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Abstract. By drawing an analogy between the logarithm of a probability distribution and a
physical potential, it is natural to ask the question, “what is the effect of applying an external force
on model parameters?" In Bayesian inference, parameters are frequently estimated as those that
maximize the posterior, yielding the maximum a posteriori (MAP) solution, which corresponds
to minimizing ¢ = —log(posterior). The uncertainty in the estimated parameters is typically
summarized by the covariance matrix for the posterior distributiirl,describe a novel approach

to estimating specified elements©fin which one adds te a term proportional to a forcé, that

is hypothetically applied to the parameters. After minimizing the augmeptélde change in the
parameters is proportional 10 f. By selecting the appropriate force, the analyst can estimate the
variance in a quantity of special interest, as well as its covariance relative to other quantities. This
technique allows one to replace a stochastic MCMC calculation with a deterministic optimization
procedure. The usefulness of this technique is demonstrated with a few simple examples, as
well as a more complicated one, namely, the uncertainty in edge localization in a tomographic
reconstruction of an object’s boundary from two projections.
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INTRODUCTION

Bayesian inference for large nonlinear problems is often carried out through numerical
models and calculation[1]. The inference process requires estimates of the parameter
values,a, and their uncertainties. The uncertainties are related to the width of the
posterior and typically characterized in terms of the covariance nfatrthe maximum

a posteriori (MAP) solution is frequently chosen as an estimate of the parameters
because it is easier to find than the posterior mean.

Standard approaches to determinfdgnclude: 1) sensitivity analysis, 2) functional
analysis based on sensitivities[2], and 3) Markov chain Monte Carlo[3]. Each of these
approaches has its advantages and disadvantages, depending on the nature of the prob-
lem, including factors such as the number of parameters, the number of measurements,
and the cost of evaluating the forward model and its sensitivities.

By drawing an analogy between the logarithm of the posterior and a physical poten-
tial, it is natural think about applying an external force to the model parameters to deter-
mine the stiffness of the MAP solution. The resulting algorithm provides a deterministic
way to estimate selected elements of the covariance matrix[4, 5, 6, 7]. The usefulness of
this new technique is demonstrated with examples ranging from simple to complicated.
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PHYSICAL ANALOGY

Relationships between statistics and physics often provide a deeper understanding that
can lead to new or improved algorithmic approaches to solving statistics problems. In
statistical physics[8], probability distributions are often written as the exponential of a
physical potential. Thus, in Bayesian analysis, it is natural to draw an analogy between
v(a) = —log(p(aly)) and a physical potential, whepéa | y) is the posterior, the vector

a represents the continuous parameters, agdepresents the: measurements.

The analogy between probabilities and potentials has been used in many applications,
for example, to develop priors on deformable surfaces based on the mechanical proper-
ties of metallic rods[7]. It has been used to develop novel Markov Chain Monte Carlo
(MCMC) algorithms, for example, hybrid Monte Carlo[9], which is based on Hamilto-
nian dynamics.

The dependence of the posterior on the parameters is frequently approximated as a
Gaussian distribution in the neighborhood of the maximum a posteriori (MAP) solution,

a, which minimizesp(a). Thus,

pla) =5 (a—a) K(a—a)+ o, (1)

where K is the curvature matrix forp(a) and ¢y = ¢(a). The inverse ofK is the

~

covariance matrix, defined &= cov(a) = < (a—4a) (a— a)T >.

