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Abstract. Least-squares data analysis is based on the assumption that the normal (Gaussian)
distribution appropriately characterizes the likelihood, that is, the conditional probability of each
measuremerd, given a measured quantigyp(d|y). On the other hand, there is ample evidence in
nuclear physics of significant disagreements among measurements, which are inconsistent with the
normal distribution, given their stated uncertainties. In this study the histories of 99 measurements
of the lifetimes of five elementary particles are examined to determine what can be inferred about
the distribution of their values relative to their stated uncertainties. Taken as a whole, the variations
in the data are somewhat larger than their quoted uncertainties would indicate. These data strongly
support using a Student t distribution for the likelihood function instead of a normal. The most
probable value for the order of the t distribution is 2:60.9. It is shown that analyses based on
long-tailed t-distribution likelihoods gracefully cope with outlying data.
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INTRODUCTION

The likelihood plays a central role in any inference process. The likelihood is the
conditional probabilityp(d|y), whered the measurement of a physical quantjityin
Bayesian analysis, the posterior, which fully describes the outcome of the analysis, is
the product of the likelihood and the prior. The information brought to the analysis by
the data comes from the likelihood. Least-squares (LS) analysis is a consequence of
using the normal (Gaussian) distribution for the likelihood. The more general likelihood
analysis, from which LS analysis is derived, is not so restricted; other forms for the
likelihood are permissible.

Nuclear physics experiments offer substantial evidence of disagreement among re-
peated measurements. One indication is that the minigtiin data analyses is often
significantly larger than the number of data points. In that situation, the analyst typi-
cally inflates the final uncertainty to cover the range of dispersion of the data. The large
value ofx? indicates that either the data do not match the fitted model and/or the stated
standard errors are too small and/or the assumption of a normal distribution is incorrect.

The fundamental question is, how well do experimentalists estimate the uncertainties
in their results? The approach adopted here to answer that question is to examine a
collection of repeated measurements and see what can be inferred about the distribution
of measurements relative to their estimated uncertainties.



21 SOSNOVSKII 59 _—
20} =20cHrisTENS 67 —
19 CHRISTENSEN 72 —
18 BONDARENKO 78 —
17 KOSVINTSEV 80 R
16 BYRNE 80 —_—
15} 15KosvinTsEv 86 —_
14LAST 88 . 13 GLASSER 61
E)‘ 13 SPIVAK 88 T 12 TIETGE 62
(%) 12 PAUL 89 — 11 VON-DARDEL 63 ——
S 11 KOSSAKOWSKI 89 —t - 10} :okoLLeres
< 10} 1omaweeso 15} 9 SHWE 64 _
) 9 BYRNE 90 - 7] 8 EVANS 65
8 ALFIMENKOV 90 © 7 BELLETTINI 65 —
7 NESVIZHEVSKY 92 T 6 STAMER 66 —_—
6 MAMPE 93 A B} skrysHkino -
5 5 BYRNE 96 ™ 4 BELLETTINI 70 -
4 ARZUMANOV 00 3 BROWMAN 74
3 DEWEY 03 2 ATHERTON 85
2 SEREBROV 05 1 WILLIAMS 88
1NICO 05 + 0
0 -10 0 10 20 30
700 800 900 1000 D lifeti 57
Neutron lifetime (s) lifetime (10 ~' s)

FIGURE 1. Plots of all measurements, in chronological order, of the lifetimes of the neutronand
particles.

Lifetime measurements of elementary particles are useful for this purpose because
there are approximately twenty repeat measurements for each of the longest known
particles. | will show that these data strongly support using a Student t distribution
for the shape of the likelihood function instead of a normal distribution. Furthermore,
experimenters tend to underestimate the uncertainties in their results. It is shown that
analyses based on long-tailed likelihoods, like the t distribution, gracefully cope with
outlying data.

