coordinates. 
However, limitations to the DQE concept arise when discretely sampled projection data are 
used to obtain discretely sampled computed tomographic (CT) reconstructions. The source of 
these limitations is the aliasing produced by the discrete sampling which mixes contribu 
tions from various frequencies. An associated problem is that the SNR for the detection of 
an object can depend upon the position of the object relative to the discrete reconstruction 
pixels. The effective SNR for discrete images must take into account this variation. 
While there may be no loss in the detection SNR for reconstructions in continuous coordi 
nates (DQE = 100$!), a reduction in the SNR will result from aliasing for discrete recon 
structions. A simple one-dimensional model elucidates the characteristics of discrete CT 
reconstruction.

Introduction

The problem of the detection of objects in statistically limited computed tomographic 
(CT) reconstructions has been approached by several authors. These authors have mainly 
dealt with effect of the unusual correlations in CT noise-5 "'on the detection of reconstruc 
ted objects. Their derivations, based on continuous coordinates, have thus far avoided the 
question of the effect of discrete reconstructions on detection. This paper will concen 
trate on these effects which will become especially important for the detection of small' 
objects (i.e., smaller than a few pixels width). A one-dimensional model of the CT recon 
struction process will be used to demonstrate the types of effects that can be expected to 
occur in the standard 2-D (or 3-D) CT reconstruction. The results for the 1-D model are 
directly applicable to situations in which discrete 1-D signals are combined to improve the 
signal-to-noise ratio.

One-Dimensional Case

1-D Model

A one-dimensional model will be used to illustrate the effects of discrete sampling. 
Figure 1 presents the hypothetical x-ray radiographical situation. A source of x rays il 
luminates a section of uniform background material in which is embedded the object to be 
detected. The integral of the combined attenuation coefficient through the material,

called the projection, is
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Fig. 1 One-dimensional model for the 
detection of an object.

p(x) (1)

where N (x) is the initial x-ray density and 
N(x) is°the unscattered x-ray density. p(x) 
is the contribution from the object and p is 
the constant contribution from the ^ackground 
material. The noise power spectrum^ of the 
measured projections arising from the statis 
tical fluctuations in the number of detected 
x rays is

Sp (f) = I (2)

where N is the average density of unscattered
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x rays assuming N » N and 100% detection effi.ciencY. From signal detection theory we
know that the optimum signal -to- noise ratio for the detection of the object is9

2

fdfSNR2 = ¡df - PSNR(f)
.f p

= N
J

df IP(f)I2

(3)

(4)

where P(f) is the Fourier transform of the projection of the object. PSNR stands for the
power signal -to -noise ratio. It is well to point out that this SNR applies to the binary
decision case in which the decision to be made is whether or not a specific signal is pre-
sent at a specific location. In this situation the SNR is the same as the detection sensi-
tivity index d' used to describe the resulting receiver operated characteristic (ROC)
curves.9 The optimum SNR is that achieved by the optimum receiver (or decision criterion),
in which the characteristics of the noise as represented by S, are taken into account. The
optimum receiver is equivalent to the well -known matched filter 10 method. Equations 3 and
4 assume that there is no degradation of the projection signal in the imaging process
(MTF = 1).

Discrete Projections

We now augment the 1 -D model by supposing that the projections are sampled discretely
instead of continuously. Thus, the measurements consist of a sequence of values each of
which correspond to the number of x rays accumulated within an integrating aperture centered
on a given position. It is assumed that the positions of these measurements are evenly dis-
tributed along the x -axis with spacing a. The effect of the aperture may be considered
equivalent to a convolution of the original projection p(x) with the aperture function g(x)..
The Fourier transform of the discretely sampled projections is

CO

PD (f) = G(f) P(f) ei2Trf(0-yo) * E ó(f - 2kfa)
y
° k=-°

(5)

The exponential phase factor results from the offset of the sampling grid relative to x = 0
by a distance y Also, A is the position of the object relative to x = 0, and P(f) is the
Fourier transform of the object centered at the origin. The convolution ( *) with the se-
quence of 6-functions represents the well -known aliasing effect11 which is produced by dis-
crete sampling. The discrete sampling at a spacing a can only represent frequencies up to
the Nyquist frequency f = (2a) -1. Thus, contributions present in the distribution being
sampled which occur at frequencies above fa must reappear below fa. A convenient notation
for this aliasing convolution operation is

00 co

Af {q(f)} = S(f - 2kfa) * g(f) = E q(f - 2kfa)
a k=-.0 k=-0.