EXTERNAL FORCE

In the physics analogy, an external force applied to a physical system in equilibrium
will distort it. The displacement is determined by the curvature (or stiffness) matrix
describing the potential arourdd In the inference problem, the idea is to add:{@) a
potential that is linear im and find the new minimizex’. Equation (1) becomes

AT

(a—a) K(a—é)—fTa+<p0, (2)

N[ —

#'(a) =

wheref is analagous to a force acting anSetting the gradient gf’'(a) equal to zero,
we obtain
fa=a —a=K 'f=Cf, 3

since the inverse dK is C. This simple relation suggests that one can determine specific
elements ofC by selecting the appropriate force vecfoand seeing how the MAP
parameters change with reoptimizationf Ilhas only one nonzero componeyi, then
Eqg. (3) become8a; = o2 f;.
Inserting Eq. (3) into léq. (1), the functional dependence of the change in the posterior
is
dp=1%(CHTK(Cf)=LfTCf, (4)

becaus& ' = C andC is symmetric. Thus, the change in the posterior is quadratically
related to the magnitude of the applied force.
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Derived quantities

The above technique may be used to estimate the uncertainty in quantities that are
derived from the fitted parameters. Suppose the quantity of interest function of the
parametera. To first order, perturbations if(a) are given by

0z = sl—éa , (5)

wheres, is the sensitivity vector of with respect ta, s; = %. The variance i is
var(z) = (|0z|*) = <s15a5aTsZ> =s]Cs, . (6)

Thus, the appropriate force @nto probez is f, = ks., wherek is a scaling parameter
to adjust the magnitude of the force. Thén,= C.f, = o2k, which has the same form
as Eq. (3). Therefore,

ol =— (7

which can be used to estimate from thedz produced by the applied force.
From Eg. (4), the dependence of the posteriof

o = k%02, (8)
or 5
z
L= ) 9
7= o ©)

This relation provides another way to estimate the standard errottirs perhaps more
reliable than Eq. (7) because it doesn’t explicitely involve the magnitude of the force.

EXAMPLES

Fitting a straight line

The first example is very simple; fitting a straight line to measurements in one-
dimension. The model for the measurementg is a + bx, wherea is the intercept of
the line with they axis and is the slope of the line. The parameter vectaonsists of
the parameters andb. Figure 1a shows 10 data points obtaineddfer 0.5 andb = 0.5,
with additive fluctuations iry produced by drawing random numbers from a Gaussian
distribution with zero mean and a standard deviation of 0.2.

Consider now the analysis of these data. Assuming the uncertainties in the measure-
ments are independent and Gaussian distributed, as well as a flapgaothis problem
is

2
:B’H
pla) =5 x* = 22 , (10)
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FIGURE 1. (a, left) Plot of 10 data points with their standard error bars, and the straight line that
minimizese. (b, right) Applying an upward force to the line at= 0 and reoptimizingy’, lifts the line

there. However, the data pull the left side of the line down, resulting in a negative correlation between the
intercepta, and the slopé.
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FIGURE 2. (a, left) Plot of the displacements in the two parameters of the straight line in response to an
upward force applied to the line at= 0. (b, right) Plot of the change ip as a function of the magnitude

of the applied force. As explained in the text, the functional dependences of either of these plots may be
used to quantitatively estimate properties of the covariance matrix.

wherey; is the measurement at the positiof) ando; is its standard error. The line
through the data in Fig. 1a represents the MAP solution, that is, it minimizes

Suppose that we apply an upward force to the line at 0. This force is applied
only to the parameter. The new position of the line obtained by minimizing Eq. (2) is
shown in Fig. 1b. The interceptis increased, while the slope of the lihes decreased to
maintain a good fit to the data. This observed anticorrelation betwaendb is a direct
indication of the correlation between the uncertainties in these variables expressed by
the covariance matrix.

Quantitative estimates of elements @fmay be obtained from the plot in Fig. 2a,
which shows that the changesdrandb from their original values are proportional to
the applied vertical force. The slopedfrelative tof, by Eq. (7) isC,, = 0% = (0.127)2.
The slope oféb relative to f is C,, = —4.84 x 1073, The diagonal ternCy, is not
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determined because the force chosen does not directly probe that eleraent of

These results may be checked through a conventional least-squares fitting
analysis[10]. When the number of parameters is not too large and the function cal-
culations are quick, finite differences may be used to evaluate the Jacobian matrix
(derivatives of all outputs with respect to all parameters). The curvature ni€tiix
Eq. (1) can be approximated as the outer product of the Jacobian with itself. The inverse
of Kis C.