PARTICLE LIFETIME DATA

In 1957 Gell-Mann and Rosenfeld [1] published an authoritative review of the properties
of elementary particles. Their work quickly led to the formation of the Particle Data
Group, which now summarizes the known properties of elementary particles on an
annual basis. For each particle property, the committee: (a) lists all relevant experimental
data, (b) decides which data to include in its final analysis (outliers often rejected), and
(c) states the best current value and its estimated standard error. The final results are
typically obtained using the least-squares average of the accepted data. The standard
error is often magnified by/x?/(n— 1) to take into account the dispersion of the data.

Incidentally, in half of all 64 PDG tables involving three or more entries the stan-
dard error is adjusted, and when it is, the average scale factor is 2.0. These numbers
indicate the frequent occurrence of significant disagreements among particle-physics
measurements, relative to their quoted uncertainties. These observations are even more
remarkable because the data involved have been carefully selected by the PDG.

The PDG reports [2] are an excellent source of information about measurements of
unambiguous physical quantities. They are available online, and provide insight into
how physicists interpret data.

Figure la shows all measurements of the lifetimes of the neutron compiled from
Ref. [2] and earlier PDG reports. The vertical line is the PDG value, which includes
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FIGURE 2. (a, left) Composite of lifetime measurements of five elementary particlgs, m°, K, and
A. The discrepancy of each measurement from the recent PDG value is divided by the quoted standard
error. (b, right) Histogram of the normalized discrepancies.

the seven most recent data sets, except for #2 [3], because it disagrees with the rest by
9.5 standard errors. For all 21 poingg,(relative to PDG) = 149. Itis clear from the plot

that the data set contains several outliers, that is, measurements that disagree with the
PDG value by more than three times their stated standard errors.

Figure 1b shows all measurements of the lifetimes ofrtheeson. The PDF value,
indicated by the vertical line, is based on the four most recent values, excluding the latest
one (#1). Included in the PDG average is #4, which is 4.7 standard errors away from the
PDG average. For the 13 data poirg$(relative to PDG) = 40.

Figure 2a shows the discrepancies of 99 lifetime measurements for five particles from
PDG values, divided by their standard errofs,/o. These five particles are chosen
because they were among the first discovered of the unstable particles. Figure 2b shows
the histogram of these normalized discrepancies. The objective of the present study is
to characterize the distribution of discrepancies relative to their estimated uncertainties,
At/o. For these 99 data pointg? = 367, indicating their rms fluctuation is twice their
stated standard errors.

For a first cut at analyzing any data set, the analysis suggested by John Tukey[4]
is useful. The steps are: (a) find the quartile positions in the data set, Q1, Q2, Q3;
(b) calculate the inter-quartile range, IQR = Q3 - Q1; (c) determine the fraction of data
in the intervalsy < Q1 - 1.5 IQR andy > Q3 + 1.5 IQR, called the suspected outlier
fraction (SOF). For the normal distribution, IQR = 1.8%nd SOF =0.7%. The IQR is
a measure of the width of the core of the distribution and the SOF the extent of its tall,
relative to the width of the core. Q2 is the median, of course, which is a good estimate
of the measurand.

For the composite lifetime data shown in Fig. 2a, IQR is 1.83. Thus, the width of the
core of this distribution is 1.36 times larger than the value 1.35 that would obtain if the
distribution were normal and the standard errors were correctly estimated. Furthermore,
SOF = 6.6%, indicating this distribution has about ten times as many data in its tails than
expected for a normal, denoting a distribution with long (fat) tails.



UNCERTAINTIES IN PHYSICS EXPERIMENTS

When an experimenter states his/her measurement of a physical qyasyty- d + o,

the standard errar represents experimenter’s estimated uncertaindy irhis statement

is interpreted probabilistically as a likelihood function, the conditional probability of
d, given the measurand valyeand the stated standard ermy p(d|yal), wherel
represents any relevant background information, for example, how the experiment is
performed. The likelihood is a probability density function (PDF) in the varidbs® it

is properly normalized to unit area with respectitdiHowever, the likelihood is usually
viewed as function of, and is not necessarily normalized wrt.ytoThe likelihood is
usually taken to be a normal distribution (Gaussian) with standard devition

Experimental uncertainties are usually thought of as consisting of two types. The first
type is statistical uncertainty, which often arises from noise in the measured signals or
events being counted. In the latter case, the uncertainty is usually estimated using the
Poisson distribution. In the former, the rms fluctuations in the signals can be measured.
These sources of uncertainty are usually Type A uncertainties, that is, they can be
quantified by repeated measurements and estimated using frequentist statistical methods.
Statistical uncertainties are likely to be estimated reliably.

