
ESTIMATORS FOR THE CAUCHY DISTRIBUTION

K. M. Hanson and D. R. Wolf
Los Alamos National Laboratory, MS P940
Los Alamos, New Mexico 87545 USA
email: kmh@lanl.gov and wolf@lanl.gov

In Maximum Entropy and Bayesian Methods,

G. R. Heidbreder, ed., pp. 255-263,

Kluwer Academic, Dordrecht, 1996.

Abstract. We discuss the properties of various estimators of the central position of the
Cauchy distribution. The performance of these estimators is evaluated for a set of simulated
experiments. Estimators based on the maximum and mean the posterior density function are
empirically found to be well behaved when more than two measurements are available. On
the contrary, because of the infinite variance of the Cauchy distribution, the average of the
measured positions is an extremely poor estimator of the location of the source. However, the
median of the measured positions is well behaved. The rms errors for the various estimators are
compared to the Fisher-Cramér-Rao lower bound. We find that the square root of the variance
of the posterior density function is predictive of the rms error in the mean posterior estimator.

1. Introduction

We explore the properties of various estimators of the central position of the Cauchy
distribution, which is notorious for the divergent nature of its first and higher moments.
The results of using different kinds of estimators are evaluated by simulating a series of
experiments using a Monte Carlo procedure. Investigation of the Cauchy distribution is
profitable because its peculiar properties illustrate some interesting aspects of parameter
estimation based on Bayesian analysis. It provides us with an example of how to properly
deal with data outliers. Some aspects of this paper have been presented in [1].

2. The Cauchy Distribution

2.1. The problem

Suppose that a radioactive source, located at the position (x0, y0), emits gamma rays.
A position-sensitive linear detector, colinear with the x axis and extending to infinity
in both directions, measures the position xi that the ith gamma ray hits the detector.
The data consist of the values xi, i = 1, ..., N , which we designate by the vector x. The
problem is to estimate the location of the source x0, assuming that y0 is known. This
problem is Gull’s lighthouse example [2] cast in another setting.

Assume that the gamma rays are confined to the x-y plane and are emitted uniformly
in the angle θ at which they leave the source. From the relation tan(θ) = −y0/(xi −x0),
which holds for −π < θ < 0, the probability density function in xi is obtained by using
the Jacobian determinant to transform the density function dependence from θ to x

p(xi|x0, y0) =
y0

π [y2
0 + (x0 − xi)2]

, (1)
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which is called the likelihood of measurement xi. The formula in Eq. (1) is proper
normalized, i.e. its integral with respect to xi is unity. Viewed as a function of x0,
the likelihood for this problem is recognized to be a Cauchy distribution in x0, which
is notorious for having an undefined mean and an infinite variance. The width of this
distribution may be characterized by its FWHM, which is 2y0.

In a Bayesian analysis the posterior probability density function for the x0 position of
the source summarizes the state of knowledge concerning x0 by providing the probability
of every possible value of x0. The posterior of x0, given the data x and the position
parameter y0, is given by Bayes’s law

p(x0|x, y0) ∝ p(x|x0, y0) p(x0|y0) ∝ p(x|x0, y0) p(x0) , (2)

where we have assumed that the prior on x0 is independent of y0. Proportionality
constants are always determined by normalization - the requirement that the probability
that some event occurs is unity. If we suppose we have no prior information about the x0

location of the source, then for the prior p(x0) we should use a constant over whatever
sized region is required. Such a prior is noncommittal about the location of the source.
Each measured xi clearly follows the likelihood, Eq. (1), and, as the emission of one
gamma ray can not effect the emission of another, the xi are statistically independent.
Thus the full posterior probability is

p(x0|x, y0) ∝ p(x|x0, y0) =
N∏

i=1

p(xi|x0, y0) ∝
N∏

i=1

[
y0

y2
0 + (x0 − xi)2

]
. (3)

Again, the normalization is determined by the requirement that the integral of p(x0|x, y)
over x0 is unity. From here on, we will often drop explicit mention of y0 and write the
posterior as p(x0|x).

In the above derivation the posterior probability is the same as the likelihood be-
cause the prior is assumed to be a constant. The likelihood expresses the probability of
obtaining the specific set of measurements, given a particular x0. We emphasize that
Bayes’s law is necessary to gain information about x0 from the likelihood [2].

