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ABSTRACT. Bayesian methodology provides the means to combine prior knowledge about
competing models of reality and available data to draw inferences about the validity of those models.
The posterior quantifies the degree of certainty one has about those models. We propose a method
to determine the uncertainty in a specific feature of a Bayesian solution. Our approach is based on
an analogy between the negative logarithm of the posterior and a physical potential. This analogy
leads to the interpretation of gradient of this potential as a force that acts on the model. As
model parameters are perturbed from their maximum a posteriori (MAP) values, the strength of
the restoring force that drives them back to the MAP solution is directly related to the uncertainty
in those parameter estimates. The correlations between the uncertainties of parameter estimates
can be elucidated.

1. Introduction

Bayesian analysis provides the foundation for a rich environment in which to explore infer-
ences about models from both data and prior knowledge through the posterior probability.
In an attempt to reduce an analysis problem to a manageable size, the usual approach is
to present a single instantiation of the object model as “the answer”, typically that which
maximizes the posterior (the MAP solution). However, because of uncertainties in the
measurements and/or because of a lack of sufficient data to define an unambiguous answer
(in the absence of regularizing priors) [1], there is no unique answer to many real analysis
problems. Rather, innumerable solutions are possible. Of course, some solutions are more
probable than others. The beauty of the Bayesian approach is that it provides the proba-
bility of every possible solution, which, in a sense, ranks various solutions. The estimation
of the uncertainty or reliability of the answer remains a pressing issue, particularly when
the number of parameters in the model is large. Although there is a mathematically cor-
rect way to specify the covariance in the parameters, including the correlation between the
uncertainties in any two parameters, it does not provide much insight.

One appealing way to get a feeling for the uncertainty in a Bayesian solution is to
display a sequence of distinct solutions drawn from the posterior probability distribution.
This approach was suggested by Skilling et al. [2], who produced a video display of a random
walk through the posterior distribution. However, the calculational method used in that
work was based on a Gaussian approximation of the posterior probability distribution in
the neighborhood of the MAP solution. Later Skilling made some progress in dealing with
non-Gaussian distributions [3]. While the probabilistic display of Skilling et al. provides
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a general impression of the overall degree of possible variation in the solution, we desire a
means to probe the uncertainty in the solution in a more directed manner.

We propose a technique to test hypotheses regarding perturbations of the MAP solution
in a fashion that allows one to ask questions of particular interest. The approach we suggest
makes use of an analogy between the negative logarithm of the posterior and a physical
potential. The uncertainty of a particular change of the MAP solution is revealed in a tactile
way as a force that tends to pull the solution back toward the MAP solution. Correlations
between the perturbed set of parameters and the remaining parameters in the model are
also brought to light. This innovative Bayesian tool is tangibly demonstrated within the
context of geometrically-defined object models used for tomographic reconstruction from
very limited projection data.

2. Traditional approach to uncertainty

Bayesian analysis revolves around the posterior probability of a model, where the model
parameters are represented by the vector a. The posterior p(a|d) incorporates data through
the likelihood p(d|a), i.e. the probability of the observed data given the parameters, and
prior information through a prior probability on the parameters p(a). Bayes’s law gives the
posterior as p(a|d) ∝ p(d|a)p(a). The most typical use of Bayesian analysis is to find the
parameter values that maximize the posterior, called the MAP solution.

It is convenient to deal with the negative logarithm of the posterior, ϕ = − log{p(a|d)}.
The MAP estimate of the parameters â is found by minimizing ϕ, the condition for which
is ∂ϕ

∂ai
= 0 for all parameters ai, providing there are no constraints on the parameters

themselves. In the traditional approach to the estimation of uncertainty [4], which we only
summarize here, the variances in the parameters are derived from the curvature matrix of
ϕ, calculated at â,

Kij =
∂2ϕ

∂ai∂aj
. (1)

Since this matrix is evaluated at the minimum of ϕ, it must be positive semi-definite, i.e.
(∆a)TK∆a ≥ 0 for any ∆a. In the Gaussian approximation to the posterior, the error
matrix E, which gives the covariances between all the parameters, [E]ij = 〈(ai−âi)(aj−âj)〉,
where the brackets indicate an ensemble average, is the inverse of the curvature matrix,

E = K−1 . (2)

Although this result is mathematically rigorous, it only provides the second moment of
the parameter uncertainties and their correlations. It also suffers from not being very
illuminating in terms of its consequences for the parametric model, particularly in terms of
the correlations in the uncertainties of various parameters. Furthermore, for the 105–106

pixel amplitudes that are typically needed to describe a 2D image, the full error matrix
contains 1010–1012 elements, which can neither be practically calculated nor stored. We
propose another approach to provide a more tangible indication of the degree of uncertainty
in the inferred model as well as the ability to directly probe the uncertainty of specific
features of the model.
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3. Bayesian mechanics