The second type is called systematic uncertainty because it often affects many or
all of the experimental results from an experiment. These arise from uncertainties in
equipment calibration, experimental procedure, or corrections to the data. In nuclear
physics, typical systematic uncertainties arise from detector efficiencies and deadtimes,
target densities and thickness, and integrated beam fluence. Systematic uncertainties
are usually Type B uncertainties; they are often determined by nonfrequentist methods,
and may be based on the experimenter’s judgment. Hence, these uncertainties may be
subjective, difficult to assess, and possibly not well known.

Statistical and systematic uncertainties are usually added in quadrature (rms sum).

Uncertainty in the uncertainty

Suppose there is uncertainty in the stated standard egdor measurement.
Dose and von der Linden [5] presented the following plausible derivation of a suitable
likelihood function. They assume the likelihood has an underlying normal distribution,

2
p<d|yo|)Dexp[—% (%)) ] , ®

o

wherea is the standard deviation of the distribution. Because the experimenter’s stated
standard errooy is uncertaing is assigned a probability density function (PDF). Rather
than working directly witho, Dose and van der Linden consider the variabjevhere

o is scaled by = gp/+/w, for which they assign a Gamma distribution:

p(w| 1) 0w lexp(—aw) . (2)

The mean of this distribution i® = 1 and its variance id/a. The value ofa should
be based on how uncertain one is in the uncertainty quoted by the experimenger. As
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FIGURE 3. (a, left) Plots of t distributions for ordexs= 1, 3, ande (normal). (b, right) Properties of t
distributions as a function of, the rms deviation, the IQR, and the SOF. kot 9, SOF > 2%. The rms
deviation diverges at of 2 and below.

approaches infinityp(w|l) approaches a delta function @t= 1. When viewed as a
PDF ins, p(s|l) has a plausible shape, with means of 1.59, 1.32, and 1.09, and rms
deviations of 1.06, 0.69, and 0.30wt1, 3, and 9, respectively.

The advantage of the above parameterization is that the integratiowoagrbe done
analytically, resulting in the likelihood

_vil
1/d-y\?| 2 d—
141 (—y) ] a1, (—y) , 3)
\Y Op Op
which is a Student t distribution of order= 2a.
See Refs. [6—-13] for other contributions to the outlier discussion.

p(d|yool) O

Properties of Student t distributions

Figure 3a shows the Studém distribution for threev valuesy = 1, 3, andw. Forv
= o0, the t distribution is the same as the normal distribution.\Fer3, it is the Cauchy
distribution, also called the Breit-Wigner or Lorentzian in physics. The tailt (o)
asymptotically fall a$x|*("+1). Because of that, the mean of the t distribution does not
exist forv < 1, and its variance is infinite for < 2.

Figure 3b displays the strong dependence of the rms widt}{fas a function ob.
The Tukey quantity, Inter-Quartile Range (IQR), does not change muclvwitbwever,
the Suspected Outlier Fraction (SOF) is already 2%=a0, and increases sharplyas
drops below 4. A good first guess as to whahatches a given data set can be obtained
from this curve and the SOF for the data set.

1 Student (1908) was pseudonym for W.S. Gossett, who was not allowed to publish under his own name
by his employer, Guinness brewery
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FIGURE 4. (a, left) Minus-log-likelihood dependence on the normalized residual for t distributions of
orderv =1, 3, and, the latter being identical to the normal distribution. (b, right) Derivatives of the same
functions. For smalb values, the restoring force of t-distribution likelihood functions drops off at large

residuals, as opposed to the linearly increasing force of the normal distribution.

Coping with outliers

The general Bayesian approach for coping with outliers is to use for the likelihood
function a long-tailed, sometimes called a fat-tailed, distribution. Experience shows us
that the exact form of the tail is not very important for ameliorating the effect of outliers.
For examples of long-tailed likelihoods and their response to outliers, see [5, 8-10, 14].