If it were known that the source position was limited to a specific region, an appro-
priate prior would consist of a function that is a nonzero constant inside the region and
zero outside. This prior would have the effect of eliminating the tails of the posterior
probability in (2) outside the legitimate region. This prior would alleviate any problem
that might exist with the normalization of the prior.
2.2. Monte Carlo simulation

To numerically test how well various estimators of x0 perform, we need to generate
measurements that simulate a series of experiments. The cumulative probably (also
called the distribution function), the probability of a measurement with xi < u, is given
by

P (xi < u) =
∫ u

−∞
p(x|x0, y0) dx =

1
π
tan−1

(
u − x0

y0

)
+

1
2

. (4)

To generate measurements from the Cauchy distribution, one uses a pseudorandom num-
ber generator that provides a number ri in the interval (0,1) and then maps the result
into the xi value using the inverse of (4), xi = x0 + y0 tan[π(ri − 1

2 )].
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Figure 1: The posterior probability density function for the x0 position of the radioactive
source assuming that the correct y0 is known. Each of these plots is shown for one
simulated experiment; the measured xi are displayed on the horizontal axis. The number
of measurements is noted in the upper-right corner of each plot.

Note that when u − x0 � y0, P (xi ≥ u) = 1 − P (xi < u) ≈ y0/π(u − x0). The
probability of getting an xi value that is greater than 1000 times the FWHM of the dis-
tribution (2y0) is roughly 1/1000. Thus the Cauchy distribution offers a superb example
of a data distribution with outliers.

The posterior probability given by Eq. (3) is plotted in Fig. 1 for specific measure-
ments generated using the Monte Carlo technique described above. The plot for two
measurements is bimodal, making it ambiguous to use the maximum posterior probabil-
ity (see Sect. 3.2) to estimate x0. As the number of measurements increases, the width
of the posterior density function decreases, indicating less uncertainty in the knowledge
of x0. The broad tail of the Cauchy likelihood is suppressed as the number of measure-
ments increases because the posterior probability involves a product of likelihoods of the
individual measurements.
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3. Estimation of Location

3.1. Mean and median of the measurements

The average of the xi measurements (or samples) is often used to estimate the central
position of their distribution:

x̂0(samp mean) =
1
N

N∑
i=1

xi . (5)

The variance of the average of N samples taken randomly and independently from an
arbitrary density function is easily shown to be N−1 times the variance of the original
density function, provided such variance exists. Curiously the density function for the
average of N samples from the Cauchy distribution is identical to that for one sample.
Because the variance of the Cauchy density function is infinite, so will be the variance of
the average of any finite number of samples. However, for a Gaussian density function,
this estimator would be the sufficient statistic for the central position and would be
optimal in many ways.

An alternative estimator of the center of a sampled distribution is the sample median
x̂0(samp med), which is supposed to be robust against outliers [3, p. 232]. For odd N ,
the median is defined as the 1

2 (N + 1)th sample in the list of magnitude-ordered mea-
surements; for even N , it is defined as the average of the (N/2)th and the (N/2 + 1)th
samples from such a list.
3.2. Bayesian estimators

The Bayesian viewpoint is that the posterior probability density function for x0 sum-
marizes our state of knowledge of x0 in probabilistic terms. Various types of estimators
can be formed from the posterior. The choice of estimator can be based on how the cost
of making an error in the estimated quantity depends on the size of the error [1]. The
most commonly used estimator in Bayesian analysis is the x0 value at the maximum of
the posterior probability, which we designate by x̂0(MAP), because it is usually called the
maximum a posteriori estimator. The MAP estimator minimizes a cost function that is
zero for no error and a positive constant for any finite error.

The estimate x̂0 that minimizes the expected mean-square error, that is∫
(x̂0 − x0)2 p(x0|x) dx0, is the mean of the posterior density function:

x̂0(post mean) =
∫

x0 p(x0|x) dx0 . (6)

Defining an integral that is proportional to the kth moment of the posterior given in
Eq. (3)

Ik(x) =
y0

π

∫ +∞

−∞
xk

0

N∏
i=1

1
[y2

0 + (xi − x0)2]
dx0 , (7)

the mean (or first moment1) of the posterior is

x̂0(post mean) =
I1(x)
I0(x)

. (8)

1The kth moment of the posterior is Ik(x)/I0(x).
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The integrand in Eq. (7) has simple2 poles at x±
i ≡ xi ± ıy0. By interpreting the integral

as one along the real axis in the complex plane and closing the contour at ∞ in the upper
half plane (which contributes nothing provided the integrand falls off faster than x−1),
the desired result is found using the Cauchy residue theorem

Ik(x) =
N∑

i=1

(x+
i )

k
∏
j �=i

1
(x+

i − x+
j )(x

+
i − x−

j )
, 0 ≤ k < 2N − 1 (9)