Then Eq. 5 may be written as

P
D

(f) = Afa{G(f) P(f) ei21f(A-yo)}
,Ifl s fa

(6)

(7)

The noise power spectrum of the discretely sampled projections is unaffected by the
sampling aperture since the x rays detected in each measurement are independent of those
detected in other measurements. Thus, the noise fluctuations are uncorrelated leading to
a flat noise spectrum (white noise)

SD(f) = 1. ,Ifl s fa (8)
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df PSNR(f) (3)

= N / df |P(f)
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We now augment the 1-D model by supposing that the projections are sampled discretely 
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which correspond to the number of x rays accumulated within an integrating aperture centered 
on a given position. It Is assumed that the positions of these measurements are evenly dis 
tributed along the x-axis with spacing a. The effect of the aperture may be considered 
equivalent to a convolution of the original projection p(x) with the aperture function g(x).. 
The Fourier transform of the discretely sampled projections is

(f) = G(f) P(f) - 2kf (5)

The exponential phase factor results from the offset of the sampling grid relative to x = 0 
by a distance y . Also, A Is the position of the object relative to x = 0, and P(f) is the 
Fourier transform of the object centered at the origin. The convolution (*) with the se 
quence of 6-functions represents the well-known aliasing effect 11 which is produced by dis 
crete sampling. The discrete sampling at a spacing a can only represent frequencies up to 
the Nyquist frequency f = (2a)" 1 . Thus, contributions present in the distribution being 
sampled which occur at frequencies above f must reappear below f . A convenient notation 
for this aliasing convolution operation Is
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k = _oo

2kf ) * g(f) = 
a

(6)

Then Eq. 5 may be written as

(f) = A, (G(f) P(f) e i2lrf(A ~ y o ) } (7)

The noise power spectrum of the discretely sampled projections Is unaffected by the 
sampling aperture since the x rays detected in each measurement are Independent of those 
detected In other measurements. Thus, the noise fluctuations are uricorre lated leading to 
a flat noise spectrum (white noise)
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where N" is the number of x rays detected per unit distance in each projection. Note that
N" need not be equal to N since the detection efficiency may not be 100 %. Also, it should
be realized that this spectrum is only defined for fps fa, as in Eq. 7, not over the whole
frequency range as in Eq. 2.

In order to extend this model to simulate the normal 2 -D CT as we will assume that
many projection measurements are made, each with a different position of the sampling grid

For example, Fig. 2 illustrates four projections taken of a point object with a rect-
angular aperture function of width a. If the set of m projections taken at various values
of yo are used to detect the presence of the object, the optimum SNR is simply:

SNRp = E SNRp(yo)

f
a

1V
yo

(f)12

¡ d f

-f Sp(f)
a

f'

1

a

df
P

(f)

Y o

-f
Sp(f)

a

2

(9)

It is found that in the limit as m goon to infinity, the integral of Eq. 9 may be written
as:

PSNRp(f) = mN" A
fa

{

a

ó A = 0

1 1 9 1 10a

a

b -

G(f)11P(f)

0.25b

I I 1

= NEQ Af
a

0.5b

G
2IPI2}

1 f

f s fa (10)

Fig. 2 Example of discrete
projections obtained
in the 1 -D model for
three different posi-
tions (A) of a point
object. A rectangular
aperture function is
assumed. The recon-
struction is produced
by backprojection
using nearest -neighbor
interpolation with the
same sample spacing as
the projections.
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where N^ Is the number of x rays detected per unit distance In each projection. Note that 
N^ need not be equal to N since the detection efficiency may not be 100$. Also, It should
be realized that this spectrum Is only defined for 
frequency range as In Eq. 2.

as In Eq. 7 5 not over the whole

In order to extend this model to simulate the normal 2-D CT case we will assume that 
many projection measurements are made, each with a different position of the sampling grid 
y . For example, Fig. 2 illustrates four projections taken of a point object with a rect 
angular aperture function of width a. If the set of m projections taken at various values 
of y are used to detect the presence of the object, the optimum SNR is simply:
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The interesting aspect of this equation is that when the signal power is averaged over all
y
o

the offset phase factor in Eq. 7 eliminates those amplitude products which occur at dif-
frent aliased frequencies. Thus, the PSNR for the discretely sampled projections is just
the aliased product of object and aperture power spectra divided by the noise power spec-
trum . The product mN^ has been replaced by NEQ, the total number of noise equivalent quan-
ta detected per unit distance for all of the projections. We see that NEQ plays a central
role in the detection capabilities inherent in the projection data.