If one draws an analogy between ϕ and a physical potential, then the gradient of ϕ is
analogous to a force, just as in physics. The force fi = − ∂ϕ

∂ai
is roughly in the direction

of the local minimum of ϕ, under suitable assumptions concerning the smoothness of the
dependence of ϕ on the parameters. The condition for the MAP solution, ∇aϕ = 0, can
be interpreted as stating that at the MAP operating point the forces on all the variables in
the problem balance: the net force on each variable is zero. Further, when the variable ai

is perturbed slightly from the MAP solution, the force fi pulls ai back towards the MAP
solution. The phrase “force of the data” takes on real meaning in this context.

A quadratic approximation to ϕ in the neighborhood of the MAP solution implies a
linear force law, i.e. the restoring force is proportional to the displacement from equilibrium,
as in a simple spring. In this quadratic approximation the curvature of ϕ is proportional
to the covariance of the MAP estimate. A high curvature is analogous to a stiff spring and
therefore represents a “rigid”, reliable solution.

An interesting aspect of this interpretation is the possibility of decomposing the forces
acting on the MAP solution into their various components. For example, the force derived
from all data (through the likelihood), or even a selected set of data, may be compared to
the force derived from the prior. In this way it is possible to examine the influence of the
priors on the solution as well as determine which data have the largest effect on a particular
feature of the solution.

We note that the notion of applying forces to model parameters in the preceding dis-
cussion must ultimately be stated in terms of pressures, that is, forces applied over regions,
acting on physically meaningful quantities. The first reason is that the physical world,
which we usually model, exists as a continuum: the physical quantities of interest are typ-
ically densities, which are a function of continuous spatial or temporal coordinates. Thus
meaningful questions about reality should really be stated in terms averages over regions,
not as point values. Secondly, physically feasible measurements can only probe physical
quantities over finite-sized regions. Point sampling is fundamentally impossible. As an ex-
ample, a radiographic measurement in which the attenuation of an x-ray beam is measured
is always subject to the effects of a blurring process that arises from a finite spot size for
the source of x rays and the finite resolution of the x-ray detector. Thus the measured
attenuation is necessarily an average over a cylinder in space. In truth, radiographic mea-
surements can not provide line integrals of an attenuation coefficient through an object,
as is often assumed as an approximation to the real process. Put succinctly, all physical
measurements have limited spatial or temporal resolution that render as meaningless ques-
tions about what happens in an infinitesimally small region. As a result, uncertainties in an
estimated physical quantity can only be addressed in terms of the average of that quantity
over a finite region. As the concepts of Bayesian analysis mature, we will learn to deal only
with physical quantities that are functions of continuous independent variables and we will
avoid referencing directly the underlying discrete parameters of the models.

One needs to be aware that any finite representation, which we are forced to use in
computer models, has a limited resolution. Thus when one explores the model at a scale
finer than the inherent resolution of the model, the model can only respond by interpolation
of the underlying discrete model [5]. One can only meaningfully explore the model at
resolutions coarser than this.
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4. Perturbation from Equilibrium

We propose to exploit the above physical analogy to facilitate the exploration of the uncer-
tainty in a MAP solution. For the present we will assume that in the neighborhood of the
MAP point â ϕ is well approximated by a quadratic expansion:

ϕ = 1
2
(∆a)TK∆a+ ϕ0 , (3)

where ∆a = a−â is the displacement from the MAP point and ϕ0 = ϕ(â). Suppose that we
start from â and displace the parameter values by a small amount ∆a. Then the gradient
of ϕ, −∇aϕ, represents a force that pulls the parameters back toward the MAP point. The
units of the force are those of the reciprocal of the parameter. The curvature, and hence the
reciprocal of the variance, in the direction of ∆a is given by the ratio of |∇aϕ|, evaluated
at â+∆a, to |∆a|, for vanishingly small displacements.

As an alternative to directly displacing parameters, their perturbation may be achieved
by applying an external force to the parameters. Suppose that one pulls on the parameters
with a force f. Note that this force can act on just one parameter or on many. From the
physical analogy, it is easy to write down the new potential;

ϕ = 1
2
(∆a)TK∆a−∆aTf + ϕ0 . (4)

The new minimum of ϕ occurs when

∇aϕ = 0 = K∆a− f . (5)

Solving for the displacement in a and using Eq. (2),

∆a = K−1f = Ef . (6)

If the curvature matrixK, and hence the covariance matrix E, is not diagonal, the resulting
displacement is not in the direction of the applied force. This phenomenon demonstrates
the correlations between the uncertainties in all the parameters. The component of ∆a in
the direction of the applied force divided by the magnitude of the force, i.e. ∆aTf/|f |2, is
the effective variance in the parameters in that direction.