=
N∑

i=1

(x+
i )

k
∏
j �=i

[
1

(xi − xj)2 + 4y2
0

] [
1− 2ıy0

xi − xj

]
, 0 ≤ k < 2N − 1, (10)

where the second expression is obtained by simply rearranging the product.
Note that by its definition (7), Ik is real for all allowed k. In particular for k = 1, the

factor (x+
i )

k = xi + ıy0 in Eq. (10) contributes to two summations, one summation with
factor xi and the other summation with factor ıy0. The summation with factor ıy0 is
identically ıy0I0. Because I0 is real, ıy0I0 is imaginary. Thus the ıy0-factor summation
must be exactly cancelled by the imaginary part of the xi-factor summation and we may
write

I1(x) = �



N∑
i=1

xi

∏
j �=i

[
1

(xi − xj)2 + 4y2
0

] [
1− 2ıy0

(xi − xj)

]
 , 0 ≤ k < 2N − 1. (11)

Therefore, the posterior mean estimator (8) has the form of a weighted average of the xi,
x̂0(post mean) =

∑
wixi, where the sum of the weights is unity. Although this expression

looks like a simple variation on the sample average (5), the weights behave in a very
complicated manner. The net effect of the first factor in the product in (11) leads to a
diminished contribution from an outlier. But it is very difficult to conceptually grasp
the effect of the second factor owing to its complex nature.

Figure 2 shows the behavior of the various estimators when a new measurement
is combined with five existing measurements. As the value of the new measurement
moves away from the other measurements, its net effect on x̂0(post mean) goes to zero.
Thus the estimator minimizes the contribution of any measurement that lies far from a
cluster of other measurements, which seems to be an ideal treatment of outliers. Because
the posterior is independent of the order of the measurements, the same behaviour is
expected for any measurement. The posterior maximum estimator behaves similarly to
the posterior mean. A new measurement affects the sample mean in a linear fashion
because it is just a linear combination of all measurements. The outlier sample can
drastically affect the sample mean. The sample median behaves quite differently. The
change in the median reamins constant as long as the (N + 1)th sample lies outside the
central-most two or three samples, depending on whether N is even or odd, respectively.
The estimators based on the posterior are the only ones for which the effect of a single
disparate measurement decreases as its descrepancy from the others increases.

The variance of the posterior density function of x0 for a particular data vector x is
2The procedure described here must be trivially modified when xi = xj for i �= j. However, we need

not consider such coincident measurements because they represent a set of zero probability.
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Figure 2: The change in the estimated position of the Cauchy distribution caused by
adding a new measurement x6 to five existing measurements as a function of the value
of the new measurement. The results are shown for several kinds of estimators.

var{p(x0|x)} =
∫
[x0 − x̂0(post mean)]2p(x0|x) dx0 =

I2(x)
I0(x)

−
[
I1(x)
I0(x)

]2

, N ≥ 2 . (12)

An interesting property of the posterior probability is that its shape depends on the data
x and is hence different for every experiment. See Sect. 4 for its relationship to rms error
for x̂0(post mean).
3.3. Fisher-Cramér-Rao lower bound and Fisher information

The Fisher-Cramér-Rao bound3 places a lower bound on the variance of any unbiased
estimator x̂(x), var(x̂) ≥ I−1

N , where IN is the Fisher information

IN ≡
∫

∂2 log[p(x0|x)]
∂x2

0

p(x0|x) dx , (13)

and where N , the number of measurements, is the dimension of x. Because the posterior
(3) factors, we have IN = NI1, where I1 is the single-sample Fisher information given
by

I1 =
4y0

π

∫ +∞

−∞

(x − x0)2

[y2
0 + (x − x0)2]3

dx =
1
2y2

0

. (14)

In the last step the integral is evaluated by applying the Cauchy residue theorem (as in
Sect. 3.2). Thus the Fisher-Cramér-Rao lower bound on the variance of any unbiased
estimator of x0 is

var(x̂) ≥ [NI1]−1 =
2y2

0

N
. (15)

3Fisher stated this lower bound many years before Cramér and Rao [4, p. 66].
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Table 1: Summary of the performance of several estimators of the central position of
a Cauchy distribution observed in 105 trials for a fixed number of samples per trial N .
The estimators used are the mean and the median of the samples, and the maximum
and mean of the posterior probability density function. The last two columns give the
Fisher-Cramér-Rao lower bound on the rms error and the rms width of the posterior
probability.

rms error in estimated position
N samp mean samp median post max post mean CR rms post
1 2.85× 1010 2.85× 1010 2.85× 1010 2.85× 1010 1.414 ∞
2 1.43× 1010 1.43× 1010 −− 1.43× 1010 1.000 1.43× 1010

3 9.52× 109 2.828 2.825 2.768 0.816 2.616
5 5.71× 109 1.103 1.070 0.958 0.632 0.963
10 2.86× 109 0.578 0.538 0.522 0.447 0.523
20 1.43× 109 0.373 0.341 0.339 0.316 0.339
40 7.14× 108 0.256 0.236 0.232 0.224 0.232

It is important to note that this lower bound is valid only for unbiased estimators, i.e.
when averaged over all possible data, it yields the correct result

∫
x̂0(x) p(x|x0) dx = x0.