It is interesting to analyze the projections depicted in Fig. 2 in terms of the fore-
going. Since the object is assumed to be a 6-function, P(f) = P = constant. Also, the
Fourier transform of the rectangular aperture function is G(f) =°sine of where
sine z = z -1 sin z. 2fa
Then,

PSNRp(f) = NEQPó Af {sinc2 of
2f }

a a

= '_1EQ Po

since when the sinc2 function is aliased, the result is unity. Equation 11 indicates that
PSNR is independent of frequency. But this is what is expected since the projections are
6-functions in their discrete representation leading to a constant signal power in frequency
space.

Discrete Reconstruction

To mimic 2 -D CT reconstruction one step further, let us suppose that we wish to combine
all of the projection measurements into a single 1 -D distribution which we will call a
"reconstruction." It is desirable to maintain the SNR for the detection of the object as
much as possible. However, we will suppose that we are constrained to a discrete represen-
tation for the reconstruction. An appropriate algorithm for the reconstruction process is
that of backprojection. In backprojection, the contribution at a specific point in the re-
construction is proportional to the sum of the values of the projections at that same posi-
tion. Since the projection measurements are only known at discrete positions, some method
of interpolation between these positions is required. If nearest- neighbor interpolation is
employed, the interpolation function h(x) is merely a rectangular function of width a. The
Fourier transform of the interpolated projection is

Pl (f) = H(f) PD (f)
Yo yo

(12)

where H(f) is the Fourier transform of the interpolation function h(x). If the projections
are to be filtered before backprojection, the effect of the filter may be readily incorpo-
rated in H(f). For the 1 -D model at hand, filtering is not required to obtain the proper
point- spread function, as it is in 2 -D CT. Figure 2 illustrates the reconstruction obtained
using nearest- neighbor interpolation for three different positions of the point object with
respect to the reconstruction grid.

In the reconstruction process, it is assumed that the object remains stationary with
respect to the reconstruction grid but that numerous projections are taken with various
grid offsets yo. It can be shown that the resulting reconstruction rD(x) sampled at a
Spacing b has the Fourier transform

RD(f) = Af {H(f) G(f) P(f) ei2o4f}
b

(13)

where the Nyquist frequency for the reconstruction is fb = (2b) -1. It is interesting to
note that the aliasing effects with respect to the projection Nyquist frequency have been
removed by the averaging over all yo. However, since the reconstruction is itself
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discretely sampled, the result is aliased with respect to the reconstruction Nyquist fre-
quency. Similarly, the noise power spectrum of the reconstruction is

D(f) = (NEQ)-1 Ab{IH(f)I2}S

Reconstruction SNR

The power SNR for the reconstruction is

D
2PSNRD(f) - IR (f)I = NEQ

r
SD(f)

Af {HGP e i27Af} 2

Af {IHI 2}
b

,Ifl 5 fb

(la)

(15)

This equation is similar to that obtained for the projections, Eq. 10, but there are subtle
differences. One of the most important features of Eq. 15 is that in the numerator it is
the amplitudes which are aliased, not the power. Thus, the experiential phase factor for
the position of the object A has a powerful effect upon the aliased result. Figure 3 shows
the PSNR of the nearest- neighbor reconstructions given in Fig. 2. For A = 0, the phase
factor plays no role and the aliased contributions add constructively. The result is a
flat PSNR indicative of the I- function reconstruction. However, for A = 0.5, the phase
factor leads to destructive interference between the aliased contributions. Thus, the
phase factor is crucial in accounting for the dependence of the reconstruction upon the
object position.

Equation 15 is also different from Eq. 10 in that the interpolation transform H(f) ap-
pears. However, if H(f) were zero above f (band- limited), then the aliasing has no effect.
The resulting PSNR would be the same as Eqp 10 except that it would not be aliased with
respect to f . Thus, the net SNR (Eq. 3) would be the same,. i.e., there would be no loss
in SNR in thé reconstruction process. One way to achieve this result is to use a very small
sample spacing h for the reconstruction to make f large enough that H(f) is arbitrarily
small above f. Of course, this brute force method may not always be economically feasible,
for example, in 2 -D CT where from 100 000 to 260 000 computer words are routinely used to
represent the reconstructions.