Although we assumed that ϕ is quadratic above, this approach can be useful even when
it is nonquadratic. While it may not be feasible to express the results analytically, we
obtain a feeling for the uncertainty in ∆a and the correlations between ∆a and the other
parameters. Any constraints on the parameters can be explicitly seen. For nonquadratic
ϕ the plot of the value of ϕ versus the applied force provides the means to visualize the
uncertainty in ∆a.

5. Use with Deformable Geometric Model

The above approach takes on a poignant interpretation when the reconstructed object is
defined in terms of its geometric shape. The prior on the geometry is defined in terms
of the default shape together with a prescription of how to assess the probability of other
possible shapes. The latter is simply done by using a Gibbs form for the probability given
as exp(−βW ), where W is the deformation energy, i.e. the energy required to deform the
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Figure 1: An example of how a polygon (solid line) can be distorted by either pushing
node A inward (dashed line) or outward (dotted line), assuming that the measurements
consist of two orthogonal projections. Note the effect on the overall shape of the object,
which indicates the correlations between the polygon vertices.

geometry from the default shape into a new shape [6–10]. The parameter β regulates the
strength of the prior on the geometry.

Figure 1 shows a polygon defined in terms of its 20 vertices or nodes. Thus there are
40 parameters in this model corresponding to the two coordinates needed to specify each
vertex of the polygon. We assume that two sets of parallel projections, one vertical and one
horizontal, are available and that they are subject to a very small amount of measurement
noise. For simplicity we ignore the prior on the deformation described above. Starting
from the known original polygon, a force is applied to the leftmost node (node A), pulling
it outward. The plot of the applied force and the resulting horizontal displacement of
the node is shown in Fig. 2. For positive forces node A moves outward steadily up to
a breakpoint (at a displacement of 0.18), which we call point B. The dotted-line figure
in Fig. 1 shows the configuration of the polygon at that point. We note that the act of
displacing node A outward contradicts the vertical projections, which indicate that there
is probably no material to the left of the original position of the node. Beyond point B
the slope of the curve decreases substantially, principally because new configurations of the
polygon are possible, which can reduce the excessive projection values to the left of the
original position of node A. As an aside, the optimization procedure employed is based on
a steepest descent method. We use the technique of adjoint differentiation to efficiently
calculate the required derivatives with respect to the parameters [11].
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Figure 2: Plot of the force applied to node A of the polygon in Fig. 1 versus the resulting
displacement of that node. The nonlinear nature of the force-displacement law for this
problem is dramatically demonstrated. The configurations shown in Fig. 1 are at the two
breakpoints in the curve: the dashed line corresponds to a force of -0.006 (inward) at point
C and the dotted line to a force of 0.080 (outward) at B.

Applying the force inward (negative force values) results in quite a different behavior.
With a small inward push, the displacement reaches a breakpoint, point C in Fig. 2. The
configuration of the polygon at this point is shown Fig. 1 as the dashed figure. Node A
has just reached the line connecting its neighbors, one of which has moved outward to take
its place in supplying the proper vertical projection. Pushing harder only makes node A
slide down that line, which requires only a little force to achieve a large displacement. The
position of node A is not well determined in this region. We notice that the shape of the
object does not change during this process. The results for this situation are correct, but
may not be what one has in mind when specifying the force. It seems desirable to avoid
applying the force directly to the parameters, in this case, to the position of the nodes of
the polygon. The force should instead be applied to the object and its effect translated to
the parameters. Also we observe that the only reason point C is not closer to the origin
is that the coarseness of our polygon object model limits the flexibility of the object to
respond. With many more degrees of freedom, we would expect neighboring sections of the
object boundary to move out to take the place of node A in response to a slight inward
force.

The correlation between the uncertainty in the position of node A and the positions
of the other nodes in the polygon is demonstrated in Fig. 1. We observe that the nodes
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on the right side of the polygon move to maintain the measured horizontal projection. Of
course, the constraints of the vertical projection also figure into the problem, making the
overall movement of the sides of the polygon rather complex. This approach nicely handles
the complex interaction between all the constraints arising from measurements and prior
knowledge.

For an object modeled in terms of its geometry, poor reliability of the MAP estimate
means that the object is soft or squishy, pliable. Good reliability of the estimate means
that the object is firm. Therefore, “truth” is hard or rigid.