The easiest way to understand how long-tailed likelihood functions deal with outliers
is to employ the useful analogy betwe¢Mx) = minus-log-likelihood and a physical
potential. Since the gradient of a potential is a fore€]$ is interpreted as the force
with which the datum pulls on the model. Figure 4b shows the behavior of the derivative
of the minus-log-t distribution. The slopes of the three curves=a0 are different, but
that is not an issue here because of the scaling faateed in the present analysis.

For likelihoods to be tolerant of outliers, the restoring force eventually decreases,
or at least saturates, for increasing residuals. The extent to which a likelihood function
accommodates outliers can be deduced from how fast the derivative of its logarithm falls
off for large residuals. The normal distribution is not outlier tolerant because it pulls ever
more strongly on the solution as its residual increases.

RESULTS

Analysis of composite data set

This section summarizes the results of analyzing of the full data set composed of the
lifetime measurements for the five particles, shown in Fig. 2. The goal is to determine
whether a t distribution appropriately describes the distribution of measurements.
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FIGURE 5. (a, left) Contour plot of the evidence as a function of ondend the scales. (b, right) The
distribution inv has a broad peak with its maximumwat 2.6.

From the derivation above, the likelihood for each datum is given by the t distribution
1%t

1/di—1
1+—( | ) ] , (4)

vV \ S0j
where the variables has been introduced to scale all the uncertainties in the data
set. The likelihood for a data set withdata points is the product af such factors,
p(d|tso) O []iL, p(di|Tsai), assuming the measurements are statistically indepen-

dent. The posterior for the lifetime is obtained by marginalizing the joint distribution
for T ands over the nuisance parameter

p(di|tsoil) O

p(T|do):/p(TS|do) ds:/p(d|rso) p(Ts) ds. 5)

The dispersion of the data points is incorporated in this posterior, much in the same way
as with thex? scaling often applied in LS analysis.

To select between the two models, the t or normal distribution (T or N), Bayes rule
[15] gives the odds ratio as

p(T|dal) _ p(d|Tal) p(T| 1) ©
p(N[da1) ~ p(d|NoT) p(N|T)

wherep(T|l)/p(N|I) is ratio of the priors for the two models, ampdd | Tol) is the
evidence. The evidence is evaluated as the integral over the joint distributianohs

p(d|TGI):/ p(d|TsTal) p(ts|Tal) drds, )

2 An alternate approach is to infer the properties of the likelihood function is to directly fit the histogram,
as in Fig. 2b, using a multinomial distribution for the likelihood of each bin count. However, in the limit
of infinitely narrow histogram bins, it is easy to show that this approach is equivalent to the one used here.
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FIGURE 6. Posterior distribution for the t- FIGURE 7. Results of tests comparing the per-
distribution analysis of the neutron-lifetime data. formance of analyses based on t-distribution like-
The estimated lifetime and its standard error ardihoods to those based on using the normal distri-
shown for the t analysis and LS, based on the fullbution. The t-distribution analysis does much bet-
set of 21 data. The PDG estimate is based on conter than the normal for data sets from smalhl-
bining the seven most recent measurements, exhough the predicted or estimated uncertainties are
cluding that of Serebrov et al. slightly larger than the actual rms error.

shown in Fig. 5a. In this study, the evidence integral is estimated from the integrand
values evaluated on a uniform grid. The maximum in the evidence in Fig. 5b occurs
atv ~ 2.6+ 0.9. The odds ratios of the t distribution (at= 2.6) to the normal is
1.3x10785/2.2x 1079 =55x 10, assuming the odds ratio of the priors on the models
is unity and the priors on the parameters are the same for both models. The pripss on
andv are constant. Thus, the t distribution is strongly preferred by the data to the normal
distribution. For the normal distributios,= 1.95+0.14. ; s= 1 is definitely rejected.
Excluding the data point with the largest discrepancy (9.5 sigma) yields an odds
ratio of 2.1 x 10782/5.0 x 1084 = 42, which is considerably less than above, but the
t distribution is still preferred over the normal. In this case, the scaling for the normal
distribution iss=1.71+0.12.