DQE and MTF

The detective quantum efficiency12(DQE) relates the power SNR subsequent to some stage
of signal processing PSNROJT(f) to that preceding that stage PSNRIN(f):

A =0

0 FREQUENCY
f

PSNROUT(f)
DQR(f) PSNRIN(f)

0.25b 0. 5b

(16)

3 The power signal -to-
noise ratios (PSNR)
corresponding to the
reconstructions of
Fig. 2 obtained with
nearest -neighbor in-
terpolation. The re-
lative SNR's for the
detection of the point
object are 1, 0.79,
and 0.71 for positions
A/b = 0, 0.25, and
0.5 respectively.
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discretely sampled, the result Is aliased with respect to the reconstruction Nyquist fre 
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Reconstruction SNR

The power SNR for the reconstruction is
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(f)
= NEQ

A ' (HGP x b
(15)

This equation is similar to that obtained for the projections, Eq. 10, but there are subtle 
differences. One of the most important features of Eq. 15 is that in the numerator it is 
the amplitudes which are aliased, not the power. Thus, the exponential phase factor for 
the position of the object A has a powerful effect upon the aliased result. Figure 3 shows 
the PSNR of the nearest-neighbor reconstructions given in Fig. 2. For A = 0, the phase 
factor plays no role and the aliased contributions add constructively. The result is a 
flat PSNR indicative of the 6-function reconstruction. However, for A = 0.5, the phase 
factor leads to destructive interference between the aliased contributions. Thus, the 
phase factor is crucial in accounting for the dependence of the reconstruction upon the 
object position.

Equation 15 is also different from Eq. 10 in that the interpolation transform H(f) ap 
pears. However, if H(f) were zero above f (band-limited), then the aliasing has no effect. 
The resulting PSNR would be the same as Eq. 10 except that it would not be aliased with 
respect to f . Thus, the net SNR (Eq. 3) would be the same, i.e., there would be no loss 
in SNR in the reconstruction process. One way to achieve this result is to use a very small 
sample spacing b for the reconstruction to make f large enough that H(f) is arbitrarily 
small above f . Of course, this brute force method may not always be economically feasible, 
for example, in 2-D CT where from 100 000 to 260 000 computer words are routinely used to 
represent the reconstructions.

DQE and MTF

12The detective quantum efficiency (DQE) relates the power SNR subsequent to some stage
of signal processing PSNROUT (f) to that preceding that stage PSNRJN (f):

DQE(f) = PSNRIN (f) (16)
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Thus the optimum SNR for the detection of an object after processing is (Eq. 3)

SNROUT fdf DQE(f) PSNRIN(f) (17)

DQE is a convenient concept when applied to continuous coordinates since each stage of pro-
cessing contributes multiplicatively to the net result. However, we see that the aliasing
which occurs for discretely sampled signals renders the DQE concept unusable since the con-
tributions at individual frequencies are no longer preserved. Further, as in Eq. 15, the
aliasing can have different effects on the numerator and denominator of the PSNR and the
effects in the numerator depenFl upon the Fourier transform of the signal, P(f). Thus, it
is impossible to separate PSNRr into two factors as dictated by Eq. 17.

In the situation considered above in which H(f) is assumed to be band- limited to f , we
observed that the aliasing effects no longer exist and that the total SNR for the reco -
struction is the same as for the projections. Thus, in some sense, the DQE(f) for this
case is 100 %. It has already been shown2 for reconstruction in continuous coordinates
(which is an equivalent situation) that DQE(f) = 100 %. The import of this result is that
an object may be detected in a band -limited reconstruction equally well as in the projection
data themselves.

The modulation transfer function (MTF) or optical transfer function(OTF) concepts suffer
the same deficiencies as DQE when applied to discretely sampled signals. While Eq. 13 gives
the Fourier transform of the image, P(f) cannot be separated from the expression as a multi-
plicative factor since the phase variation of P(f) will affect the aliasing results. Ano-
ther way of saying this is that the MTF of a system cannot be defined when the resulting
image is not translation invariant. Of course, when the reconstruction becomes finely
enough sampled that aliasing is eliminated, the reconstruction resolution may be legitimate-
ly characterized by the MTF.