6. Discussion

In the future it may be possible to use the tools of virtual reality, coupled to turbocompu-
tation, to explore the reliability of a Bayesian solution of complex problems through direct
manipulation of the computer model. Force feedback will permit one to actually “feel” the
stiffness of a model. Higher dimensional correlations might be “felt” through one’s various
senses.

To reiterate the comments made in Sect. 3, we suggest that queries regarding physical
quantities should be made in terms of averages over regions rather than in terms of their val-
ues at points. Furthermore, the uncertainties of individual parameters that, as a collection,
are meant to describe a physical quantity as a function of continuous coordinates, may have
little meaning. In regard to an image represented as a grid of pixels, the question “what
is the rms error in a pixel value?,” is impossible to answer without a clear understanding
of what a pixel value represents, e.g. the average value over the area of the pixel. More
meaningful questions can be made for areas larger than that of a single pixel. Furthermore,
the correlations between the average value within a region and the rest of the image must be
considered. Consequently, our language must change. Instead of applying forces to probe
the reliability of individual parameters that are used to describe an object, we should speak
of applying pressures over regions of the object. And it must be understood that when
we ask about regions whose size is on the order of, or smaller, than the resolution of the
discrete model of the object, we will only learn about the interpolation properties of the
model.

The approach to reliability testing described above is very general and can be used in
virtually any other kind of Bayesian analysis. Examples of other contexts are as follows:

Spectral estimation: In typical spectral analysis a scalar variable quantity is estimated
for different discrete frequency values. Normally a single spectrum is estimated. Skilling
et al. [3] probed the variability possible in the answer through their probabilistic display
technique. That display gives one a true feeling for the range of answers possible for a given
set of input data. With our technique, one can ask direct questions about the power over a
specific range of frequencies. The mode of interaction with the spectrum might be thought
of as pushing down or pulling up on a region of the spectrum. In a virtual reality setting, we
can imagine that the analyst would be able to use his fingers to press upward or downward
on various portions of the spectrum. The resistance to this attempted action, fed back to
the users fingers as a force, would indicate the degree of uncertainty in the solution.

Image reconstruction: The basic problem is to estimate the amplitudes in image pixels
from data, each of which is a combination of many pixels, as in tomographic reconstruction
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from projections (strip integrals) through the image, or deconvolution of blurred images.
Interaction with the image can be provided by allowing one to push or pull on the amplitudes
in an area of interest. The concepts behind this technique can be used to make binary
decisions, for example, to decide whether an object is present or not, or to decide between
two different signals [12].

References

[1] K. M. Hanson and G. W. Wecksung. Bayesian approach to limited-angle reconstruction
in computed tomography. J. Opt. Soc. Amer., 73:1501–1509, 1983.

[2] J. Skilling, D.R.T. Robinson, and S.F. Gull. Probabilistic displays. In Jr. W.T. Grandy
and L.H. Schick, editors, Maximum Entropy and Bayesian Methods, pages 365–368.
Kluwer Academic, 1991.

[3] J. Skilling. Clouds. presented at the Workshop on Maximum Entropy and Bayesian
Methods, July 19-24, 1992, Paris.

[4] P. R. Bevington. Data Reduction and Error Analysis for the Physical Sciences.
McGraw-Hill, New York, 1969.

[5] K. M. Hanson and G. W. Wecksung. Local basis-function approach to computed
tomography. Appl. Opt., 24:4028–4039, 1985.

[6] R. Szeliski. Probabilistic modeling of surfaces. Proc. SPIE, 1570:154–165, 1991.

[7] R. Szeliski and D. Terzopoulos. Physically-based and probabilistic models for computer
vision. Proc. SPIE, 1570:140–152, 1991.

[8] K. M. Hanson. Reconstruction based on flexible prior models. Proc. SPIE, vol.
1652:183–191, 1992.

[9] K. M. Hanson. Flexible prior models in Bayesian image analysis. In A. Mohammad-
Djafari and G. Demoment, editors, Maximum Entropy and Bayesian Methods, pages
399–406. Kluwer Academic, 1993.

[10] K. M. Hanson. Bayesian reconstruction based on flexible prior models. J. Opt. Soc.
Amer., A10:997–1004, 1993.

[11] G. S. Cunningham, K. M. Hanson, G. R. Jennings, Jr., and D. R. Wolf. An object-
oriented optimization system. Proc. IEEE Int. Conf. Image Processing, III:826–830,
1994.

[12] K. M. Hanson. Making binary decisions based on the posterior probability distribution
associated with tomographic reconstrcutions. In C. R. Smith, G. J. Erickson, and P. O.
Neudorfer, editors, Maximum Entropy and Bayesian Methods, pages 313–326. Kluwer
Academic, 1991.