Analysis of the neutron lifetime measurements

Figure 6 shows the result of analyzing all 21 measurements of the neutron lifetime
shown in Fig. 1a using for the likelihood t-distributions with= 2.6. The posterior irs
is obtained by marginalizing the joint distributionirands overs, as mentioned above.
The posterior distribution fos has a mean value &f= 1.16, indicating a fairly small
scaling factor is required when using a t-distribution likelihood. By contrast, the least-
squares result, shown in Fig. 6 wigh scaling, applies a scaling factor = 2.73. This
large scaling of the uncertainty is required because the data are more disperse than a
normal distribution with the quoted standard errors.

The PDG estimate, based on the seven most recent measurements, excluding the
one by Serebrov et al. [3] is reasonably consistent with the present result, although its
standard error is somewhat smaller because of the relative good consistency of the seven



chosen data. The standard error from the t-distribution analysis lies between that of the
LS and PDG results, while deftly coping with the Serebrov outlier.

Tests of performance of t-distribution analysis

How well does the analysis based on a t distribution of a given order work for data
drawn from different distributions? To answer that question, a series of Monte Carlo tests
are performed. In these tests, 10000 data sets are created, each with 20 data values drawn
from a specific t distribution. Each data set is analyzed with a likelihood function, either
the t distribution of ordev = 3 or the normal, which is equivalent to a least-squares (LS)
analysis. The results from all data sets are summarized in terms of the mean estimate and
its rms error. The rms estimated standard error is also calculated.

Figure 7 shows the results of these tests. The performance of the LS (nhormal) analysis
on data drawn from t distributions with< 3 is poor to very bad. This result is expected
because these data tend to have a number of outliers. The analysis based on the t
distribution withv = 3 excels when the data contain a significant fraction of outliers, that
is, when they are drawn from t distributions with< 3. For normally distributed data
(v = »), however, the LS analysis has slightly smaller rms error than the t-distribution
analysis by about 4%.

To summarize these results, LS analysis exposes the analyst to dire consequences in
the presence of outliers in the data. On the other hand, using likelihoods based on t
distributions withv ~ 3 gracefully deals with outliers while achieving very close to the
same accuracy as the LS analysis when the data are normally distributed.

DISCUSSION

The present study demonstrates that particle lifetime data are much better described
by a likelihood function based on the Student t distribution witk 2.6 to 3.0 than

by a normal distribution. Furthermore, likelihood or Bayesian analyses based on the t
distribution cope well with outliers, while treating each datum in the same way. There
is no need to identify outliers and specially deal with them. Furthermore, t-distribution
analysis produces stable results when outliers exist in data sets, whereas the normal
distribution does not. These results for particle lifetimes do not represent all physical
measurements, but are worth keeping in mind.

A useful conclusion of this study is that repeat experiments are worthwhile to gain
confidence and mitigate against outliers, even though they might not substantially im-
prove on the accuracy of earlier experiments. While the use of t distributions reduces the
influence of outliers, when an outlier is detected, every effort should be made to try to
understand the details of the experiments and possible causes for the disagreements.

As a word of caution, long-tailed likelihood functions may result in posteriors with
multiple maxima, which may complicate the analysis. While the posterior mean is the
best estimator, it can be computationally costly to evaluate, especially for nonlinear
models with many parameters.



It is expected that the experimental uncertainty in a given data set may contain statisti-
cal components that follow normal (or Poisson) distribution and systematic uncertainties
that potentially follow t distributions. In that case, the likelihood is a convolution of nor-
mal and t distributions, which can not easily be represented analytically.

Some outlier models [5, 9] adopt the notion that the data set contains both good data
and bad data. The likelihood is written as a mixture of normal and t distributions (or
other long-tailed function), for examplél — 3) N+ BT, where N stands for the normal
and T the t distribution. This treatment allows for either T (with probabiBijyor N
(with probability (1 — )), which form may satisfactorily approximate the convolution
of normal and t distributions suggested in the previous paragraph.
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