Effective SNR

As noted above, the PSNR(f) for the reconstruction may be a function of the position of
the object relative to the reconstruction grid. It would be desirable to characterize the
average effect of arbitrary or random positions of an object upon the detection capabilities
inherent in the reconstruction. Let us consider as an example a situation in which a point
object can only assume one of two positions, A = 0 and A = 0.5b. As shown in Fig. 3, the
optimum SNR for the reconstructions will be either SNR or 0.71 SNR , provided the observer
is told the possible position of the object before making the decis °on. Suppose each of
the two positions is equally probable. We would like to obtain the best possible ROC curve
for this combined position case with an eye toward extension of the simple binary decision
problem to the problem of the search 3 where the position of the object is not known before-
hand. Now, it is the probabilities for true positive and false positive responses which
add linearly to obtain the combined ROC curve. The optimum ROC response which combines the
best pairs of points from the ROC curves for the two possible object positions can be shown
to belong to a different class than the individual ROC curves. That is, if the individual
ROC curves characterize the performance obtained for additive, Gaussian noise, then the op-
timum combined ROC curve is not of the same form. In other words, the optimum decision
function distribution will have non -Gaussian tails. Thus, the optimum combined response
cannot be characterized by a single effective SNR.

While the foregoing considerations are true in general, the combined ROC curve can be
approximately characterized by the average SNR:

SNReff L. T'i SNRi

i

(18)

where Pi is probability that the object is in the i'th position and SNRi is the correspond-
ing signal -to -noise ratio. This will be a good approximation when the individual SNRi are
not very different from one another or when the SER. are all small N 1). When this is ap-
plied to the reconstruction method described in Fig? 2, the result of averaging over all
possible object positions from A = 0 to A = 0.5b is SNR = 0.81 SNR where SNR is that
for detection based on the projection data. It is seenethat this recBnstructionpalgorithm
yields an average loss in SNR of 19 %. Defining DQE as a summary measure (not a function of
frequency any more):

SNR2
DQE - eff

SNR2.
in

296 / SP /E Vol. 173 Application of Optical Instrumentation in Medicine VII (1.979)

(19)

HANSON 

Thus the optimum SNR for the detection of an object after processing Is (Eq. 3)

SNR^ = /df DQE(f) PSNRTM (f) (17)

DQE is a convenient concept when applied to continuous coordinates since each stage of pro 
cessing contributes multiplicatively to the net result. However, we see that the aliasing 
which occurs for discretely sampled signals renders the DQE concept unusable since the con 
tributions at individual frequencies are no longer preserved. Further, as in Eq. 15, the 
aliasing can have different effects on the numerator and denominator of the PSNR and the 
effects in the numerator depend upon the Fourier transform of the signal, P(f). Thus, It 
is impossible to separate PSNR into two factors as dictated by Eq. 17-

In the situation considered above in which H(f) Is assumed to be band-limited to f , we 
observed that the aliasing effects no longer exist and that the total SNR for the recon 
struction is the same as for the projections. Thus, in some sense, the DQE(f) for this 
case is 100%. It has already been shown 2 for reconstruction in continuous coordinates 
(which is an equivalent situation) that DQE(f) = 100%. The import of this result Is that 
an object may be detected In a band-limited reconstruction equally well as In the projection 
data themselves.

The modulation transfer function (MTF) or optical transfer function(OTF) concepts suffer 
the same deficiencies as DQE when applied to discretely sampled signals. While Eq. 13 gives 
the Fourier transform of the Image, P(f) cannot be separated from the expression as a multi 
plicative factor since the phase variation of P(f) will affect the aliasing results. Ano 
ther way of saying this is that the MTF of a system cannot be defined when the resulting 
image is not translation invariant. Of course, when the reconstruction becomes finely 
enough sampled that aliasing is eliminated, the reconstruction resolution may be legitimate 
ly characterized by the MTF.