The conventional analysis confirms that results quoted above.

Spectral fitting

A more complicated example consists of fitting the data shown in Fig. 3. These data
are obtained by simulation, assuming the spectrum consists of a single Gaussian peak
added to a quadratic background. There are six parameters: the position, amplitude, and
rms width of the Gaussiany, a, andw, respectively, and three parameters to describe
the quadratic background. For this examplg= 3, « = 2, andw = 0.2. Random noise
is added to the data, assuming = 0.2. Figure 3 shows the spectrum obtained by
minimizing (a) = 3 x? with respect to the six parameters.

Let us assume that we are principally interested in the area under the Gaussian
peak. The area is proportional to the product of its amplitude and witth:v/27 a w.
Following the discussion in the section on Derived Quantities, the force to applrid
w should be proportional to the derivatives 4fwith respect to the these parameters:

92 — \2rw and 22 = /27 a. Examples of the result of applying large positive and
negative forces to the area are shown in Fig. 4. Figure 5 shows the results of varying
the magnitude of the applied force. For small values of the force, the change in
depends approximately linearly on the force. However, for this nonlinear model, the
linear dependence is expected to fail at some point.

2

From Eq. (9), the quadratic dependencé@fon ) A should be jp = % [%] . For
the smallest forces applied, this yields the estimates 0.098, for a negative force and
0.104, for a positive force.

The results of a conventional least-squares analysisxﬁ{ﬁ = 34.32 with p =
0.852; a = 1.948, o, = 0.149, w = 0.1759, ¢, = 0.0165, and a correlation coeffi-
cient r,, = —0.427. From these, the area id = 0.859, and its standard error is
oA = V21 [W20? + a0 — rop awo,o,]? = 0.093, in reasonable agreement with the
above result, considering the slightly nonquadractic behavior of the curve.

Tomographic reconstruction

The foregoing examples were simple enough to be handled by standard least-squares
fitting routines. However, as the number of variables increases, let us say beyond several
hundred, and as the cost of function evaluation increases, standard fitting codes fail. The
general approach that has developed avoids full-blown matrices; the MAP estimates are
found by numerical optimization of the calculated The difficult part is estimating
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FIGURE 3. Plot of 50 data points with their standard error bars representing a simple spectrum, and the
optimized curve corresponding to a Gaussian peak on a quadratic background.

FIGURE 4. (a, left) Plot of the reoptimized curve under the influence of an external force applied to the
parameters to increase the area under the Gaussian peak. (b, right) Similar to a, but the external force is
applied to the parameters to decrease the area under the peak. The dashed lines are the unperturbed curve.
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FIGURE 5. (a, left) Plot of the change in the area under the péalaused by a force applied tb. (b,
right) Plot of the change ip as a function of the change in the area produced by the applied force.
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FIGURE 6. (a, left) Display of the 95% Bayesian credible interval for the boundary of an object re-
constructed from two projections obtained using MCMC and the Bayes Inference Engine (from Ref. [7]).
The white region corresponds to roughly a plus or minus two-standard-deviation uncertainty envelop for
the edge of the object. The boundary of the original object in this test problem is shown as a dashed line.
(b, right) The dashed (yellow) line shows the effect of pushing inward on the MAP-estimated boundary,
shown as the solid (red) line. The displacement of the boundary corresponds to the covariance matrix for
the boundary location, relative to the position of the applied force, indicated by the white rectangle.

the uncertainties in the parameters. For that purpose, Markov Chain Monte Carlo[11]
(MCMC) is often employed in Bayesian calculations. Indeed, it is very adaptable and
handles virtually every situation. However, MCMC tends to be relatively inefficient and
time consuming under the conditions described.