We have established through subsidary calculations that both the sample median and
posterior mean are unbiased for N ≥ 3 and that their variances exist for N ≥ 4.

4. Simulation Results

The performance of the above estimators for x0 is tested by simulating 105 experiments,
each involving a fixed number of measurements, which are independently drawn from a
Cauchy distribution as indicated in Sect. 2.2. The parameters are held fixed at x0 = 1
and y0 = 1 throughout. The results are summarized in Table 1. In these numerical
experiments, except for the sample mean, the bias is always observed to be consistent
with zero to within its statistical uncertainty, i.e. on the order of the [rms error of the
estimator] /

√
T , where T is the number of trials.

We observe that the average value of the measurements performs terribly! This poor
performance was anticipated, owing to the infinite variance of the Cauchy distribution.
The only reason that the rms error in x̂0(samp mean) is not infinite, as mentioned, is that
only a finite number of trials are included. The largest xi in the particular sequence of
pseudorandom numbers used to generate 4 × 106 measurements for the N = 40 test is
9.03×1012. Because of the symmetry of the likelihood (1) for one and two measurements,
all the estimators are identical for N = 1 and 2. The posterior mean and maximum
perform much better than the sample average for three or more measurements.

The estimators based on the sample median and the maximum of the posterior prob-
ability density function perform only slightly worse than the one based on the posterior
mean. Just as they demonstrate the weakness of the sample mean estimator, these
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results underscore the value of the sample median as a simple estimator that is ro-
bust against outliers. The table indicates that rms(x̂0(samp med)) > rms(x̂0(post max)) >
rms(x̂0(post mean))

The Fisher-Cramér-Rao lower bound on the rms error is seen to be a valid lower
bound for the estimators summarized in the table, which only begin to approach the
lower bound for N ≥ 20.

It is natural to ask whether the posterior is predictive of the uncertainty in an esti-
mator. The rms width of the posterior for our Cauchy problem rms{p(x0|x)} may be
calculated by taking the square root of the variance in x0, calculated using Eq. (12). The
results for the simulated experiments, shown in the last column of the table, indicate
that this calculation does predict the rms error in the x̂0(post mean) estimator.

We note that the shape of the posterior depends on the measured data and hence
is different for each experiment. Furthermore, the shape of the likelihood depends on
the relative positions of the xi, as inferred from Fig. 1. This behavior is different for a
Gaussian likelihood with a uniform prior, for which the width and shape of the posterior
for a fixed number of data samples does not depend on the actual data values. We find in
104 trials for N = 5 that when the trials are selected on basis of rms{p(x0|x)}, the rms
error in the estimator x̂0(post max) for those trials reproduces the chosen rms{p(x0|x)}.
This result indicates that the posterior prabability density function derived for each
experiment provides information about the certainy in inferences made on the basis of
that experiment. It is clear that such information can be used to make decisions about
whether more data should be taken to achieve a desired accuracy of interpretation.

5. Discussion

The prior used in the Bayesian analysis is the uniform prior. Because the uniform prior
on the real number line is not normalizable, the analysis must be viewed as a limit over
normalized priors [5]. In practice, the prior should reflect the state of prior knowledge.

Our analysis assumes that the measurement interval is the complete x axis. When
the measurement interval is finite, and assuming that a fixed number of measurements
are made, the posterior has asymptotically nonzero constant tails. The reason for this is
that the probability of the measurements is then simply the product of the probabilities
p(xi|x0, y0) of Eq. (1), with each normalized to unity over the finite measurement interval.
For large x0, the normalization constant is effectively the width of the measurement
interval times the value of the Cauchy distribution tail in that interval (Eq. (2) may
be used to establish the precise relationship). Thus, the normalization constant has the
same large x0 behavior as the Cauchy distribution that it normalizes, and this gives rise
to the asymptotically nonzero tail.

For a source of fixed intensity, the assumption of fixing the number of measurements
corresponds to varying the measurement interval until the specified number of photons
is gathered. A more reasonable assumption might be to consider a fixed time interval.
In this case, the number of measurements follows a Poisson distribution, so that the
likelihood for N measurements discussed the last paragraph is modified by the factor
P (N |x0, y0) = e−λλN/N !, where λ = λ(x0, y0) is the source intensity times the total
probability that a measurement occurs in the measurement interval.
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