Effective SNR

As noted above, the PSNR(f) for the reconstruction may be a function of the position of 
the object relative to the reconstruction grid. It would be desirable to characterize the 
average effect of arbitrary or random positions of an object upon the detection capabilities 
inherent in the reconstruction. Let us consider as an example a situation in which a point 
object can only assume one of two positions, A = 0 and A = 0.5b. As shown in Fig. 3, the 
optimum SNR for the reconstructions will be either SNR or 0.71 SNR , provided the observer 
is told the possible position of the object before making the decision. Suppose each of 
the two positions is equally probable. We would like to obtain the best .possible ROC curve 
for this combined position case with an eye toward extension of the simple binary decision^ 
problem to the problem of the search 1 ^ where the position of the object is not known before 
hand. Now, it Is the probabilities for true positive and false positive responses which 
add linearly to obtain the combined ROC curve. The optimum ROC response which combines the 
best pairs of points from the ROC curves for the two possible object positions can be shown 
to belong to a different class than the individual ROC curves. That is, if the individual 
ROC curves characterize the performance obtained for additive, Gaussian noise, then the op 
timum combined ROC curve is not of the same form. In other words,'the optimum decision 
function distribution will have non-Gaussian tails. Thus, the optimum combined response 
cannot be characterized by a single effective SNR.

While the foregoing considerations are true in general, the combined ROC curve can be 
approximately characterized by the average SNR:

SNReff = £ pi SNRi ( 18 >
i

where p. is probability that the object is in the I T th position and SNR. Is the correspond 
ing signal-to-noise ratio. This will be a good approximation when the individual SNR. are 
not very different from one another or when the SNR. are all small (^ 1). When this is ap 
plied to the reconstruction method described in Fig^ 2, the result of averaging over all 
possible object positions from A = 0 to A = 0.5b Is SNR ff = 0.81 SNR where SNR is that 
for detection based on the projection data. It is seene inat this rec6nstructionp algorithm 
yields an average loss in SNR of 19%. Defining DQE as a summary measure (not a function of 
frequency any more):

DQE =     (19) 

SNR . in

296 I SPIE Vol. 173 Application of Optical Instrumentation in Medicine VII (1979)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/27/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



THE DETECTIVE QUANTUM EFFICIENCY OF COMPUTED TOMOGRAPHIC (CT) RECONSTRUCTION:
THE DETECTION OF SMALL OBJECTS

we find that the DQE of this reconstruction algorithm is 66 %. This means that to achieve
the same average detection capabilities for a point object in the reconstruction as in the
projection data, the number of detected x rays must be increased by a factor of
(.66) -1 = 1.52!

Let us consider an alternative reconstruction algorithm which uses linear interpolation
in the backprojection process. As shown in Fig. 4, the result is to degrade the recon-
struction for A = O. However, the SNR's for A = 0.25b and 0.5b are increased substantially.
The effective SNR is found to be 0.87 SNR and the corresponding DQE is 0.76. Note that
although the reconstruction for A = 0.5b s the same as Fig. 3, the noise power spectrum is
no longer constant (it is an aliased sine ) leading to a higher PSNR.

From the above, we see that it is possible to alter the PSNR spectrum of the reconstruc-
tions by choosing various interpolation functions h(x). If the principal application of the
reconstruction is to facilitate the detection of point -like objects, then the interpolation
function should be chosen to maximize the average detection sensitivity for a given amount
of noise in the projections. It is well to point out that the choice of h(x) may depend
upon the aperture function G(x). Thus, linear interpolation would appear to produce recon-
structions superior to those produced by nearest -neighbor interpolation for the rectangular
aperture assumed in Figs. 3 and 4. In practice, the choice of interpolation function should
be tempered by practical considerations such as computation speed and appearance of the re-
construction (e.g., one might want to minimize ringing artifacts).

2 -D Case

Backprojection

The filtered backprojection reconstruction algorithmi4 used in two -dimensional CT can
be seen to share many of the features of the one -dimensional model. In 2 -D the discretely
sampled projections must also be interpolated in the backprojection process. Figure 5 shows
a set of projections which might be obtained for a point object. Suppose that the object
happened to fall on the center of a reconstruction pixel. Then the positions at which the
values of the projections must be known to obtain the backprojected value of that pixel are
the same as the trajectory of the object. Near 0° it is seen that these positions do not
always coincide with the projection sampling points. Rather, these positions actually are
evently distributed relative to the projection sampling points, much in the same way as oc-
curred in the 1 -D case through the variation in y . Therefore, we expect that in the direc-
tion of these projections the 2 -D reconstruction w°Oill be subject to the same effects as
were uncovered in the 1 -D model. 15 Near 90 °, on the other hand, the pixel position occurs
repeatedly at the same position in the projections. Then for some small range of angles
( 15° in this case), no smoothing over projection position occurs. This leads to a recon-
struction in these directions which more closely resembles the projectiions themselves.