The Bayes Inference Engine[12] (BIE) was developed at the Los Alamos National
Laboratory to provide an effective means for tomographically reconstructing objects
from radiographs. An example of the use of the BIE was presented in Ref. [7], which
demonstrated the reconstruction of an object from just two orthogonal projections. The
object was modeled in terms of a deformable boundary with a known constant interior
density. The BIE optimized the simple boundary to match the two noisy projections
by means of adjoint differentiation, which efficiently provides the derivatives of the
optimization function with respect to the 50 vertices of the polygonal boundary in the
same amount of time as one forward calculation. Thus, a gradient-based optimization
algorithm, BFGS[13], can be used to accelerate convergence. In the above article,
MCMC, in the form of the Metropolis algorithm[3], was used to assess the uncertainties
in the edge location. The end result of that example was the 95% Bayesian credible
interval for the boundary of the object shown in Fig. 6a.

In this situation, the concept of probing the covariance matrix is ideally suited to
determining the uncertainty in the edge location of the reconstruction at a particular
position. Figure 6b shows the result of applying pressure (force over the finite width of
the white rectangle) to the boundary. The solid (red) line represents the MAP estimated
boundary. The dashed (yellow) line shows the new position of the boundary, after
minimizing the augmented posterior (2).

The deflection of the boundary over the width of the rectangle may be used to
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quantitatively estimate the standard error in the estimated edge location at that spot.
Furthermore, the deflections elsewhere are proportional to the covariance between those
edge locations and the probed position. The main effects in these observed correlations
are easy to understand, given that the measurements on which the reconstruction are
based consist in horizontal and vertical projections of the object’s density distribution.
The edge locations opposite to the pressure point, horizontally and vertically, move
outwards to maintain the projection values. The inward movement of the boundary in the
upper right-hand position of the object is similarly in response to the latter two motions.

SUMMARY

| have presented a novel method for numerically estimating elements of the covariance
matrix. The method relies on optimization of the minus-log-posterior, and so replaces
standard stochastic methods with a deterministic one.

The method consists of the following steps:
1. Find the model parameteighat minimizey (minus-log-posterior).
2. Decide on the quantity of interest
3. Calculate the sensitity afwith respect taa: s, = g—g.

4. Find the parameters that minimizé= ¢ — ksza. The factork should be approxi-
matelyo_ 1. If §p, is much bigger than 0.5, reduéeand try again.

5. Estimate the standard erroriwith either:o? = ¢ oro. = 2.

Furthermore, the covariance betweerand other quantities may be estimated using

Eq. (3).

The described method may be most useful when: a) one’s interest is in the uncertainty
in one or a few parameters or derived quantities, out of many parameters; b) the full
covariance matrix is not known (nor desired); c) the posterior can be well approximated
by Gaussian distribution in parameters; and d) minimizatiop @ind ' can be done
efficiently. The latter condition seems to require that the gradient calculation can be
done efficiently, for example, through adjoint differentiation of the forward simulation
code[14]. Some potential uses of the method include estimation of the signal-to-noise
ratio in a region of a tomographic reconstruction[15, 16] and estimating the uncertainty
in the scalar output of a simulation code, for example, the criticality of an assembly of
fissile material calculated with a neutron-transport code[17].

The method may also be useful for exploring and quantifying non-Gaussian poste-
rior distributions, including situations with inequality constraints. For example, non-
negativity constraints in an inverse problem may result in some parameters being pushed
to the limit. The gradient at the MAP solution may not be zero because of the constraint.
Using a force to probe the posterior can quantify the strength of the constraint. Likeli-
hoods with long-tails are often used to handle outliers[18]. Such likelihoods can lead to
nonGaussian posterior distributions. The present method may be used to explore such
nonGaussian distributions, even though there may be no interpretation in terms of covari-
ance. The method might be useful to explore probabilistic correlations in self-optimizing
natural systems, such as populations, bacteria, and traffic.
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