The foregoing considerations indicate that all of the effects discussed in the 1 -D model
will be present to some extent in 2 -D reconstruction. An additional complication in 2 -D
filtered backprojection is the effect of the Ifi filter required to remove the r -1 point
spread function of simple backprojection. This filter must have a rather violent influence
upon the reconstruction in the region close to the object. We might anticipate that this
filter could affect the detection of small objects in 2 -D, for example, because of inexact
cancellation in the realm of discrete reconstruction.

Conclusions

It has been shown for a 1 -D model that reconstruction in discrete coordinates from dis-
cretely smapled projections can lead to a loss of sensitivity for the detection of small
objects. A similar loss of detection sensitivity is likely to occur in discrete 2 -D CT re-
construction.
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we find that the DQE of this reconstruction algorithm is 66%. This means that to achieve 
the same average detection capabilities for a point object in the reconstruction as In the 
projection data, the number of detected x rays must be Increased by a factor of 
(.66)-! = 1.52!

Let us consider an alternative reconstruction algorithm which uses linear interpolation 
in the backprojection process. As shown in Fig. 4, the result Is to degrade the recon 
struction for A = 0. However, the SNR T s for A = 0.25b and 0. 5b are increased substantially. 
The effective SNR Is found to be 0.8? SNR and the corresponding DQE Is 0.76. Note that 
although the reconstruction for A = 0.5b is the same as Fig. 3, the noise power spectrum is 
no longer constant (It is an aliased sinc^) leading to a higher PSNR.

From the above, we see that it is possible to alter the PSNR spectrum of the reconstruc 
tions by choosing various Interpolation functions h(x). If the principal application of the 
reconstruction is to facilitate the detection of point-like objects, then the interpolation 
function should be chosen to maximize the average detection sensitivity for a given amount 
of noise in the projections. It is well to point out that the choice of h(x) may depend 
upon the aperture function G(x). Thus, linear interpolation would appear to produce recon 
structions superior to those produced by nearest-neighbor interpolation for the rectangular 
aperture assumed In Figs. 3 and 4. In practice, the choice of interpolation function should 
be tempered by practical considerations such as computation speed and appearance of the re 
construction (e.g., one might want to minimize ringing artifacts).

2-D Case 

BackprojectIon

The filtered backprojection reconstruction algorithm used in two-dimensional CT can 
be seen to share many of the features of the one-dimensional model. In 2-D the discretely 
sampled projections must also be Interpolated in the backprojection process. Figure 5 shows 
a set of projections which might be obtained for a point object. Suppose that the object 
happened to fall on the center of a reconstruction pixel. Then the positions at which the 
values of the projections must be known to obtain the backprojected value of that pixel are 
the same as the trajectory of the object. Near 0° it is seen that these positions do not 
always coincide with the projection sampling points. Rather, these positions actually are 
evently distributed relative to the projection sampling points, much In the same way as oc 
curred in the 1-D case through the variation In y . Therefore, we expect that in the direc 
tion of these projections the 2-D reconstruction will be subject to the same effects as 
were uncovered in the 1-D model.!5 Near 90°, on the other hand, the pixel position occurs 
repeatedly at the same position In the projections. Then for some small range of angles 
( ~ 15° In this case), no smoothing over projection position occurs. This leads to a recon 
struction In these directions which more closely resembles the projectiions themselves.

The foregoing considerations indicate that all of the effects discussed in the 1-D model 
will be present to some extent in 2-D reconstruction. An additional complication in 2-D 
filtered backprojectIon Is the effect of the |f| filter required to remove the r point 
spread function of simple backprojection. This filter must have a rather violent Influence 
upon the reconstruction in the region close to the object. We might anticipate that this 
filter could affect the detection of small objects in 2-D, for example, because of inexact 
cancellation in the realm of discrete reconstruction.

Conclusions

It has been shown for a 1-D model that reconstruction in discrete coordinates from dis 
cretely smapled projections can lead to a loss of sensitivity for the detection of small 
objects. A similar loss of detection sensitivity Is likely to occur In discrete 2-D CT re 
construction.
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